2 * design and implementation of different types of digital filters
4 * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au
6 * This file is part of MPlayer.
8 * MPlayer is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * MPlayer is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 /******************************************************************************
28 * FIR filter implementations
29 ******************************************************************************/
31 /* C implementation of FIR filter y=w*x
33 n number of filter taps, where mod(n,4)==0
35 x input signal must be a circular buffer which is indexed backwards
37 inline FLOAT_TYPE
af_filter_fir(register unsigned int n
, const FLOAT_TYPE
* w
,
40 register FLOAT_TYPE y
; // Output
49 /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)
51 n number of filter taps, where mod(n,4)==0
53 xi current index in xq
54 w filter taps k by n big
55 x input signal must be a circular buffers which are indexed backwards
57 s output buffer stride
59 FLOAT_TYPE
* af_filter_pfir(unsigned int n
, unsigned int d
, unsigned int xi
,
60 const FLOAT_TYPE
** w
, const FLOAT_TYPE
** x
, FLOAT_TYPE
* y
,
63 register const FLOAT_TYPE
* xt
= *x
+ xi
;
64 register const FLOAT_TYPE
* wt
= *w
;
65 register int nt
= 2*n
;
67 *y
= af_filter_fir(n
,wt
,xt
);
75 /* Add new data to circular queue designed to be used with a parallel
76 FIR filter, with d filters. xq is the circular queue, in pointing
77 at the new samples, xi current index in xq and n the length of the
78 filter. xq must be n*2 by k big, s is the index for in.
80 int af_filter_updatepq(unsigned int n
, unsigned int d
, unsigned int xi
,
81 FLOAT_TYPE
** xq
, const FLOAT_TYPE
* in
, unsigned int s
)
83 register FLOAT_TYPE
* txq
= *xq
+ xi
;
84 register int nt
= n
*2;
94 /******************************************************************************
96 ******************************************************************************/
98 /* Design FIR filter using the Window method
100 n filter length must be odd for HP and BS filters
101 w buffer for the filter taps (must be n long)
102 fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
103 0 < fc < 1 where 1 <=> Fs/2
104 flags window and filter type as defined in filter.h
105 variables are ored together: i.e. LP|HAMMING will give a
106 low pass filter designed using a hamming window
107 opt beta constant used only when designing using kaiser windows
109 returns 0 if OK, -1 if fail
111 int af_filter_design_fir(unsigned int n
, FLOAT_TYPE
* w
, const FLOAT_TYPE
* fc
,
112 unsigned int flags
, FLOAT_TYPE opt
)
114 unsigned int o
= n
& 1; // Indicator for odd filter length
115 unsigned int end
= ((n
+ 1) >> 1) - o
; // Loop end
116 unsigned int i
; // Loop index
118 FLOAT_TYPE k1
= 2 * M_PI
; // 2*pi*fc1
119 FLOAT_TYPE k2
= 0.5 * (FLOAT_TYPE
)(1 - o
);// Constant used if the filter has even length
120 FLOAT_TYPE k3
; // 2*pi*fc2 Constant used in BP and BS design
121 FLOAT_TYPE g
= 0.0; // Gain
122 FLOAT_TYPE t1
,t2
,t3
; // Temporary variables
123 FLOAT_TYPE fc1
,fc2
; // Cutoff frequencies
126 if(!w
|| (n
== 0)) return -1;
128 // Get window coefficients
129 switch(flags
& WINDOW_MASK
){
131 af_window_boxcar(n
,w
); break;
133 af_window_triang(n
,w
); break;
135 af_window_hamming(n
,w
); break;
137 af_window_hanning(n
,w
); break;
139 af_window_blackman(n
,w
); break;
141 af_window_flattop(n
,w
); break;
143 af_window_kaiser(n
,w
,opt
); break;
148 if(flags
& (LP
| HP
)){
150 // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
151 fc1
= ((fc1
<= 1.0) && (fc1
> 0.0)) ? fc1
/2 : 0.25;
154 if(flags
& LP
){ // Low pass filter
156 // If the filter length is odd, there is one point which is exactly
157 // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
158 // where x is zero. To make sure nothing strange happens, we set this
161 w
[end
] = fc1
* w
[end
] * 2.0;
166 for (i
=0 ; i
<end
; i
++){
167 t1
= (FLOAT_TYPE
)(i
+1) - k2
;
168 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * sin(k1
* t1
)/(M_PI
* t1
); // Sinc
169 g
+= 2*w
[end
-i
-1]; // Total gain in filter
172 else{ // High pass filter
173 if (!o
) // High pass filters must have odd length
175 w
[end
] = 1.0 - (fc1
* w
[end
] * 2.0);
179 for (i
=0 ; i
<end
; i
++){
180 t1
= (FLOAT_TYPE
)(i
+1);
181 w
[end
-i
-1] = w
[n
-end
+i
] = -1 * w
[end
-i
-1] * sin(k1
* t1
)/(M_PI
* t1
); // Sinc
182 g
+= ((i
&1) ? (2*w
[end
-i
-1]) : (-2*w
[end
-i
-1])); // Total gain in filter
187 if(flags
& (BP
| BS
)){
190 // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
191 fc1
= ((fc1
<= 1.0) && (fc1
> 0.0)) ? fc1
/2 : 0.25;
192 fc2
= ((fc2
<= 1.0) && (fc2
> 0.0)) ? fc2
/2 : 0.25;
193 k3
= k1
* fc2
; // 2*pi*fc2
194 k1
*= fc1
; // 2*pi*fc1
196 if(flags
& BP
){ // Band pass
197 // Calculate center tap
200 w
[end
] = (fc2
- fc1
) * w
[end
] * 2.0;
204 for (i
=0 ; i
<end
; i
++){
205 t1
= (FLOAT_TYPE
)(i
+1) - k2
;
206 t2
= sin(k3
* t1
)/(M_PI
* t1
); // Sinc fc2
207 t3
= sin(k1
* t1
)/(M_PI
* t1
); // Sinc fc1
208 g
+= w
[end
-i
-1] * (t3
+ t2
); // Total gain in filter
209 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * (t2
- t3
);
213 if (!o
) // Band stop filters must have odd length
215 w
[end
] = 1.0 - (fc2
- fc1
) * w
[end
] * 2.0;
219 for (i
=0 ; i
<end
; i
++){
220 t1
= (FLOAT_TYPE
)(i
+1);
221 t2
= sin(k1
* t1
)/(M_PI
* t1
); // Sinc fc1
222 t3
= sin(k3
* t1
)/(M_PI
* t1
); // Sinc fc2
223 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * (t2
- t3
);
224 g
+= 2*w
[end
-i
-1]; // Total gain in filter
237 /* Design polyphase FIR filter from prototype filter
239 n length of prototype filter
240 k number of polyphase components
241 w prototype filter taps
242 pw Parallel FIR filter
244 flags FWD forward indexing
246 ODD multiply every 2nd filter tap by -1 => HP filter
248 returns 0 if OK, -1 if fail
250 int af_filter_design_pfir(unsigned int n
, unsigned int k
, const FLOAT_TYPE
* w
,
251 FLOAT_TYPE
** pw
, FLOAT_TYPE g
, unsigned int flags
)
253 int l
= (int)n
/k
; // Length of individual FIR filters
256 FLOAT_TYPE t
; // g * w[i]
259 if(l
<1 || k
<1 || !w
|| !pw
)
264 for(j
=l
-1;j
>-1;j
--){//Columns
265 for(i
=0;i
<(int)k
;i
++){//Rows
267 pw
[i
][j
]=t
* ((flags
& ODD
) ? ((j
& 1) ? -1 : 1) : 1);
272 for(j
=0;j
<l
;j
++){//Columns
273 for(i
=0;i
<(int)k
;i
++){//Rows
275 pw
[i
][j
]=t
* ((flags
& ODD
) ? ((j
& 1) ? 1 : -1) : 1);
282 /******************************************************************************
284 ******************************************************************************/
286 /* Helper functions for the bilinear transform */
288 /* Pre-warp the coefficients of a numerator or denominator.
289 Note that a0 is assumed to be 1, so there is no wrapping
292 static void af_filter_prewarp(FLOAT_TYPE
* a
, FLOAT_TYPE fc
, FLOAT_TYPE fs
)
295 wp
= 2.0 * fs
* tan(M_PI
* fc
/ fs
);
296 a
[2] = a
[2]/(wp
* wp
);
300 /* Transform the numerator and denominator coefficients of s-domain
301 biquad section into corresponding z-domain coefficients.
303 The transfer function for z-domain is:
305 1 + alpha1 * z^(-1) + alpha2 * z^(-2)
306 H(z) = -------------------------------------
307 1 + beta1 * z^(-1) + beta2 * z^(-2)
309 Store the 4 IIR coefficients in array pointed by coef in following
311 beta1, beta2 (denominator)
312 alpha1, alpha2 (numerator)
315 a - s-domain numerator coefficients
316 b - s-domain denominator coefficients
317 k - filter gain factor. Initially set to 1 and modified by each
318 biquad section in such a way, as to make it the
319 coefficient by which to multiply the overall filter gain
320 in order to achieve a desired overall filter gain,
321 specified in initial value of k.
322 fs - sampling rate (Hz)
323 coef - array of z-domain coefficients to be filled in.
325 Return: On return, set coef z-domain coefficients and k to the gain
326 required to maintain overall gain = 1.0;
328 static void af_filter_bilinear(const FLOAT_TYPE
* a
, const FLOAT_TYPE
* b
, FLOAT_TYPE
* k
,
329 FLOAT_TYPE fs
, FLOAT_TYPE
*coef
)
333 /* alpha (Numerator in s-domain) */
334 ad
= 4. * a
[2] * fs
* fs
+ 2. * a
[1] * fs
+ a
[0];
335 /* beta (Denominator in s-domain) */
336 bd
= 4. * b
[2] * fs
* fs
+ 2. * b
[1] * fs
+ b
[0];
338 /* Update gain constant for this section */
342 *coef
++ = (2. * b
[0] - 8. * b
[2] * fs
* fs
)/bd
; /* beta1 */
343 *coef
++ = (4. * b
[2] * fs
* fs
- 2. * b
[1] * fs
+ b
[0])/bd
; /* beta2 */
346 *coef
++ = (2. * a
[0] - 8. * a
[2] * fs
* fs
)/ad
; /* alpha1 */
347 *coef
= (4. * a
[2] * fs
* fs
- 2. * a
[1] * fs
+ a
[0])/ad
; /* alpha2 */
352 /* IIR filter design using bilinear transform and prewarp. Transforms
353 2nd order s domain analog filter into a digital IIR biquad link. To
354 create a filter fill in a, b, Q and fs and make space for coef and k.
357 Example Butterworth design:
359 Below are Butterworth polynomials, arranged as a series of 2nd
362 Note: n is filter order.
365 -------------------------------------------------------------------
367 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)
368 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)
370 For n=4 we have following equation for the filter transfer function:
372 T(s) = --------------------------- * ----------------------------
373 s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1
375 The filter consists of two 2nd order sections since highest s power
376 is 2. Now we can take the coefficients, or the numbers by which s
377 is multiplied and plug them into a standard formula to be used by
380 Our standard form for each 2nd order section is:
382 a2 * s^2 + a1 * s + a0
383 H(s) = ----------------------
384 b2 * s^2 + b1 * s + b0
386 Note that Butterworth numerator is 1 for all filter sections, which
387 means s^2 = 0 and s^1 = 0
389 Let's convert standard Butterworth polynomials into this form:
392 --------------------------- * --------------------------
393 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1
396 a2 = 0; a1 = 0; a0 = 1;
397 b2 = 1; b1 = 0.765367; b0 = 1;
400 a2 = 0; a1 = 0; a0 = 1;
401 b2 = 1; b1 = 1.847759; b0 = 1;
403 Q is filter quality factor or resonance, in the range of 1 to
404 1000. The overall filter Q is a product of all 2nd order stages.
405 For example, the 6th order filter (3 stages, or biquads) with
406 individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.
410 a - s-domain numerator coefficients, a[1] is always assumed to be 1.0
411 b - s-domain denominator coefficients
412 Q - Q value for the filter
413 k - filter gain factor. Initially set to 1 and modified by each
414 biquad section in such a way, as to make it the
415 coefficient by which to multiply the overall filter gain
416 in order to achieve a desired overall filter gain,
417 specified in initial value of k.
418 fs - sampling rate (Hz)
419 coef - array of z-domain coefficients to be filled in.
421 Note: Upon return from each call, the k argument will be set to a
422 value, by which to multiply our actual signal in order for the gain
423 to be one. On second call to szxform() we provide k that was
424 changed by the previous section. During actual audio filtering
425 k can be used for gain compensation.
427 return -1 if fail 0 if success.
429 int af_filter_szxform(const FLOAT_TYPE
* a
, const FLOAT_TYPE
* b
, FLOAT_TYPE Q
, FLOAT_TYPE fc
,
430 FLOAT_TYPE fs
, FLOAT_TYPE
*k
, FLOAT_TYPE
*coef
)
435 if(!a
|| !b
|| !k
|| !coef
|| (Q
>1000.0 || Q
< 1.0))
438 memcpy(at
,a
,3*sizeof(FLOAT_TYPE
));
439 memcpy(bt
,b
,3*sizeof(FLOAT_TYPE
));
443 /* Calculate a and b and overwrite the original values */
444 af_filter_prewarp(at
, fc
, fs
);
445 af_filter_prewarp(bt
, fc
, fs
);
446 /* Execute bilinear transform */
447 af_filter_bilinear(at
, bt
, k
, fs
, coef
);