2 * Modified for use with MPlayer, for details see the changelog at
3 * http://svn.mplayerhq.hu/mplayer/trunk/
8 * Mpeg Layer-3 audio decoder
9 * --------------------------
10 * copyright (c) 1995-1999 by Michael Hipp.
11 * All rights reserved. See also 'README'
13 * Optimize-TODO: put short bands into the band-field without the stride
15 * Length-optimze: unify long and short band code where it is possible
28 # define REAL_MUL(x, y) ((x) * (y))
30 static real ispow
[8207];
31 static real aa_ca
[8],aa_cs
[8];
32 static real COS1
[12][6];
33 static real win
[4][36];
34 static real win1
[4][36];
35 static real gainpow2
[256+118+4];
37 /* non static for external 3dnow functions */
39 static real COS6_1
,COS6_2
;
42 static real tfcos12
[3];
45 static real cos9
[3],cos18
[3];
48 struct bandInfoStruct
{
51 uint16_t shortIdx
[14];
52 uint8_t shortDiff
[13];
55 static int longLimit
[9][23];
56 static int shortLimit
[9][14];
58 static const struct bandInfoStruct bandInfo
[9] = {
61 { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
62 {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
63 {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
64 {4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
66 { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
67 {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
68 {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
69 {4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
71 { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
72 {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
73 {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
74 {4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
77 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
78 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
79 {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
80 {4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
81 /* changed 19th value fropm 330 to 332 */
82 { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576},
83 {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } ,
84 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
85 {4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
87 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
88 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
89 {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
90 {4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
92 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
93 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
94 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
95 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
96 { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
97 {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
98 {0,12,24,36,54,78,108,144,186,240,312,402,522,576},
99 {4,4,4,6,8,10,12,14,18,24,30,40,18} },
100 { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
101 {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
102 {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
103 {8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
106 static int mapbuf0
[9][152];
107 static int mapbuf1
[9][156];
108 static int mapbuf2
[9][44];
109 static int *map
[9][3];
110 static int *mapend
[9][3];
112 static unsigned int n_slen2
[512]; /* MPEG 2.0 slen for 'normal' mode */
113 static unsigned int i_slen2
[256]; /* MPEG 2.0 slen for intensity stereo */
115 static real tan1_1
[16],tan2_1
[16],tan1_2
[16],tan2_2
[16];
116 static real pow1_1
[2][16],pow2_1
[2][16],pow1_2
[2][16],pow2_2
[2][16];
119 * init tables for layer-3
121 static void init_layer3(int down_sample_sblimit
)
125 for(i
=-256;i
<118+4;i
++)
128 gainpow2
[i
+256] = 16384.0 * pow((double)2.0,-0.25 * (double) (i
+210) );
130 gainpow2
[i
+256] = pow((double)2.0,-0.25 * (double) (i
+210) );
133 ispow
[i
] = pow((double)i
,(double)4.0/3.0);
137 static const double Ci
[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037};
138 double sq
=sqrt(1.0+Ci
[i
]*Ci
[i
]);
145 win
[0][i
] = win
[1][i
] = 0.5 * sin( M_PI
/ 72.0 * (double) (2*(i
+0) +1) ) / cos ( M_PI
* (double) (2*(i
+0) +19) / 72.0 );
146 win
[0][i
+18] = win
[3][i
+18] = 0.5 * sin( M_PI
/ 72.0 * (double) (2*(i
+18)+1) ) / cos ( M_PI
* (double) (2*(i
+18)+19) / 72.0 );
150 win
[1][i
+18] = 0.5 / cos ( M_PI
* (double) (2*(i
+18)+19) / 72.0 );
151 win
[3][i
+12] = 0.5 / cos ( M_PI
* (double) (2*(i
+12)+19) / 72.0 );
152 win
[1][i
+24] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+13) ) / cos ( M_PI
* (double) (2*(i
+24)+19) / 72.0 );
153 win
[1][i
+30] = win
[3][i
] = 0.0;
154 win
[3][i
+6 ] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+1) ) / cos ( M_PI
* (double) (2*(i
+6 )+19) / 72.0 );
158 COS9
[i
] = cos( M_PI
/ 18.0 * (double) i
);
161 tfcos36
[i
] = 0.5 / cos ( M_PI
* (double) (i
*2+1) / 36.0 );
163 tfcos12
[i
] = 0.5 / cos ( M_PI
* (double) (i
*2+1) / 12.0 );
165 COS6_1
= cos( M_PI
/ 6.0 * (double) 1);
166 COS6_2
= cos( M_PI
/ 6.0 * (double) 2);
169 cos9
[0] = cos(1.0*M_PI
/9.0);
170 cos9
[1] = cos(5.0*M_PI
/9.0);
171 cos9
[2] = cos(7.0*M_PI
/9.0);
172 cos18
[0] = cos(1.0*M_PI
/18.0);
173 cos18
[1] = cos(11.0*M_PI
/18.0);
174 cos18
[2] = cos(13.0*M_PI
/18.0);
179 win
[2][i
] = 0.5 * sin( M_PI
/ 24.0 * (double) (2*i
+1) ) / cos ( M_PI
* (double) (2*i
+7) / 24.0 );
181 COS1
[i
][j
] = cos( M_PI
/ 24.0 * (double) ((2*i
+7)*(2*j
+1)) );
185 static const int len
[4] = { 36,36,12,36 };
186 for(i
=0;i
<len
[j
];i
+=2)
187 win1
[j
][i
] = + win
[j
][i
];
188 for(i
=1;i
<len
[j
];i
+=2)
189 win1
[j
][i
] = - win
[j
][i
];
194 double t
= tan( (double) i
* M_PI
/ 12.0 );
195 tan1_1
[i
] = t
/ (1.0+t
);
196 tan2_1
[i
] = 1.0 / (1.0 + t
);
197 tan1_2
[i
] = M_SQRT2
* t
/ (1.0+t
);
198 tan2_2
[i
] = M_SQRT2
/ (1.0 + t
);
201 double base
= pow(2.0,-0.25*(j
+1.0));
202 double p1
=1.0,p2
=1.0;
205 p1
= pow(base
,(i
+1.0)*0.5);
207 p2
= pow(base
,i
*0.5);
211 pow1_2
[j
][i
] = M_SQRT2
* p1
;
212 pow2_2
[j
][i
] = M_SQRT2
* p2
;
218 const struct bandInfoStruct
*bi
= &bandInfo
[j
];
223 mp
= map
[j
][0] = mapbuf0
[j
];
225 for(i
=0,cb
= 0; cb
< 8 ; cb
++,i
+=*bdf
++) {
231 bdf
= bi
->shortDiff
+3;
232 for(cb
=3;cb
<13;cb
++) {
233 int l
= (*bdf
++) >> 1;
234 for(lwin
=0;lwin
<3;lwin
++) {
244 mp
= map
[j
][1] = mapbuf1
[j
];
245 bdf
= bi
->shortDiff
+0;
246 for(i
=0,cb
=0;cb
<13;cb
++) {
247 int l
= (*bdf
++) >> 1;
248 for(lwin
=0;lwin
<3;lwin
++) {
258 mp
= map
[j
][2] = mapbuf2
[j
];
260 for(cb
= 0; cb
< 22 ; cb
++) {
261 *mp
++ = (*bdf
++) >> 1;
270 longLimit
[j
][i
] = (bandInfo
[j
].longIdx
[i
] - 1 + 8) / 18 + 1;
271 if(longLimit
[j
][i
] > (down_sample_sblimit
) )
272 longLimit
[j
][i
] = down_sample_sblimit
;
275 shortLimit
[j
][i
] = (bandInfo
[j
].shortIdx
[i
] - 1) / 18 + 1;
276 if(shortLimit
[j
][i
] > (down_sample_sblimit
) )
277 shortLimit
[j
][i
] = down_sample_sblimit
;
284 int n
= k
+ j
* 6 + i
* 36;
285 i_slen2
[n
] = i
|(j
<<3)|(k
<<6)|(3<<12);
292 int n
= k
+ j
* 4 + i
* 16;
293 i_slen2
[n
+180] = i
|(j
<<3)|(k
<<6)|(4<<12);
300 i_slen2
[n
+244] = i
|(j
<<3) | (5<<12);
301 n_slen2
[n
+500] = i
|(j
<<3) | (2<<12) | (1<<15);
309 int n
= l
+ k
* 4 + j
* 16 + i
* 80;
310 n_slen2
[n
] = i
|(j
<<3)|(k
<<6)|(l
<<9)|(0<<12);
318 int n
= k
+ j
* 4 + i
* 20;
319 n_slen2
[n
+400] = i
|(j
<<3)|(k
<<6)|(1<<12);
326 * read additional side information (for MPEG 1 and MPEG 2)
328 static int III_get_side_info(struct III_sideinfo
*si
,int stereo
,
329 int ms_stereo
,int sfreq
,int single
,int lsf
)
332 int powdiff
= (single
== 3) ? 4 : 0;
334 static const int tabs
[2][5] = { { 2,9,5,3,4 } , { 1,8,1,2,9 } };
335 const int *tab
= tabs
[lsf
];
337 si
->main_data_begin
= getbits(tab
[1]);
339 si
->private_bits
= getbits_fast(tab
[2]);
341 si
->private_bits
= getbits_fast(tab
[3]);
344 for (ch
=0; ch
<stereo
; ch
++) {
345 si
->ch
[ch
].gr
[0].scfsi
= -1;
346 si
->ch
[ch
].gr
[1].scfsi
= getbits_fast(4);
350 for (gr
=0; gr
<tab
[0]; gr
++) {
351 for (ch
=0; ch
<stereo
; ch
++) {
352 register struct gr_info_s
*gr_info
= &(si
->ch
[ch
].gr
[gr
]);
354 gr_info
->part2_3_length
= getbits(12);
355 gr_info
->big_values
= getbits(9);
356 if(gr_info
->big_values
> 288) {
357 fprintf(stderr
,"big_values too large!\n");
358 gr_info
->big_values
= 288;
360 gr_info
->pow2gain
= gainpow2
+256 - getbits_fast(8) + powdiff
;
362 gr_info
->pow2gain
+= 2;
363 gr_info
->scalefac_compress
= getbits(tab
[4]);
365 if(get1bit()) { /* window switch flag */
368 if(2*gr_info
->big_values
> bandInfo
[sfreq
].shortIdx
[12])
369 fprintf(stderr
,"L3: BigValues too large, doesn't make sense %d %d\n",2*gr_info
->big_values
,bandInfo
[sfreq
].shortIdx
[12]);
372 gr_info
->block_type
= getbits_fast(2);
373 gr_info
->mixed_block_flag
= get1bit();
374 gr_info
->table_select
[0] = getbits_fast(5);
375 gr_info
->table_select
[1] = getbits_fast(5);
377 * table_select[2] not needed, because there is no region2,
378 * but to satisfy some verifications tools we set it either.
380 gr_info
->table_select
[2] = 0;
382 gr_info
->full_gain
[i
] = gr_info
->pow2gain
+ (getbits_fast(3)<<3);
384 if(gr_info
->block_type
== 0) {
385 fprintf(stderr
,"Blocktype == 0 and window-switching == 1 not allowed.\n");
389 /* region_count/start parameters are implicit in this case. */
390 if(!lsf
|| gr_info
->block_type
== 2)
391 gr_info
->region1start
= 36>>1;
393 /* check this again for 2.5 and sfreq=8 */
395 gr_info
->region1start
= 108>>1;
397 gr_info
->region1start
= 54>>1;
399 gr_info
->region2start
= 576>>1;
404 if(2*gr_info
->big_values
> bandInfo
[sfreq
].longIdx
[21])
405 fprintf(stderr
,"L3: BigValues too large, doesn't make sense %d %d\n",2*gr_info
->big_values
,bandInfo
[sfreq
].longIdx
[21]);
408 gr_info
->table_select
[i
] = getbits_fast(5);
409 r0c
= getbits_fast(4);
410 r1c
= getbits_fast(3);
411 gr_info
->region1start
= bandInfo
[sfreq
].longIdx
[r0c
+1] >> 1 ;
412 if(r0c
+ r1c
+ 2 > 22)
413 gr_info
->region2start
= 576>>1;
415 gr_info
->region2start
= bandInfo
[sfreq
].longIdx
[r0c
+1+r1c
+1] >> 1;
416 gr_info
->block_type
= 0;
417 gr_info
->mixed_block_flag
= 0;
420 gr_info
->preflag
= get1bit();
421 gr_info
->scalefac_scale
= get1bit();
422 gr_info
->count1table_select
= get1bit();
432 static int III_get_scale_factors_1(int *scf
,struct gr_info_s
*gr_info
)
434 static const unsigned char slen
[2][16] = {
435 {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
436 {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
439 int num0
= slen
[0][gr_info
->scalefac_compress
];
440 int num1
= slen
[1][gr_info
->scalefac_compress
];
442 if (gr_info
->block_type
== 2) {
444 numbits
= (num0
+ num1
) * 18;
446 if (gr_info
->mixed_block_flag
) {
448 *scf
++ = getbits_fast(num0
);
450 numbits
-= num0
; /* num0 * 17 + num1 * 18 */
454 *scf
++ = getbits_fast(num0
);
456 *scf
++ = getbits_fast(num1
);
457 *scf
++ = 0; *scf
++ = 0; *scf
++ = 0; /* short[13][0..2] = 0 */
461 int scfsi
= gr_info
->scfsi
;
463 if(scfsi
< 0) { /* scfsi < 0 => granule == 0 */
465 *scf
++ = getbits_fast(num0
);
467 *scf
++ = getbits_fast(num1
);
468 numbits
= (num0
+ num1
) * 10 + num0
;
475 *scf
++ = getbits_fast(num0
);
484 *scf
++ = getbits_fast(num0
);
493 *scf
++ = getbits_fast(num1
);
502 *scf
++ = getbits_fast(num1
);
508 *scf
++ = 0; /* no l[21] in original sources */
514 static int III_get_scale_factors_2(int *scf
,struct gr_info_s
*gr_info
,int i_stereo
)
522 static unsigned char stab
[3][6][4] = {
523 { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
524 { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
525 { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
526 {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
527 { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
528 { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
530 if(i_stereo
) /* i_stereo AND second channel -> do_layer3() checks this */
531 slen
= i_slen2
[gr_info
->scalefac_compress
>>1];
533 slen
= n_slen2
[gr_info
->scalefac_compress
];
535 gr_info
->preflag
= (slen
>>15) & 0x1;
538 if( gr_info
->block_type
== 2 ) {
540 if(gr_info
->mixed_block_flag
) n
++;
543 pnt
= stab
[n
][(slen
>>12)&0x7];
546 int num
= slen
& 0x7;
549 for(j
=0;j
<(int)(pnt
[i
]);j
++) *scf
++ = getbits_fast(num
);
550 numbits
+= pnt
[i
] * num
;
553 for(j
=0;j
<(int)(pnt
[i
]);j
++) *scf
++ = 0;
558 for(i
=0;i
<n
;i
++) *scf
++ = 0;
563 static int pretab1
[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0};
564 static int pretab2
[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
566 #define getbitoffset() ((-bitindex)&0x7)
567 #define getbyte() (*wordpointer++)
570 * Dequantize samples (includes huffman decoding)
572 /* 24 is enough because tab13 has max. a 19 bit huffvector */
573 #define BITSHIFT ((sizeof(long)-1)*8)
574 #define REFRESH_MASK \
575 while(num < BITSHIFT) { \
576 mask |= ((unsigned long)getbyte())<<(BITSHIFT-num); \
580 static int III_dequantize_sample(real xr
[SBLIMIT
][SSLIMIT
],int *scf
,
581 struct gr_info_s
*gr_info
,int sfreq
,int part2bits
)
583 int shift
= 1 + gr_info
->scalefac_scale
;
584 real
*xrpnt
= (real
*) xr
;
586 int part2remain
= gr_info
->part2_3_length
- part2bits
;
589 int num
=getbitoffset();
591 /* we must split this, because for num==0 the shift is undefined if you do it in one step */
592 mask
= ((unsigned long) getbits(num
))<<BITSHIFT
;
597 int bv
= gr_info
->big_values
;
598 int region1
= gr_info
->region1start
;
599 int region2
= gr_info
->region2start
;
601 l3
= ((576>>1)-bv
)>>1;
603 * we may lose the 'odd' bit here !!
604 * check this later again
607 l
[0] = bv
; l
[1] = l
[2] = 0;
612 l
[1] = bv
- l
[0]; l
[2] = 0;
615 l
[1] = region2
- l
[0]; l
[2] = bv
- region2
;
620 if(gr_info
->block_type
== 2) {
622 * decoding with short or mixed mode BandIndex table
625 int step
=0,lwin
=3,cb
=0;
626 register real v
= 0.0;
629 if(gr_info
->mixed_block_flag
) {
631 max
[0] = max
[1] = max
[2] = 2;
633 me
= mapend
[sfreq
][0];
636 max
[0] = max
[1] = max
[2] = max
[3] = -1;
637 /* max[3] not really needed in this case */
639 me
= mapend
[sfreq
][1];
645 struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
650 xrpnt
= ((real
*) xr
) + (*m
++);
654 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
658 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
663 register short *val
= h
->table
;
665 while((y
=*val
++)<0) {
674 if(x
== 15 && h
->linbits
) {
677 x
+= ((unsigned long) mask
) >> (BITSHIFT
+8-h
->linbits
);
681 *xrpnt
= REAL_MUL(-ispow
[x
], v
);
683 *xrpnt
= REAL_MUL(ispow
[x
], v
);
689 *xrpnt
= REAL_MUL(-ispow
[x
], v
);
691 *xrpnt
= REAL_MUL(ispow
[x
], v
);
698 if(y
== 15 && h
->linbits
) {
701 y
+= ((unsigned long) mask
) >> (BITSHIFT
+8-h
->linbits
);
705 *xrpnt
= REAL_MUL(-ispow
[y
], v
);
707 *xrpnt
= REAL_MUL(ispow
[y
], v
);
713 *xrpnt
= REAL_MUL(-ispow
[y
], v
);
715 *xrpnt
= REAL_MUL(ispow
[y
], v
);
725 for(;l3
&& (part2remain
+num
> 0);l3
--) {
726 struct newhuff
*h
= htc
+gr_info
->count1table_select
;
727 register short *val
= h
->table
,a
;
730 while((a
=*val
++)<0) {
736 if(part2remain
+num
<= 0) {
737 num
-= part2remain
+num
;
745 xrpnt
= ((real
*) xr
) + (*m
++);
749 v
= gr_info
->pow2gain
[(*scf
++) << shift
];
753 v
= gr_info
->full_gain
[lwin
][(*scf
++) << shift
];
759 if( (a
& (0x8>>i
)) ) {
761 if(part2remain
+num
<= 0) {
777 if(lwin
< 3) { /* short band? */
780 *xrpnt
= 0.0; xrpnt
+= 3; /* short band -> step=3 */
781 *xrpnt
= 0.0; xrpnt
+= 3;
786 xrpnt
= ((real
*) xr
) + *m
++;
788 break; /* optimize: field will be set to zero at the end of the function */
793 gr_info
->maxband
[0] = max
[0]+1;
794 gr_info
->maxband
[1] = max
[1]+1;
795 gr_info
->maxband
[2] = max
[2]+1;
796 gr_info
->maxbandl
= max
[3]+1;
799 int rmax
= max
[0] > max
[1] ? max
[0] : max
[1];
800 rmax
= (rmax
> max
[2] ? rmax
: max
[2]) + 1;
801 gr_info
->maxb
= rmax
? shortLimit
[sfreq
][rmax
] : longLimit
[sfreq
][max
[3]+1];
807 * decoding with 'long' BandIndex table (block_type != 2)
809 int *pretab
= gr_info
->preflag
? pretab1
: pretab2
;
812 int *m
= map
[sfreq
][2];
813 register real v
= 0.0;
817 * long hash table values
821 struct newhuff
*h
= ht
+gr_info
->table_select
[i
];
836 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
840 register short *val
= h
->table
;
842 while((y
=*val
++)<0) {
852 if (x
== 15 && h
->linbits
) {
855 x
+= ((unsigned long) mask
) >> (BITSHIFT
+8-h
->linbits
);
859 *xrpnt
++ = REAL_MUL(-ispow
[x
], v
);
861 *xrpnt
++ = REAL_MUL(ispow
[x
], v
);
867 *xrpnt
++ = REAL_MUL(-ispow
[x
], v
);
869 *xrpnt
++ = REAL_MUL(ispow
[x
], v
);
876 if (y
== 15 && h
->linbits
) {
879 y
+= ((unsigned long) mask
) >> (BITSHIFT
+8-h
->linbits
);
883 *xrpnt
++ = REAL_MUL(-ispow
[y
], v
);
885 *xrpnt
++ = REAL_MUL(ispow
[y
], v
);
891 *xrpnt
++ = REAL_MUL(-ispow
[y
], v
);
893 *xrpnt
++ = REAL_MUL(ispow
[y
], v
);
903 * short (count1table) values
905 for(;l3
&& (part2remain
+num
> 0);l3
--) {
906 struct newhuff
*h
= htc
+gr_info
->count1table_select
;
907 register short *val
= h
->table
,a
;
910 while((a
=*val
++)<0) {
916 if(part2remain
+num
<= 0) {
917 num
-= part2remain
+num
;
933 v
= gr_info
->pow2gain
[((*scf
++) + (*pretab
++)) << shift
];
937 if ( (a
& (0x8>>i
)) ) {
939 if(part2remain
+num
<= 0) {
954 gr_info
->maxbandl
= max
+1;
955 gr_info
->maxb
= longLimit
[sfreq
][gr_info
->maxbandl
];
960 bitindex
-= num
; wordpointer
+= (bitindex
>>3); bitindex
&= 0x7;
963 while(xrpnt
< &xr
[SBLIMIT
][0])
966 while( part2remain
> 16 ) {
967 getbits(16); /* Dismiss stuffing Bits */
971 getbits(part2remain
);
972 else if(part2remain
< 0) {
973 fprintf(stderr
,"mpg123: Can't rewind stream by %d bits!\n",-part2remain
);
974 return 1; /* -> error */
983 * III_stereo: calculate real channel values for Joint-I-Stereo-mode
985 static void III_i_stereo(real xr_buf
[2][SBLIMIT
][SSLIMIT
],int *scalefac
,
986 struct gr_info_s
*gr_info
,int sfreq
,int ms_stereo
,int lsf
)
988 real (*xr
)[SBLIMIT
*SSLIMIT
] = (real (*)[SBLIMIT
*SSLIMIT
] ) xr_buf
;
989 const struct bandInfoStruct
*bi
= &bandInfo
[sfreq
];
991 const real
*tab1
,*tab2
;
994 static const real
*tabs
[3][2][2] = {
995 { { tan1_1
,tan2_1
} , { tan1_2
,tan2_2
} },
996 { { pow1_1
[0],pow2_1
[0] } , { pow1_2
[0],pow2_2
[0] } } ,
997 { { pow1_1
[1],pow2_1
[1] } , { pow1_2
[1],pow2_2
[1] } }
1000 tab
= lsf
+ (gr_info
->scalefac_compress
& lsf
);
1001 tab1
= tabs
[tab
][ms_stereo
][0];
1002 tab2
= tabs
[tab
][ms_stereo
][1];
1005 int p
= gr_info
->scalefac_compress
& 0x1;
1007 tab1
= pow1_2
[p
]; tab2
= pow2_2
[p
];
1010 tab1
= pow1_1
[p
]; tab2
= pow2_1
[p
];
1015 tab1
= tan1_2
; tab2
= tan2_2
;
1018 tab1
= tan1_1
; tab2
= tan2_1
;
1023 // printf("III_i_st: tab1=%p tab2=%p tab=%d ms=%d \n", tab1, tab2, tab, ms_stereo);
1025 if (gr_info
->block_type
== 2) {
1027 if( gr_info
->mixed_block_flag
)
1030 for (lwin
=0;lwin
<3;lwin
++) { /* process each window */
1031 /* get first band with zero values */
1032 int is_p
,sb
,idx
,sfb
= gr_info
->maxband
[lwin
]; /* sfb is minimal 3 for mixed mode */
1036 for(;sfb
<12;sfb
++) {
1037 is_p
= scalefac
[sfb
*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1040 sb
= bi
->shortDiff
[sfb
];
1041 idx
= bi
->shortIdx
[sfb
] + lwin
;
1042 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1043 for (; sb
> 0; sb
--,idx
+=3) {
1044 real v
= xr
[0][idx
];
1045 xr
[0][idx
] = REAL_MUL(v
, t1
);
1046 xr
[1][idx
] = REAL_MUL(v
, t2
);
1052 /* in the original: copy 10 to 11 , here: copy 11 to 12
1053 maybe still wrong??? (copy 12 to 13?) */
1054 is_p
= scalefac
[11*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1055 sb
= bi
->shortDiff
[12];
1056 idx
= bi
->shortIdx
[12] + lwin
;
1058 is_p
= scalefac
[10*3+lwin
-gr_info
->mixed_block_flag
]; /* scale: 0-15 */
1059 sb
= bi
->shortDiff
[11];
1060 idx
= bi
->shortIdx
[11] + lwin
;
1064 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1065 for ( ; sb
> 0; sb
--,idx
+=3 ) {
1066 real v
= xr
[0][idx
];
1067 xr
[0][idx
] = REAL_MUL(v
, t1
);
1068 xr
[1][idx
] = REAL_MUL(v
, t2
);
1071 } /* end for(lwin; .. ; . ) */
1073 /* also check l-part, if ALL bands in the three windows are 'empty'
1074 * and mode = mixed_mode
1077 int sfb
= gr_info
->maxbandl
;
1078 int idx
= bi
->longIdx
[sfb
];
1080 for ( ; sfb
<8; sfb
++ ) {
1081 int sb
= bi
->longDiff
[sfb
];
1082 int is_p
= scalefac
[sfb
]; /* scale: 0-15 */
1085 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1086 for ( ; sb
> 0; sb
--,idx
++) {
1087 real v
= xr
[0][idx
];
1088 xr
[0][idx
] = REAL_MUL(v
, t1
);
1089 xr
[1][idx
] = REAL_MUL(v
, t2
);
1097 else { /* ((gr_info->block_type != 2)) */
1098 int sfb
= gr_info
->maxbandl
;
1099 int is_p
,idx
= bi
->longIdx
[sfb
];
1101 /* hmm ... maybe the maxbandl stuff for i-stereo is buggy? */
1103 for ( ; sfb
<21; sfb
++) {
1104 int sb
= bi
->longDiff
[sfb
];
1105 is_p
= scalefac
[sfb
]; /* scale: 0-15 */
1108 t1
= tab1
[is_p
]; t2
= tab2
[is_p
];
1109 for ( ; sb
> 0; sb
--,idx
++) {
1110 real v
= xr
[0][idx
];
1111 xr
[0][idx
] = REAL_MUL(v
, t1
);
1112 xr
[1][idx
] = REAL_MUL(v
, t2
);
1119 is_p
= scalefac
[20];
1120 if(is_p
!= 7) { /* copy l-band 20 to l-band 21 */
1122 real t1
= tab1
[is_p
],t2
= tab2
[is_p
];
1124 for ( sb
= bi
->longDiff
[21]; sb
> 0; sb
--,idx
++ ) {
1125 real v
= xr
[0][idx
];
1126 xr
[0][idx
] = REAL_MUL(v
, t1
);
1127 xr
[1][idx
] = REAL_MUL(v
, t2
);
1130 } /* end: if(sfb <= 21) */
1134 static void III_antialias(real xr
[SBLIMIT
][SSLIMIT
],struct gr_info_s
*gr_info
) {
1137 if(gr_info
->block_type
== 2) {
1138 if(!gr_info
->mixed_block_flag
)
1143 sblim
= gr_info
->maxb
-1;
1146 /* 31 alias-reduction operations between each pair of sub-bands */
1147 /* with 8 butterflies between each pair */
1151 real
*xr1
=(real
*) xr
[1];
1153 for(sb
=sblim
;sb
;sb
--,xr1
+=10) {
1155 real
*cs
=aa_cs
,*ca
=aa_ca
;
1158 for(ss
=7;ss
>=0;ss
--) { /* upper and lower butterfly inputs */
1159 register real bu
= *--xr2
,bd
= *xr1
;
1160 *xr2
= (bu
* (*cs
) ) - (bd
* (*ca
) );
1161 *xr1
++ = (bd
* (*cs
++) ) + (bu
* (*ca
++) );
1172 #include "decod386.c"
1178 static dct36_func_t dct36_func
;
1180 static void III_hybrid(real fsIn
[SBLIMIT
][SSLIMIT
],real tsOut
[SSLIMIT
][SBLIMIT
],
1181 int ch
,struct gr_info_s
*gr_info
)
1183 real
*tspnt
= (real
*) tsOut
;
1184 static real block
[2][2][SBLIMIT
*SSLIMIT
] = { { { 0, } } };
1185 static int blc
[2]={0,0};
1186 real
*rawout1
,*rawout2
;
1192 rawout1
=block
[b
][ch
];
1194 rawout2
=block
[b
][ch
];
1198 if(gr_info
->mixed_block_flag
) {
1200 (*dct36_func
)(fsIn
[0],rawout1
,rawout2
,win
[0],tspnt
);
1201 (*dct36_func
)(fsIn
[1],rawout1
+18,rawout2
+18,win1
[0],tspnt
+1);
1202 rawout1
+= 36; rawout2
+= 36; tspnt
+= 2;
1205 bt
= gr_info
->block_type
;
1207 for (; sb
<gr_info
->maxb
; sb
+=2,tspnt
+=2,rawout1
+=36,rawout2
+=36) {
1208 dct12(fsIn
[sb
],rawout1
,rawout2
,win
[2],tspnt
);
1209 dct12(fsIn
[sb
+1],rawout1
+18,rawout2
+18,win1
[2],tspnt
+1);
1213 for (; sb
<gr_info
->maxb
; sb
+=2,tspnt
+=2,rawout1
+=36,rawout2
+=36) {
1214 (*dct36_func
)(fsIn
[sb
],rawout1
,rawout2
,win
[bt
],tspnt
);
1215 (*dct36_func
)(fsIn
[sb
+1],rawout1
+18,rawout2
+18,win1
[bt
],tspnt
+1);
1219 for(;sb
<SBLIMIT
;sb
++,tspnt
++) {
1221 for(i
=0;i
<SSLIMIT
;i
++) {
1222 tspnt
[i
*SBLIMIT
] = *rawout1
++;
1229 * main layer3 handler
1231 /* int do_layer3(struct frame *fr,int outmode,struct audio_info_struct *ai) */
1232 static int do_layer3(struct frame
*fr
,int single
){
1233 int gr
, ch
, ss
,clip
=0;
1234 int scalefacs
[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
1235 struct III_sideinfo sideinfo
;
1236 int stereo
= fr
->stereo
;
1237 int ms_stereo
,i_stereo
;
1238 int sfreq
= fr
->sampling_frequency
;
1239 int stereo1
,granules
;
1241 // if (fr->error_protection) getbits(16); /* skip crc */
1243 if(stereo
== 1) { /* stream is mono */
1247 if(single
>= 0) /* stream is stereo, but force to mono */
1252 if(fr
->mode
== MPG_MD_JOINT_STEREO
) {
1253 ms_stereo
= (fr
->mode_ext
& 0x2)>>1;
1254 i_stereo
= fr
->mode_ext
& 0x1;
1256 ms_stereo
= i_stereo
= 0;
1258 if(!III_get_side_info(&sideinfo
,stereo
,ms_stereo
,sfreq
,single
,fr
->lsf
))
1261 set_pointer(sideinfo
.main_data_begin
);
1263 granules
= (fr
->lsf
) ? 1 : 2;
1264 for (gr
=0;gr
<granules
;gr
++){
1265 DECLARE_ALIGNED(16, real
, hybridIn
[2][SBLIMIT
][SSLIMIT
]);
1266 DECLARE_ALIGNED(16, real
, hybridOut
[2][SSLIMIT
][SBLIMIT
]);
1268 { struct gr_info_s
*gr_info
= &(sideinfo
.ch
[0].gr
[gr
]);
1271 part2bits
= III_get_scale_factors_2(scalefacs
[0],gr_info
,0);
1273 part2bits
= III_get_scale_factors_1(scalefacs
[0],gr_info
);
1274 if(III_dequantize_sample(hybridIn
[0], scalefacs
[0],gr_info
,sfreq
,part2bits
))
1279 struct gr_info_s
*gr_info
= &(sideinfo
.ch
[1].gr
[gr
]);
1283 part2bits
= III_get_scale_factors_2(scalefacs
[1],gr_info
,i_stereo
);
1285 part2bits
= III_get_scale_factors_1(scalefacs
[1],gr_info
);
1287 if(III_dequantize_sample(hybridIn
[1],scalefacs
[1],gr_info
,sfreq
,part2bits
))
1292 int maxb
= sideinfo
.ch
[0].gr
[gr
].maxb
;
1293 if(sideinfo
.ch
[1].gr
[gr
].maxb
> maxb
)
1294 maxb
= sideinfo
.ch
[1].gr
[gr
].maxb
;
1295 for(i
=0;i
<SSLIMIT
*maxb
;i
++) {
1296 real tmp0
= ((real
*)hybridIn
[0])[i
];
1297 real tmp1
= ((real
*)hybridIn
[1])[i
];
1298 ((real
*)hybridIn
[0])[i
] = tmp0
+ tmp1
;
1299 ((real
*)hybridIn
[1])[i
] = tmp0
- tmp1
;
1304 III_i_stereo(hybridIn
,scalefacs
[1],gr_info
,sfreq
,ms_stereo
,fr
->lsf
);
1306 if(ms_stereo
|| i_stereo
|| (single
== 3) ) {
1307 if(gr_info
->maxb
> sideinfo
.ch
[0].gr
[gr
].maxb
)
1308 sideinfo
.ch
[0].gr
[gr
].maxb
= gr_info
->maxb
;
1310 gr_info
->maxb
= sideinfo
.ch
[0].gr
[gr
].maxb
;
1316 register real
*in0
= (real
*) hybridIn
[0],*in1
= (real
*) hybridIn
[1];
1317 for(i
=0;i
<SSLIMIT
*gr_info
->maxb
;i
++,in0
++)
1318 *in0
= (*in0
+ *in1
++); /* *0.5 done by pow-scale */
1322 register real
*in0
= (real
*) hybridIn
[0],*in1
= (real
*) hybridIn
[1];
1323 for(i
=0;i
<SSLIMIT
*gr_info
->maxb
;i
++)
1328 } // if(stereo == 2)
1330 for(ch
=0;ch
<stereo1
;ch
++) {
1331 struct gr_info_s
*gr_info
= &(sideinfo
.ch
[ch
].gr
[gr
]);
1332 III_antialias(hybridIn
[ch
],gr_info
);
1333 III_hybrid(hybridIn
[ch
], hybridOut
[ch
], ch
,gr_info
);
1336 for(ss
=0;ss
<SSLIMIT
;ss
++) {
1338 clip
+= (fr
->synth_mono
)(hybridOut
[0][ss
],pcm_sample
,&pcm_point
);
1341 clip
+= (fr
->synth
)(hybridOut
[0][ss
],0,pcm_sample
,&p1
);
1342 clip
+= (fr
->synth
)(hybridOut
[1][ss
],1,pcm_sample
,&pcm_point
);