whitespace cosmetics
[mplayer/glamo.git] / liba52 / imdct.c
blob325461c6fd0fcc209af4c37abad9369c59cefd11
1 /*
2 * imdct.c
3 * Copyright (C) 2000-2002 Michel Lespinasse <walken@zoy.org>
4 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
6 * The ifft algorithms in this file have been largely inspired by Dan
7 * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
9 * This file is part of a52dec, a free ATSC A-52 stream decoder.
10 * See http://liba52.sourceforge.net/ for updates.
12 * Modified for use with MPlayer, changes contained in liba52_changes.diff.
13 * detailed changelog at http://svn.mplayerhq.hu/mplayer/trunk/
14 * $Id$
16 * a52dec is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * a52dec is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 * SSE optimizations from Michael Niedermayer (michaelni@gmx.at)
31 * 3DNOW optimizations from Nick Kurshev <nickols_k@mail.ru>
32 * michael did port them from libac3 (untested, perhaps totally broken)
33 * AltiVec optimizations from Romain Dolbeau (romain@dolbeau.org)
36 #include "config.h"
38 #include <math.h>
39 #include <stdio.h>
40 #ifdef LIBA52_DJBFFT
41 #include <fftc4.h>
42 #endif
43 #ifndef M_PI
44 #define M_PI 3.1415926535897932384626433832795029
45 #endif
46 #include <inttypes.h>
48 #include "a52.h"
49 #include "a52_internal.h"
50 #include "mm_accel.h"
51 #include "mangle.h"
53 void (*a52_imdct_512) (sample_t * data, sample_t * delay, sample_t bias);
55 #ifdef RUNTIME_CPUDETECT
56 #undef HAVE_3DNOWEX
57 #endif
59 typedef struct complex_s {
60 sample_t real;
61 sample_t imag;
62 } complex_t;
64 static const int pm128[128] attribute_used __attribute__((aligned(16))) =
66 0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120,
67 4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124,
68 2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122,
69 6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126,
70 1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121,
71 5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125,
72 3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123,
73 7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127
74 };
76 static uint8_t attribute_used bit_reverse_512[] = {
77 0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
78 0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
79 0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
80 0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
81 0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
82 0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
83 0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
84 0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
85 0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
86 0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
87 0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
88 0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
89 0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
90 0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
91 0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
92 0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
94 static uint8_t fftorder[] = {
95 0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
96 8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
97 4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,
98 252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,
99 2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,
100 10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,
101 254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,
102 6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86
105 static complex_t __attribute__((aligned(16))) buf[128];
107 /* Twiddle factor LUT */
108 static complex_t __attribute__((aligned(16))) w_1[1];
109 static complex_t __attribute__((aligned(16))) w_2[2];
110 static complex_t __attribute__((aligned(16))) w_4[4];
111 static complex_t __attribute__((aligned(16))) w_8[8];
112 static complex_t __attribute__((aligned(16))) w_16[16];
113 static complex_t __attribute__((aligned(16))) w_32[32];
114 static complex_t __attribute__((aligned(16))) w_64[64];
115 static complex_t __attribute__((aligned(16))) * w[7] = {w_1, w_2, w_4, w_8, w_16, w_32, w_64};
117 /* Twiddle factors for IMDCT */
118 static sample_t __attribute__((aligned(16))) xcos1[128];
119 static sample_t __attribute__((aligned(16))) xsin1[128];
121 #if defined(ARCH_X86) || defined(ARCH_X86_64)
122 // NOTE: SSE needs 16byte alignment or it will segfault
124 static float __attribute__((aligned(16))) sseSinCos1c[256];
125 static float __attribute__((aligned(16))) sseSinCos1d[256];
126 static float attribute_used __attribute__((aligned(16))) ps111_1[4]={1,1,1,-1};
127 //static float __attribute__((aligned(16))) sseW0[4];
128 static float __attribute__((aligned(16))) sseW1[8];
129 static float __attribute__((aligned(16))) sseW2[16];
130 static float __attribute__((aligned(16))) sseW3[32];
131 static float __attribute__((aligned(16))) sseW4[64];
132 static float __attribute__((aligned(16))) sseW5[128];
133 static float __attribute__((aligned(16))) sseW6[256];
134 static float __attribute__((aligned(16))) *sseW[7]=
135 {NULL /*sseW0*/,sseW1,sseW2,sseW3,sseW4,sseW5,sseW6};
136 static float __attribute__((aligned(16))) sseWindow[512];
137 #endif
139 /* Root values for IFFT */
140 static sample_t roots16[3];
141 static sample_t roots32[7];
142 static sample_t roots64[15];
143 static sample_t roots128[31];
145 /* Twiddle factors for IMDCT */
146 static complex_t pre1[128];
147 static complex_t post1[64];
148 static complex_t pre2[64];
149 static complex_t post2[32];
151 static sample_t a52_imdct_window[256];
153 static void (* ifft128) (complex_t * buf);
154 static void (* ifft64) (complex_t * buf);
156 static inline void ifft2 (complex_t * buf)
158 double r, i;
160 r = buf[0].real;
161 i = buf[0].imag;
162 buf[0].real += buf[1].real;
163 buf[0].imag += buf[1].imag;
164 buf[1].real = r - buf[1].real;
165 buf[1].imag = i - buf[1].imag;
168 static inline void ifft4 (complex_t * buf)
170 double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
172 tmp1 = buf[0].real + buf[1].real;
173 tmp2 = buf[3].real + buf[2].real;
174 tmp3 = buf[0].imag + buf[1].imag;
175 tmp4 = buf[2].imag + buf[3].imag;
176 tmp5 = buf[0].real - buf[1].real;
177 tmp6 = buf[0].imag - buf[1].imag;
178 tmp7 = buf[2].imag - buf[3].imag;
179 tmp8 = buf[3].real - buf[2].real;
181 buf[0].real = tmp1 + tmp2;
182 buf[0].imag = tmp3 + tmp4;
183 buf[2].real = tmp1 - tmp2;
184 buf[2].imag = tmp3 - tmp4;
185 buf[1].real = tmp5 + tmp7;
186 buf[1].imag = tmp6 + tmp8;
187 buf[3].real = tmp5 - tmp7;
188 buf[3].imag = tmp6 - tmp8;
191 /* the basic split-radix ifft butterfly */
193 #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \
194 tmp5 = a2.real * wr + a2.imag * wi; \
195 tmp6 = a2.imag * wr - a2.real * wi; \
196 tmp7 = a3.real * wr - a3.imag * wi; \
197 tmp8 = a3.imag * wr + a3.real * wi; \
198 tmp1 = tmp5 + tmp7; \
199 tmp2 = tmp6 + tmp8; \
200 tmp3 = tmp6 - tmp8; \
201 tmp4 = tmp7 - tmp5; \
202 a2.real = a0.real - tmp1; \
203 a2.imag = a0.imag - tmp2; \
204 a3.real = a1.real - tmp3; \
205 a3.imag = a1.imag - tmp4; \
206 a0.real += tmp1; \
207 a0.imag += tmp2; \
208 a1.real += tmp3; \
209 a1.imag += tmp4; \
210 } while (0)
212 /* split-radix ifft butterfly, specialized for wr=1 wi=0 */
214 #define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \
215 tmp1 = a2.real + a3.real; \
216 tmp2 = a2.imag + a3.imag; \
217 tmp3 = a2.imag - a3.imag; \
218 tmp4 = a3.real - a2.real; \
219 a2.real = a0.real - tmp1; \
220 a2.imag = a0.imag - tmp2; \
221 a3.real = a1.real - tmp3; \
222 a3.imag = a1.imag - tmp4; \
223 a0.real += tmp1; \
224 a0.imag += tmp2; \
225 a1.real += tmp3; \
226 a1.imag += tmp4; \
227 } while (0)
229 /* split-radix ifft butterfly, specialized for wr=wi */
231 #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \
232 tmp5 = (a2.real + a2.imag) * w; \
233 tmp6 = (a2.imag - a2.real) * w; \
234 tmp7 = (a3.real - a3.imag) * w; \
235 tmp8 = (a3.imag + a3.real) * w; \
236 tmp1 = tmp5 + tmp7; \
237 tmp2 = tmp6 + tmp8; \
238 tmp3 = tmp6 - tmp8; \
239 tmp4 = tmp7 - tmp5; \
240 a2.real = a0.real - tmp1; \
241 a2.imag = a0.imag - tmp2; \
242 a3.real = a1.real - tmp3; \
243 a3.imag = a1.imag - tmp4; \
244 a0.real += tmp1; \
245 a0.imag += tmp2; \
246 a1.real += tmp3; \
247 a1.imag += tmp4; \
248 } while (0)
250 static inline void ifft8 (complex_t * buf)
252 double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
254 ifft4 (buf);
255 ifft2 (buf + 4);
256 ifft2 (buf + 6);
257 BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);
258 BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);
261 static void ifft_pass (complex_t * buf, sample_t * weight, int n)
263 complex_t * buf1;
264 complex_t * buf2;
265 complex_t * buf3;
266 double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
267 int i;
269 buf++;
270 buf1 = buf + n;
271 buf2 = buf + 2 * n;
272 buf3 = buf + 3 * n;
274 BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);
276 i = n - 1;
278 do {
279 BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]);
280 buf++;
281 buf1++;
282 buf2++;
283 buf3++;
284 weight++;
285 } while (--i);
288 static void ifft16 (complex_t * buf)
290 ifft8 (buf);
291 ifft4 (buf + 8);
292 ifft4 (buf + 12);
293 ifft_pass (buf, roots16 - 4, 4);
296 static void ifft32 (complex_t * buf)
298 ifft16 (buf);
299 ifft8 (buf + 16);
300 ifft8 (buf + 24);
301 ifft_pass (buf, roots32 - 8, 8);
304 static void ifft64_c (complex_t * buf)
306 ifft32 (buf);
307 ifft16 (buf + 32);
308 ifft16 (buf + 48);
309 ifft_pass (buf, roots64 - 16, 16);
312 static void ifft128_c (complex_t * buf)
314 ifft32 (buf);
315 ifft16 (buf + 32);
316 ifft16 (buf + 48);
317 ifft_pass (buf, roots64 - 16, 16);
319 ifft32 (buf + 64);
320 ifft32 (buf + 96);
321 ifft_pass (buf, roots128 - 32, 32);
324 void imdct_do_512 (sample_t * data, sample_t * delay, sample_t bias)
326 int i, k;
327 sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
328 const sample_t * window = a52_imdct_window;
329 complex_t buf[128];
331 for (i = 0; i < 128; i++) {
332 k = fftorder[i];
333 t_r = pre1[i].real;
334 t_i = pre1[i].imag;
336 buf[i].real = t_i * data[255-k] + t_r * data[k];
337 buf[i].imag = t_r * data[255-k] - t_i * data[k];
340 ifft128 (buf);
342 /* Post IFFT complex multiply plus IFFT complex conjugate*/
343 /* Window and convert to real valued signal */
344 for (i = 0; i < 64; i++) {
345 /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
346 t_r = post1[i].real;
347 t_i = post1[i].imag;
349 a_r = t_r * buf[i].real + t_i * buf[i].imag;
350 a_i = t_i * buf[i].real - t_r * buf[i].imag;
351 b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag;
352 b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag;
354 w_1 = window[2*i];
355 w_2 = window[255-2*i];
356 data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
357 data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
358 delay[2*i] = a_i;
360 w_1 = window[2*i+1];
361 w_2 = window[254-2*i];
362 data[2*i+1] = delay[2*i+1] * w_2 + b_r * w_1 + bias;
363 data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias;
364 delay[2*i+1] = b_i;
368 #ifdef HAVE_ALTIVEC
370 #ifdef HAVE_ALTIVEC_H
371 #include <altivec.h>
372 #endif
374 // used to build registers permutation vectors (vcprm)
375 // the 's' are for words in the _s_econd vector
376 #define WORD_0 0x00,0x01,0x02,0x03
377 #define WORD_1 0x04,0x05,0x06,0x07
378 #define WORD_2 0x08,0x09,0x0a,0x0b
379 #define WORD_3 0x0c,0x0d,0x0e,0x0f
380 #define WORD_s0 0x10,0x11,0x12,0x13
381 #define WORD_s1 0x14,0x15,0x16,0x17
382 #define WORD_s2 0x18,0x19,0x1a,0x1b
383 #define WORD_s3 0x1c,0x1d,0x1e,0x1f
385 #define vcprm(a,b,c,d) (const vector unsigned char){WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d}
386 #define vcii(a,b,c,d) (const vector float){FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d}
388 #define FOUROF(a) {a,a,a,a}
390 // vcprmle is used to keep the same index as in the SSE version.
391 // it's the same as vcprm, with the index inversed
392 // ('le' is Little Endian)
393 #define vcprmle(a,b,c,d) vcprm(d,c,b,a)
395 // used to build inverse/identity vectors (vcii)
396 // n is _n_egative, p is _p_ositive
397 #define FLOAT_n -1.
398 #define FLOAT_p 1.
401 void
402 imdct_do_512_altivec(sample_t data[],sample_t delay[], sample_t bias)
404 int i;
405 int k;
406 int p,q;
407 int m;
408 long two_m;
409 long two_m_plus_one;
411 sample_t tmp_b_i;
412 sample_t tmp_b_r;
413 sample_t tmp_a_i;
414 sample_t tmp_a_r;
416 sample_t *data_ptr;
417 sample_t *delay_ptr;
418 sample_t *window_ptr;
420 /* 512 IMDCT with source and dest data in 'data' */
422 /* Pre IFFT complex multiply plus IFFT cmplx conjugate & reordering*/
423 for( i=0; i < 128; i++) {
424 /* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
425 int j= bit_reverse_512[i];
426 buf[i].real = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]);
427 buf[i].imag = -1.0 * ((data[2*j] * xcos1[j]) + (data[256-2*j-1] * xsin1[j]));
430 /* 1. iteration */
431 for(i = 0; i < 128; i += 2) {
432 #if 0
433 tmp_a_r = buf[i].real;
434 tmp_a_i = buf[i].imag;
435 tmp_b_r = buf[i+1].real;
436 tmp_b_i = buf[i+1].imag;
437 buf[i].real = tmp_a_r + tmp_b_r;
438 buf[i].imag = tmp_a_i + tmp_b_i;
439 buf[i+1].real = tmp_a_r - tmp_b_r;
440 buf[i+1].imag = tmp_a_i - tmp_b_i;
441 #else
442 vector float temp, bufv;
444 bufv = vec_ld(i << 3, (float*)buf);
445 temp = vec_perm(bufv, bufv, vcprm(2,3,0,1));
446 bufv = vec_madd(bufv, vcii(p,p,n,n), temp);
447 vec_st(bufv, i << 3, (float*)buf);
448 #endif
451 /* 2. iteration */
452 // Note w[1]={{1,0}, {0,-1}}
453 for(i = 0; i < 128; i += 4) {
454 #if 0
455 tmp_a_r = buf[i].real;
456 tmp_a_i = buf[i].imag;
457 tmp_b_r = buf[i+2].real;
458 tmp_b_i = buf[i+2].imag;
459 buf[i].real = tmp_a_r + tmp_b_r;
460 buf[i].imag = tmp_a_i + tmp_b_i;
461 buf[i+2].real = tmp_a_r - tmp_b_r;
462 buf[i+2].imag = tmp_a_i - tmp_b_i;
463 tmp_a_r = buf[i+1].real;
464 tmp_a_i = buf[i+1].imag;
465 /* WARNING: im <-> re here ! */
466 tmp_b_r = buf[i+3].imag;
467 tmp_b_i = buf[i+3].real;
468 buf[i+1].real = tmp_a_r + tmp_b_r;
469 buf[i+1].imag = tmp_a_i - tmp_b_i;
470 buf[i+3].real = tmp_a_r - tmp_b_r;
471 buf[i+3].imag = tmp_a_i + tmp_b_i;
472 #else
473 vector float buf01, buf23, temp1, temp2;
475 buf01 = vec_ld((i + 0) << 3, (float*)buf);
476 buf23 = vec_ld((i + 2) << 3, (float*)buf);
477 buf23 = vec_perm(buf23,buf23,vcprm(0,1,3,2));
479 temp1 = vec_madd(buf23, vcii(p,p,p,n), buf01);
480 temp2 = vec_madd(buf23, vcii(n,n,n,p), buf01);
482 vec_st(temp1, (i + 0) << 3, (float*)buf);
483 vec_st(temp2, (i + 2) << 3, (float*)buf);
484 #endif
487 /* 3. iteration */
488 for(i = 0; i < 128; i += 8) {
489 #if 0
490 tmp_a_r = buf[i].real;
491 tmp_a_i = buf[i].imag;
492 tmp_b_r = buf[i+4].real;
493 tmp_b_i = buf[i+4].imag;
494 buf[i].real = tmp_a_r + tmp_b_r;
495 buf[i].imag = tmp_a_i + tmp_b_i;
496 buf[i+4].real = tmp_a_r - tmp_b_r;
497 buf[i+4].imag = tmp_a_i - tmp_b_i;
498 tmp_a_r = buf[1+i].real;
499 tmp_a_i = buf[1+i].imag;
500 tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
501 tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
502 buf[1+i].real = tmp_a_r + tmp_b_r;
503 buf[1+i].imag = tmp_a_i + tmp_b_i;
504 buf[i+5].real = tmp_a_r - tmp_b_r;
505 buf[i+5].imag = tmp_a_i - tmp_b_i;
506 tmp_a_r = buf[i+2].real;
507 tmp_a_i = buf[i+2].imag;
508 /* WARNING re <-> im & sign */
509 tmp_b_r = buf[i+6].imag;
510 tmp_b_i = - buf[i+6].real;
511 buf[i+2].real = tmp_a_r + tmp_b_r;
512 buf[i+2].imag = tmp_a_i + tmp_b_i;
513 buf[i+6].real = tmp_a_r - tmp_b_r;
514 buf[i+6].imag = tmp_a_i - tmp_b_i;
515 tmp_a_r = buf[i+3].real;
516 tmp_a_i = buf[i+3].imag;
517 tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
518 tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
519 buf[i+3].real = tmp_a_r + tmp_b_r;
520 buf[i+3].imag = tmp_a_i + tmp_b_i;
521 buf[i+7].real = tmp_a_r - tmp_b_r;
522 buf[i+7].imag = tmp_a_i - tmp_b_i;
523 #else
524 vector float buf01, buf23, buf45, buf67;
526 buf01 = vec_ld((i + 0) << 3, (float*)buf);
527 buf23 = vec_ld((i + 2) << 3, (float*)buf);
529 tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real;
530 tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real;
531 buf[i+5].real = tmp_b_r;
532 buf[i+5].imag = tmp_b_i;
533 tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag;
534 tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag;
535 buf[i+7].real = tmp_b_r;
536 buf[i+7].imag = tmp_b_i;
538 buf23 = vec_ld((i + 2) << 3, (float*)buf);
539 buf45 = vec_ld((i + 4) << 3, (float*)buf);
540 buf67 = vec_ld((i + 6) << 3, (float*)buf);
541 buf67 = vec_perm(buf67, buf67, vcprm(1,0,2,3));
543 vec_st(vec_add(buf01, buf45), (i + 0) << 3, (float*)buf);
544 vec_st(vec_madd(buf67, vcii(p,n,p,p), buf23), (i + 2) << 3, (float*)buf);
545 vec_st(vec_sub(buf01, buf45), (i + 4) << 3, (float*)buf);
546 vec_st(vec_nmsub(buf67, vcii(p,n,p,p), buf23), (i + 6) << 3, (float*)buf);
547 #endif
550 /* 4-7. iterations */
551 for (m=3; m < 7; m++) {
552 two_m = (1 << m);
554 two_m_plus_one = two_m<<1;
556 for(i = 0; i < 128; i += two_m_plus_one) {
557 for(k = 0; k < two_m; k+=2) {
558 #if 0
559 int p = k + i;
560 int q = p + two_m;
561 tmp_a_r = buf[p].real;
562 tmp_a_i = buf[p].imag;
563 tmp_b_r =
564 buf[q].real * w[m][k].real -
565 buf[q].imag * w[m][k].imag;
566 tmp_b_i =
567 buf[q].imag * w[m][k].real +
568 buf[q].real * w[m][k].imag;
569 buf[p].real = tmp_a_r + tmp_b_r;
570 buf[p].imag = tmp_a_i + tmp_b_i;
571 buf[q].real = tmp_a_r - tmp_b_r;
572 buf[q].imag = tmp_a_i - tmp_b_i;
574 tmp_a_r = buf[(p + 1)].real;
575 tmp_a_i = buf[(p + 1)].imag;
576 tmp_b_r =
577 buf[(q + 1)].real * w[m][(k + 1)].real -
578 buf[(q + 1)].imag * w[m][(k + 1)].imag;
579 tmp_b_i =
580 buf[(q + 1)].imag * w[m][(k + 1)].real +
581 buf[(q + 1)].real * w[m][(k + 1)].imag;
582 buf[(p + 1)].real = tmp_a_r + tmp_b_r;
583 buf[(p + 1)].imag = tmp_a_i + tmp_b_i;
584 buf[(q + 1)].real = tmp_a_r - tmp_b_r;
585 buf[(q + 1)].imag = tmp_a_i - tmp_b_i;
586 #else
587 int p = k + i;
588 int q = p + two_m;
589 vector float vecp, vecq, vecw, temp1, temp2, temp3, temp4;
590 const vector float vczero = (const vector float)FOUROF(0.);
591 // first compute buf[q] and buf[q+1]
592 vecq = vec_ld(q << 3, (float*)buf);
593 vecw = vec_ld(0, (float*)&(w[m][k]));
594 temp1 = vec_madd(vecq, vecw, vczero);
595 temp2 = vec_perm(vecq, vecq, vcprm(1,0,3,2));
596 temp2 = vec_madd(temp2, vecw, vczero);
597 temp3 = vec_perm(temp1, temp2, vcprm(0,s0,2,s2));
598 temp4 = vec_perm(temp1, temp2, vcprm(1,s1,3,s3));
599 vecq = vec_madd(temp4, vcii(n,p,n,p), temp3);
600 // then butterfly with buf[p] and buf[p+1]
601 vecp = vec_ld(p << 3, (float*)buf);
603 temp1 = vec_add(vecp, vecq);
604 temp2 = vec_sub(vecp, vecq);
606 vec_st(temp1, p << 3, (float*)buf);
607 vec_st(temp2, q << 3, (float*)buf);
608 #endif
613 /* Post IFFT complex multiply plus IFFT complex conjugate*/
614 for( i=0; i < 128; i+=4) {
615 /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
616 #if 0
617 tmp_a_r = buf[(i + 0)].real;
618 tmp_a_i = -1.0 * buf[(i + 0)].imag;
619 buf[(i + 0)].real =
620 (tmp_a_r * xcos1[(i + 0)]) - (tmp_a_i * xsin1[(i + 0)]);
621 buf[(i + 0)].imag =
622 (tmp_a_r * xsin1[(i + 0)]) + (tmp_a_i * xcos1[(i + 0)]);
624 tmp_a_r = buf[(i + 1)].real;
625 tmp_a_i = -1.0 * buf[(i + 1)].imag;
626 buf[(i + 1)].real =
627 (tmp_a_r * xcos1[(i + 1)]) - (tmp_a_i * xsin1[(i + 1)]);
628 buf[(i + 1)].imag =
629 (tmp_a_r * xsin1[(i + 1)]) + (tmp_a_i * xcos1[(i + 1)]);
631 tmp_a_r = buf[(i + 2)].real;
632 tmp_a_i = -1.0 * buf[(i + 2)].imag;
633 buf[(i + 2)].real =
634 (tmp_a_r * xcos1[(i + 2)]) - (tmp_a_i * xsin1[(i + 2)]);
635 buf[(i + 2)].imag =
636 (tmp_a_r * xsin1[(i + 2)]) + (tmp_a_i * xcos1[(i + 2)]);
638 tmp_a_r = buf[(i + 3)].real;
639 tmp_a_i = -1.0 * buf[(i + 3)].imag;
640 buf[(i + 3)].real =
641 (tmp_a_r * xcos1[(i + 3)]) - (tmp_a_i * xsin1[(i + 3)]);
642 buf[(i + 3)].imag =
643 (tmp_a_r * xsin1[(i + 3)]) + (tmp_a_i * xcos1[(i + 3)]);
644 #else
645 vector float bufv_0, bufv_2, cosv, sinv, temp1, temp2;
646 vector float temp0022, temp1133, tempCS01;
647 const vector float vczero = (const vector float)FOUROF(0.);
649 bufv_0 = vec_ld((i + 0) << 3, (float*)buf);
650 bufv_2 = vec_ld((i + 2) << 3, (float*)buf);
652 cosv = vec_ld(i << 2, xcos1);
653 sinv = vec_ld(i << 2, xsin1);
655 temp0022 = vec_perm(bufv_0, bufv_0, vcprm(0,0,2,2));
656 temp1133 = vec_perm(bufv_0, bufv_0, vcprm(1,1,3,3));
657 tempCS01 = vec_perm(cosv, sinv, vcprm(0,s0,1,s1));
658 temp1 = vec_madd(temp0022, tempCS01, vczero);
659 tempCS01 = vec_perm(cosv, sinv, vcprm(s0,0,s1,1));
660 temp2 = vec_madd(temp1133, tempCS01, vczero);
661 bufv_0 = vec_madd(temp2, vcii(p,n,p,n), temp1);
663 vec_st(bufv_0, (i + 0) << 3, (float*)buf);
665 /* idem with bufv_2 and high-order cosv/sinv */
667 temp0022 = vec_perm(bufv_2, bufv_2, vcprm(0,0,2,2));
668 temp1133 = vec_perm(bufv_2, bufv_2, vcprm(1,1,3,3));
669 tempCS01 = vec_perm(cosv, sinv, vcprm(2,s2,3,s3));
670 temp1 = vec_madd(temp0022, tempCS01, vczero);
671 tempCS01 = vec_perm(cosv, sinv, vcprm(s2,2,s3,3));
672 temp2 = vec_madd(temp1133, tempCS01, vczero);
673 bufv_2 = vec_madd(temp2, vcii(p,n,p,n), temp1);
675 vec_st(bufv_2, (i + 2) << 3, (float*)buf);
677 #endif
680 data_ptr = data;
681 delay_ptr = delay;
682 window_ptr = a52_imdct_window;
684 /* Window and convert to real valued signal */
685 for(i=0; i< 64; i++) {
686 *data_ptr++ = -buf[64+i].imag * *window_ptr++ + *delay_ptr++ + bias;
687 *data_ptr++ = buf[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias;
690 for(i=0; i< 64; i++) {
691 *data_ptr++ = -buf[i].real * *window_ptr++ + *delay_ptr++ + bias;
692 *data_ptr++ = buf[128-i-1].imag * *window_ptr++ + *delay_ptr++ + bias;
695 /* The trailing edge of the window goes into the delay line */
696 delay_ptr = delay;
698 for(i=0; i< 64; i++) {
699 *delay_ptr++ = -buf[64+i].real * *--window_ptr;
700 *delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
703 for(i=0; i<64; i++) {
704 *delay_ptr++ = buf[i].imag * *--window_ptr;
705 *delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
708 #endif
711 // Stuff below this line is borrowed from libac3
712 #include "srfftp.h"
713 #if defined(ARCH_X86) || defined(ARCH_X86_64)
714 #ifndef HAVE_3DNOW
715 #define HAVE_3DNOW 1
716 #endif
717 #include "srfftp_3dnow.h"
719 const i_cmplx_t x_plus_minus_3dnow __attribute__ ((aligned (8))) = {{ 0x00000000UL, 0x80000000UL }};
720 const i_cmplx_t x_minus_plus_3dnow __attribute__ ((aligned (8))) = {{ 0x80000000UL, 0x00000000UL }};
721 const complex_t HSQRT2_3DNOW __attribute__ ((aligned (8))) = { 0.707106781188, 0.707106781188 };
723 #undef HAVE_3DNOWEX
724 #include "imdct_3dnow.h"
725 #define HAVE_3DNOWEX
726 #include "imdct_3dnow.h"
728 void
729 imdct_do_512_sse(sample_t data[],sample_t delay[], sample_t bias)
731 /* int i,k;
732 int p,q;*/
733 int m;
734 long two_m;
735 long two_m_plus_one;
736 long two_m_plus_one_shl3;
737 complex_t *buf_offset;
739 /* sample_t tmp_a_i;
740 sample_t tmp_a_r;
741 sample_t tmp_b_i;
742 sample_t tmp_b_r;*/
744 sample_t *data_ptr;
745 sample_t *delay_ptr;
746 sample_t *window_ptr;
748 /* 512 IMDCT with source and dest data in 'data' */
749 /* see the c version (dct_do_512()), its allmost identical, just in C */
751 /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
752 /* Bit reversed shuffling */
753 __asm__ volatile(
754 "xor %%"REG_S", %%"REG_S" \n\t"
755 "lea "MANGLE(bit_reverse_512)", %%"REG_a"\n\t"
756 "mov $1008, %%"REG_D" \n\t"
757 "push %%"REG_BP" \n\t" //use ebp without telling gcc
758 ASMALIGN(4)
759 "1: \n\t"
760 "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // XXXI
761 "movhps 8(%0, %%"REG_D"), %%xmm0 \n\t" // RXXI
762 "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // XXXi
763 "movhps (%0, %%"REG_D"), %%xmm1 \n\t" // rXXi
764 "shufps $0x33, %%xmm1, %%xmm0 \n\t" // irIR
765 "movaps "MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm2\n\t"
766 "mulps %%xmm0, %%xmm2 \n\t"
767 "shufps $0xB1, %%xmm0, %%xmm0 \n\t" // riRI
768 "mulps "MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
769 "subps %%xmm0, %%xmm2 \n\t"
770 "movzb (%%"REG_a"), %%"REG_d" \n\t"
771 "movzb 1(%%"REG_a"), %%"REG_BP" \n\t"
772 "movlps %%xmm2, (%1, %%"REG_d", 8) \n\t"
773 "movhps %%xmm2, (%1, %%"REG_BP", 8) \n\t"
774 "add $16, %%"REG_S" \n\t"
775 "add $2, %%"REG_a" \n\t" // avoid complex addressing for P4 crap
776 "sub $16, %%"REG_D" \n\t"
777 "jnc 1b \n\t"
778 "pop %%"REG_BP" \n\t"//no we didnt touch ebp *g*
779 :: "b" (data), "c" (buf)
780 : "%"REG_S, "%"REG_D, "%"REG_a, "%"REG_d
784 /* FFT Merge */
785 /* unoptimized variant
786 for (m=1; m < 7; m++) {
787 if(m)
788 two_m = (1 << m);
789 else
790 two_m = 1;
792 two_m_plus_one = (1 << (m+1));
794 for(i = 0; i < 128; i += two_m_plus_one) {
795 for(k = 0; k < two_m; k++) {
796 p = k + i;
797 q = p + two_m;
798 tmp_a_r = buf[p].real;
799 tmp_a_i = buf[p].imag;
800 tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
801 tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
802 buf[p].real = tmp_a_r + tmp_b_r;
803 buf[p].imag = tmp_a_i + tmp_b_i;
804 buf[q].real = tmp_a_r - tmp_b_r;
805 buf[q].imag = tmp_a_i - tmp_b_i;
811 /* 1. iteration */
812 // Note w[0][0]={1,0}
813 __asm__ volatile(
814 "xorps %%xmm1, %%xmm1 \n\t"
815 "xorps %%xmm2, %%xmm2 \n\t"
816 "mov %0, %%"REG_S" \n\t"
817 ASMALIGN(4)
818 "1: \n\t"
819 "movlps (%%"REG_S"), %%xmm0\n\t" //buf[p]
820 "movlps 8(%%"REG_S"), %%xmm1\n\t" //buf[q]
821 "movhps (%%"REG_S"), %%xmm0\n\t" //buf[p]
822 "movhps 8(%%"REG_S"), %%xmm2\n\t" //buf[q]
823 "addps %%xmm1, %%xmm0 \n\t"
824 "subps %%xmm2, %%xmm0 \n\t"
825 "movaps %%xmm0, (%%"REG_S")\n\t"
826 "add $16, %%"REG_S" \n\t"
827 "cmp %1, %%"REG_S" \n\t"
828 " jb 1b \n\t"
829 :: "g" (buf), "r" (buf + 128)
830 : "%"REG_S
833 /* 2. iteration */
834 // Note w[1]={{1,0}, {0,-1}}
835 __asm__ volatile(
836 "movaps "MANGLE(ps111_1)", %%xmm7\n\t" // 1,1,1,-1
837 "mov %0, %%"REG_S" \n\t"
838 ASMALIGN(4)
839 "1: \n\t"
840 "movaps 16(%%"REG_S"), %%xmm2 \n\t" //r2,i2,r3,i3
841 "shufps $0xB4, %%xmm2, %%xmm2 \n\t" //r2,i2,i3,r3
842 "mulps %%xmm7, %%xmm2 \n\t" //r2,i2,i3,-r3
843 "movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
844 "movaps (%%"REG_S"), %%xmm1 \n\t" //r0,i0,r1,i1
845 "addps %%xmm2, %%xmm0 \n\t"
846 "subps %%xmm2, %%xmm1 \n\t"
847 "movaps %%xmm0, (%%"REG_S") \n\t"
848 "movaps %%xmm1, 16(%%"REG_S") \n\t"
849 "add $32, %%"REG_S" \n\t"
850 "cmp %1, %%"REG_S" \n\t"
851 " jb 1b \n\t"
852 :: "g" (buf), "r" (buf + 128)
853 : "%"REG_S
856 /* 3. iteration */
858 Note sseW2+0={1,1,sqrt(2),sqrt(2))
859 Note sseW2+16={0,0,sqrt(2),-sqrt(2))
860 Note sseW2+32={0,0,-sqrt(2),-sqrt(2))
861 Note sseW2+48={1,-1,sqrt(2),-sqrt(2))
863 __asm__ volatile(
864 "movaps 48+"MANGLE(sseW2)", %%xmm6\n\t"
865 "movaps 16+"MANGLE(sseW2)", %%xmm7\n\t"
866 "xorps %%xmm5, %%xmm5 \n\t"
867 "xorps %%xmm2, %%xmm2 \n\t"
868 "mov %0, %%"REG_S" \n\t"
869 ASMALIGN(4)
870 "1: \n\t"
871 "movaps 32(%%"REG_S"), %%xmm2 \n\t" //r4,i4,r5,i5
872 "movaps 48(%%"REG_S"), %%xmm3 \n\t" //r6,i6,r7,i7
873 "movaps "MANGLE(sseW2)", %%xmm4 \n\t" //r4,i4,r5,i5
874 "movaps 32+"MANGLE(sseW2)", %%xmm5\n\t" //r6,i6,r7,i7
875 "mulps %%xmm2, %%xmm4 \n\t"
876 "mulps %%xmm3, %%xmm5 \n\t"
877 "shufps $0xB1, %%xmm2, %%xmm2 \n\t" //i4,r4,i5,r5
878 "shufps $0xB1, %%xmm3, %%xmm3 \n\t" //i6,r6,i7,r7
879 "mulps %%xmm6, %%xmm3 \n\t"
880 "mulps %%xmm7, %%xmm2 \n\t"
881 "movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1
882 "movaps 16(%%"REG_S"), %%xmm1 \n\t" //r2,i2,r3,i3
883 "addps %%xmm4, %%xmm2 \n\t"
884 "addps %%xmm5, %%xmm3 \n\t"
885 "movaps %%xmm2, %%xmm4 \n\t"
886 "movaps %%xmm3, %%xmm5 \n\t"
887 "addps %%xmm0, %%xmm2 \n\t"
888 "addps %%xmm1, %%xmm3 \n\t"
889 "subps %%xmm4, %%xmm0 \n\t"
890 "subps %%xmm5, %%xmm1 \n\t"
891 "movaps %%xmm2, (%%"REG_S") \n\t"
892 "movaps %%xmm3, 16(%%"REG_S") \n\t"
893 "movaps %%xmm0, 32(%%"REG_S") \n\t"
894 "movaps %%xmm1, 48(%%"REG_S") \n\t"
895 "add $64, %%"REG_S" \n\t"
896 "cmp %1, %%"REG_S" \n\t"
897 " jb 1b \n\t"
898 :: "g" (buf), "r" (buf + 128)
899 : "%"REG_S
902 /* 4-7. iterations */
903 for (m=3; m < 7; m++) {
904 two_m = (1 << m);
905 two_m_plus_one = two_m<<1;
906 two_m_plus_one_shl3 = (two_m_plus_one<<3);
907 buf_offset = buf+128;
908 __asm__ volatile(
909 "mov %0, %%"REG_S" \n\t"
910 ASMALIGN(4)
911 "1: \n\t"
912 "xor %%"REG_D", %%"REG_D" \n\t" // k
913 "lea (%%"REG_S", %3), %%"REG_d" \n\t"
914 "2: \n\t"
915 "movaps (%%"REG_d", %%"REG_D"), %%xmm1 \n\t"
916 "movaps (%4, %%"REG_D", 2), %%xmm2 \n\t"
917 "mulps %%xmm1, %%xmm2 \n\t"
918 "shufps $0xB1, %%xmm1, %%xmm1 \n\t"
919 "mulps 16(%4, %%"REG_D", 2), %%xmm1 \n\t"
920 "movaps (%%"REG_S", %%"REG_D"), %%xmm0 \n\t"
921 "addps %%xmm2, %%xmm1 \n\t"
922 "movaps %%xmm1, %%xmm2 \n\t"
923 "addps %%xmm0, %%xmm1 \n\t"
924 "subps %%xmm2, %%xmm0 \n\t"
925 "movaps %%xmm1, (%%"REG_S", %%"REG_D") \n\t"
926 "movaps %%xmm0, (%%"REG_d", %%"REG_D") \n\t"
927 "add $16, %%"REG_D" \n\t"
928 "cmp %3, %%"REG_D" \n\t" //FIXME (opt) count against 0
929 "jb 2b \n\t"
930 "add %2, %%"REG_S" \n\t"
931 "cmp %1, %%"REG_S" \n\t"
932 " jb 1b \n\t"
933 :: "g" (buf), "m" (buf_offset), "m" (two_m_plus_one_shl3), "r" (two_m<<3),
934 "r" (sseW[m])
935 : "%"REG_S, "%"REG_D, "%"REG_d
939 /* Post IFFT complex multiply plus IFFT complex conjugate*/
940 __asm__ volatile(
941 "mov $-1024, %%"REG_S" \n\t"
942 ASMALIGN(4)
943 "1: \n\t"
944 "movaps (%0, %%"REG_S"), %%xmm0 \n\t"
945 "movaps (%0, %%"REG_S"), %%xmm1 \n\t"
946 "shufps $0xB1, %%xmm0, %%xmm0 \n\t"
947 "mulps 1024+"MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm1\n\t"
948 "mulps 1024+"MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t"
949 "addps %%xmm1, %%xmm0 \n\t"
950 "movaps %%xmm0, (%0, %%"REG_S") \n\t"
951 "add $16, %%"REG_S" \n\t"
952 " jnz 1b \n\t"
953 :: "r" (buf+128)
954 : "%"REG_S
958 data_ptr = data;
959 delay_ptr = delay;
960 window_ptr = a52_imdct_window;
962 /* Window and convert to real valued signal */
963 __asm__ volatile(
964 "xor %%"REG_D", %%"REG_D" \n\t" // 0
965 "xor %%"REG_S", %%"REG_S" \n\t" // 0
966 "movss %3, %%xmm2 \n\t" // bias
967 "shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
968 ASMALIGN(4)
969 "1: \n\t"
970 "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
971 "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
972 "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
973 "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
974 "shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
975 "mulps "MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
976 "addps (%2, %%"REG_S"), %%xmm0 \n\t"
977 "addps %%xmm2, %%xmm0 \n\t"
978 "movaps %%xmm0, (%1, %%"REG_S") \n\t"
979 "add $16, %%"REG_S" \n\t"
980 "sub $16, %%"REG_D" \n\t"
981 "cmp $512, %%"REG_S" \n\t"
982 " jb 1b \n\t"
983 :: "r" (buf+64), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
984 : "%"REG_S, "%"REG_D
986 data_ptr+=128;
987 delay_ptr+=128;
988 // window_ptr+=128;
990 __asm__ volatile(
991 "mov $1024, %%"REG_D" \n\t" // 512
992 "xor %%"REG_S", %%"REG_S" \n\t" // 0
993 "movss %3, %%xmm2 \n\t" // bias
994 "shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ...
995 ASMALIGN(4)
996 "1: \n\t"
997 "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
998 "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
999 "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
1000 "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
1001 "shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
1002 "mulps 512+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
1003 "addps (%2, %%"REG_S"), %%xmm0 \n\t"
1004 "addps %%xmm2, %%xmm0 \n\t"
1005 "movaps %%xmm0, (%1, %%"REG_S") \n\t"
1006 "add $16, %%"REG_S" \n\t"
1007 "sub $16, %%"REG_D" \n\t"
1008 "cmp $512, %%"REG_S" \n\t"
1009 " jb 1b \n\t"
1010 :: "r" (buf), "r" (data_ptr), "r" (delay_ptr), "m" (bias)
1011 : "%"REG_S, "%"REG_D
1013 data_ptr+=128;
1014 // window_ptr+=128;
1016 /* The trailing edge of the window goes into the delay line */
1017 delay_ptr = delay;
1019 __asm__ volatile(
1020 "xor %%"REG_D", %%"REG_D" \n\t" // 0
1021 "xor %%"REG_S", %%"REG_S" \n\t" // 0
1022 ASMALIGN(4)
1023 "1: \n\t"
1024 "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A
1025 "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C
1026 "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C
1027 "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A
1028 "shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A
1029 "mulps 1024+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
1030 "movaps %%xmm0, (%1, %%"REG_S") \n\t"
1031 "add $16, %%"REG_S" \n\t"
1032 "sub $16, %%"REG_D" \n\t"
1033 "cmp $512, %%"REG_S" \n\t"
1034 " jb 1b \n\t"
1035 :: "r" (buf+64), "r" (delay_ptr)
1036 : "%"REG_S, "%"REG_D
1038 delay_ptr+=128;
1039 // window_ptr-=128;
1041 __asm__ volatile(
1042 "mov $1024, %%"REG_D" \n\t" // 1024
1043 "xor %%"REG_S", %%"REG_S" \n\t" // 0
1044 ASMALIGN(4)
1045 "1: \n\t"
1046 "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ?
1047 "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ?
1048 "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ?
1049 "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ?
1050 "shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A
1051 "mulps 1536+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t"
1052 "movaps %%xmm0, (%1, %%"REG_S") \n\t"
1053 "add $16, %%"REG_S" \n\t"
1054 "sub $16, %%"REG_D" \n\t"
1055 "cmp $512, %%"REG_S" \n\t"
1056 " jb 1b \n\t"
1057 :: "r" (buf), "r" (delay_ptr)
1058 : "%"REG_S, "%"REG_D
1061 #endif // ARCH_X86 || ARCH_X86_64
1063 void a52_imdct_256(sample_t * data, sample_t * delay, sample_t bias)
1065 int i, k;
1066 sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
1067 const sample_t * window = a52_imdct_window;
1068 complex_t buf1[64], buf2[64];
1070 /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
1071 for (i = 0; i < 64; i++) {
1072 k = fftorder[i];
1073 t_r = pre2[i].real;
1074 t_i = pre2[i].imag;
1076 buf1[i].real = t_i * data[254-k] + t_r * data[k];
1077 buf1[i].imag = t_r * data[254-k] - t_i * data[k];
1079 buf2[i].real = t_i * data[255-k] + t_r * data[k+1];
1080 buf2[i].imag = t_r * data[255-k] - t_i * data[k+1];
1083 ifft64 (buf1);
1084 ifft64 (buf2);
1086 /* Post IFFT complex multiply */
1087 /* Window and convert to real valued signal */
1088 for (i = 0; i < 32; i++) {
1089 /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
1090 t_r = post2[i].real;
1091 t_i = post2[i].imag;
1093 a_r = t_r * buf1[i].real + t_i * buf1[i].imag;
1094 a_i = t_i * buf1[i].real - t_r * buf1[i].imag;
1095 b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag;
1096 b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag;
1098 c_r = t_r * buf2[i].real + t_i * buf2[i].imag;
1099 c_i = t_i * buf2[i].real - t_r * buf2[i].imag;
1100 d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag;
1101 d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag;
1103 w_1 = window[2*i];
1104 w_2 = window[255-2*i];
1105 data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias;
1106 data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias;
1107 delay[2*i] = c_i;
1109 w_1 = window[128+2*i];
1110 w_2 = window[127-2*i];
1111 data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias;
1112 data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias;
1113 delay[127-2*i] = c_r;
1115 w_1 = window[2*i+1];
1116 w_2 = window[254-2*i];
1117 data[2*i+1] = delay[2*i+1] * w_2 - b_i * w_1 + bias;
1118 data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias;
1119 delay[2*i+1] = d_r;
1121 w_1 = window[129+2*i];
1122 w_2 = window[126-2*i];
1123 data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias;
1124 data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias;
1125 delay[126-2*i] = d_i;
1129 static double besselI0 (double x)
1131 double bessel = 1;
1132 int i = 100;
1135 bessel = bessel * x / (i * i) + 1;
1136 while (--i);
1137 return bessel;
1140 void a52_imdct_init (uint32_t mm_accel)
1142 int i, j, k;
1143 double sum;
1145 /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
1146 sum = 0;
1147 for (i = 0; i < 256; i++) {
1148 sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
1149 a52_imdct_window[i] = sum;
1151 sum++;
1152 for (i = 0; i < 256; i++)
1153 a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum);
1155 for (i = 0; i < 3; i++)
1156 roots16[i] = cos ((M_PI / 8) * (i + 1));
1158 for (i = 0; i < 7; i++)
1159 roots32[i] = cos ((M_PI / 16) * (i + 1));
1161 for (i = 0; i < 15; i++)
1162 roots64[i] = cos ((M_PI / 32) * (i + 1));
1164 for (i = 0; i < 31; i++)
1165 roots128[i] = cos ((M_PI / 64) * (i + 1));
1167 for (i = 0; i < 64; i++) {
1168 k = fftorder[i] / 2 + 64;
1169 pre1[i].real = cos ((M_PI / 256) * (k - 0.25));
1170 pre1[i].imag = sin ((M_PI / 256) * (k - 0.25));
1173 for (i = 64; i < 128; i++) {
1174 k = fftorder[i] / 2 + 64;
1175 pre1[i].real = -cos ((M_PI / 256) * (k - 0.25));
1176 pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25));
1179 for (i = 0; i < 64; i++) {
1180 post1[i].real = cos ((M_PI / 256) * (i + 0.5));
1181 post1[i].imag = sin ((M_PI / 256) * (i + 0.5));
1184 for (i = 0; i < 64; i++) {
1185 k = fftorder[i] / 4;
1186 pre2[i].real = cos ((M_PI / 128) * (k - 0.25));
1187 pre2[i].imag = sin ((M_PI / 128) * (k - 0.25));
1190 for (i = 0; i < 32; i++) {
1191 post2[i].real = cos ((M_PI / 128) * (i + 0.5));
1192 post2[i].imag = sin ((M_PI / 128) * (i + 0.5));
1194 for (i = 0; i < 128; i++) {
1195 xcos1[i] = -cos ((M_PI / 2048) * (8 * i + 1));
1196 xsin1[i] = -sin ((M_PI / 2048) * (8 * i + 1));
1198 for (i = 0; i < 7; i++) {
1199 j = 1 << i;
1200 for (k = 0; k < j; k++) {
1201 w[i][k].real = cos (-M_PI * k / j);
1202 w[i][k].imag = sin (-M_PI * k / j);
1205 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1206 for (i = 0; i < 128; i++) {
1207 sseSinCos1c[2*i+0]= xcos1[i];
1208 sseSinCos1c[2*i+1]= -xcos1[i];
1209 sseSinCos1d[2*i+0]= xsin1[i];
1210 sseSinCos1d[2*i+1]= xsin1[i];
1212 for (i = 1; i < 7; i++) {
1213 j = 1 << i;
1214 for (k = 0; k < j; k+=2) {
1216 sseW[i][4*k + 0] = w[i][k+0].real;
1217 sseW[i][4*k + 1] = w[i][k+0].real;
1218 sseW[i][4*k + 2] = w[i][k+1].real;
1219 sseW[i][4*k + 3] = w[i][k+1].real;
1221 sseW[i][4*k + 4] = -w[i][k+0].imag;
1222 sseW[i][4*k + 5] = w[i][k+0].imag;
1223 sseW[i][4*k + 6] = -w[i][k+1].imag;
1224 sseW[i][4*k + 7] = w[i][k+1].imag;
1226 //we multiply more or less uninitalized numbers so we need to use exactly 0.0
1227 if(k==0)
1229 // sseW[i][4*k + 0]= sseW[i][4*k + 1]= 1.0;
1230 sseW[i][4*k + 4]= sseW[i][4*k + 5]= 0.0;
1233 if(2*k == j)
1235 sseW[i][4*k + 0]= sseW[i][4*k + 1]= 0.0;
1236 // sseW[i][4*k + 4]= -(sseW[i][4*k + 5]= -1.0);
1241 for(i=0; i<128; i++)
1243 sseWindow[2*i+0]= -a52_imdct_window[2*i+0];
1244 sseWindow[2*i+1]= a52_imdct_window[2*i+1];
1247 for(i=0; i<64; i++)
1249 sseWindow[256 + 2*i+0]= -a52_imdct_window[254 - 2*i+1];
1250 sseWindow[256 + 2*i+1]= a52_imdct_window[254 - 2*i+0];
1251 sseWindow[384 + 2*i+0]= a52_imdct_window[126 - 2*i+1];
1252 sseWindow[384 + 2*i+1]= -a52_imdct_window[126 - 2*i+0];
1254 #endif
1255 a52_imdct_512 = imdct_do_512;
1256 ifft128 = ifft128_c;
1257 ifft64 = ifft64_c;
1259 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1260 if(mm_accel & MM_ACCEL_X86_SSE)
1262 fprintf (stderr, "Using SSE optimized IMDCT transform\n");
1263 a52_imdct_512 = imdct_do_512_sse;
1265 else
1266 if(mm_accel & MM_ACCEL_X86_3DNOWEXT)
1268 fprintf (stderr, "Using 3DNowEx optimized IMDCT transform\n");
1269 a52_imdct_512 = imdct_do_512_3dnowex;
1271 else
1272 if(mm_accel & MM_ACCEL_X86_3DNOW)
1274 fprintf (stderr, "Using 3DNow optimized IMDCT transform\n");
1275 a52_imdct_512 = imdct_do_512_3dnow;
1277 else
1278 #endif // ARCH_X86 || ARCH_X86_64
1279 #ifdef HAVE_ALTIVEC
1280 if (mm_accel & MM_ACCEL_PPC_ALTIVEC)
1282 fprintf(stderr, "Using AltiVec optimized IMDCT transform\n");
1283 a52_imdct_512 = imdct_do_512_altivec;
1285 else
1286 #endif
1288 #ifdef LIBA52_DJBFFT
1289 if (mm_accel & MM_ACCEL_DJBFFT) {
1290 fprintf (stderr, "Using djbfft for IMDCT transform\n");
1291 ifft128 = (void (*) (complex_t *)) fftc4_un128;
1292 ifft64 = (void (*) (complex_t *)) fftc4_un64;
1293 } else
1294 #endif
1296 fprintf (stderr, "No accelerated IMDCT transform found\n");