synced with r30414
[mplayer/glamo.git] / libswscale / utils.c
blobb2347087b2e7a0ab362d6b76443286d99a3b7c9f
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
24 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
25 #include <inttypes.h>
26 #include <string.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include "config.h"
30 #include <assert.h>
31 #if HAVE_SYS_MMAN_H
32 #include <sys/mman.h>
33 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
34 #define MAP_ANONYMOUS MAP_ANON
35 #endif
36 #endif
37 #if HAVE_VIRTUALALLOC
38 #define WIN32_LEAN_AND_MEAN
39 #include <windows.h>
40 #endif
41 #include "swscale.h"
42 #include "swscale_internal.h"
43 #include "rgb2rgb.h"
44 #include "libavutil/intreadwrite.h"
45 #include "libavutil/x86_cpu.h"
46 #include "libavutil/avutil.h"
47 #include "libavutil/bswap.h"
48 #include "libavutil/pixdesc.h"
50 unsigned swscale_version(void)
52 return LIBSWSCALE_VERSION_INT;
55 const char *swscale_configuration(void)
57 return FFMPEG_CONFIGURATION;
60 const char *swscale_license(void)
62 #define LICENSE_PREFIX "libswscale license: "
63 return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
66 #define RET 0xC3 //near return opcode for x86
68 #define isSupportedIn(x) ( \
69 (x)==PIX_FMT_YUV420P \
70 || (x)==PIX_FMT_YUVA420P \
71 || (x)==PIX_FMT_YUYV422 \
72 || (x)==PIX_FMT_UYVY422 \
73 || (x)==PIX_FMT_RGB48BE \
74 || (x)==PIX_FMT_RGB48LE \
75 || (x)==PIX_FMT_RGB32 \
76 || (x)==PIX_FMT_RGB32_1 \
77 || (x)==PIX_FMT_BGR24 \
78 || (x)==PIX_FMT_BGR565 \
79 || (x)==PIX_FMT_BGR555 \
80 || (x)==PIX_FMT_BGR32 \
81 || (x)==PIX_FMT_BGR32_1 \
82 || (x)==PIX_FMT_RGB24 \
83 || (x)==PIX_FMT_RGB565 \
84 || (x)==PIX_FMT_RGB555 \
85 || (x)==PIX_FMT_GRAY8 \
86 || (x)==PIX_FMT_YUV410P \
87 || (x)==PIX_FMT_YUV440P \
88 || (x)==PIX_FMT_NV12 \
89 || (x)==PIX_FMT_NV21 \
90 || (x)==PIX_FMT_GRAY16BE \
91 || (x)==PIX_FMT_GRAY16LE \
92 || (x)==PIX_FMT_YUV444P \
93 || (x)==PIX_FMT_YUV422P \
94 || (x)==PIX_FMT_YUV411P \
95 || (x)==PIX_FMT_PAL8 \
96 || (x)==PIX_FMT_BGR8 \
97 || (x)==PIX_FMT_RGB8 \
98 || (x)==PIX_FMT_BGR4_BYTE \
99 || (x)==PIX_FMT_RGB4_BYTE \
100 || (x)==PIX_FMT_YUV440P \
101 || (x)==PIX_FMT_MONOWHITE \
102 || (x)==PIX_FMT_MONOBLACK \
103 || (x)==PIX_FMT_YUV420P16LE \
104 || (x)==PIX_FMT_YUV422P16LE \
105 || (x)==PIX_FMT_YUV444P16LE \
106 || (x)==PIX_FMT_YUV420P16BE \
107 || (x)==PIX_FMT_YUV422P16BE \
108 || (x)==PIX_FMT_YUV444P16BE \
111 int sws_isSupportedInput(enum PixelFormat pix_fmt)
113 return isSupportedIn(pix_fmt);
116 #define isSupportedOut(x) ( \
117 (x)==PIX_FMT_YUV420P \
118 || (x)==PIX_FMT_YUVA420P \
119 || (x)==PIX_FMT_YUYV422 \
120 || (x)==PIX_FMT_UYVY422 \
121 || (x)==PIX_FMT_YUV444P \
122 || (x)==PIX_FMT_YUV422P \
123 || (x)==PIX_FMT_YUV411P \
124 || isRGB(x) \
125 || isBGR(x) \
126 || (x)==PIX_FMT_NV12 \
127 || (x)==PIX_FMT_NV21 \
128 || (x)==PIX_FMT_GRAY16BE \
129 || (x)==PIX_FMT_GRAY16LE \
130 || (x)==PIX_FMT_GRAY8 \
131 || (x)==PIX_FMT_YUV410P \
132 || (x)==PIX_FMT_YUV440P \
133 || (x)==PIX_FMT_YUV420P16LE \
134 || (x)==PIX_FMT_YUV422P16LE \
135 || (x)==PIX_FMT_YUV444P16LE \
136 || (x)==PIX_FMT_YUV420P16BE \
137 || (x)==PIX_FMT_YUV422P16BE \
138 || (x)==PIX_FMT_YUV444P16BE \
141 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
143 return isSupportedOut(pix_fmt);
146 #define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL)
148 extern const int32_t ff_yuv2rgb_coeffs[8][4];
150 const char *sws_format_name(enum PixelFormat format)
152 if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
153 return av_pix_fmt_descriptors[format].name;
154 else
155 return "Unknown format";
158 static double getSplineCoeff(double a, double b, double c, double d, double dist)
160 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
161 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
162 else return getSplineCoeff( 0.0,
163 b+ 2.0*c + 3.0*d,
164 c + 3.0*d,
165 -b- 3.0*c - 6.0*d,
166 dist-1.0);
169 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
170 int srcW, int dstW, int filterAlign, int one, int flags,
171 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
173 int i;
174 int filterSize;
175 int filter2Size;
176 int minFilterSize;
177 int64_t *filter=NULL;
178 int64_t *filter2=NULL;
179 const int64_t fone= 1LL<<54;
180 int ret= -1;
181 #if ARCH_X86
182 if (flags & SWS_CPU_CAPS_MMX)
183 __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
184 #endif
186 // NOTE: the +1 is for the MMX scaler which reads over the end
187 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
189 if (FFABS(xInc - 0x10000) <10) { // unscaled
190 int i;
191 filterSize= 1;
192 FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
194 for (i=0; i<dstW; i++) {
195 filter[i*filterSize]= fone;
196 (*filterPos)[i]=i;
199 } else if (flags&SWS_POINT) { // lame looking point sampling mode
200 int i;
201 int xDstInSrc;
202 filterSize= 1;
203 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
205 xDstInSrc= xInc/2 - 0x8000;
206 for (i=0; i<dstW; i++) {
207 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
209 (*filterPos)[i]= xx;
210 filter[i]= fone;
211 xDstInSrc+= xInc;
213 } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
214 int i;
215 int xDstInSrc;
216 filterSize= 2;
217 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
219 xDstInSrc= xInc/2 - 0x8000;
220 for (i=0; i<dstW; i++) {
221 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
222 int j;
224 (*filterPos)[i]= xx;
225 //bilinear upscale / linear interpolate / area averaging
226 for (j=0; j<filterSize; j++) {
227 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
228 if (coeff<0) coeff=0;
229 filter[i*filterSize + j]= coeff;
230 xx++;
232 xDstInSrc+= xInc;
234 } else {
235 int xDstInSrc;
236 int sizeFactor;
238 if (flags&SWS_BICUBIC) sizeFactor= 4;
239 else if (flags&SWS_X) sizeFactor= 8;
240 else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
241 else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
242 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
243 else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
244 else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
245 else if (flags&SWS_BILINEAR) sizeFactor= 2;
246 else {
247 sizeFactor= 0; //GCC warning killer
248 assert(0);
251 if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
252 else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
254 if (filterSize > srcW-2) filterSize=srcW-2;
256 FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
258 xDstInSrc= xInc - 0x10000;
259 for (i=0; i<dstW; i++) {
260 int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
261 int j;
262 (*filterPos)[i]= xx;
263 for (j=0; j<filterSize; j++) {
264 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
265 double floatd;
266 int64_t coeff;
268 if (xInc > 1<<16)
269 d= d*dstW/srcW;
270 floatd= d * (1.0/(1<<30));
272 if (flags & SWS_BICUBIC) {
273 int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
274 int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
275 int64_t dd = ( d*d)>>30;
276 int64_t ddd= (dd*d)>>30;
278 if (d < 1LL<<30)
279 coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
280 else if (d < 1LL<<31)
281 coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
282 else
283 coeff=0.0;
284 coeff *= fone>>(30+24);
286 /* else if (flags & SWS_X) {
287 double p= param ? param*0.01 : 0.3;
288 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
289 coeff*= pow(2.0, - p*d*d);
291 else if (flags & SWS_X) {
292 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
293 double c;
295 if (floatd<1.0)
296 c = cos(floatd*M_PI);
297 else
298 c=-1.0;
299 if (c<0.0) c= -pow(-c, A);
300 else c= pow( c, A);
301 coeff= (c*0.5 + 0.5)*fone;
302 } else if (flags & SWS_AREA) {
303 int64_t d2= d - (1<<29);
304 if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
305 else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
306 else coeff=0.0;
307 coeff *= fone>>(30+16);
308 } else if (flags & SWS_GAUSS) {
309 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
310 coeff = (pow(2.0, - p*floatd*floatd))*fone;
311 } else if (flags & SWS_SINC) {
312 coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
313 } else if (flags & SWS_LANCZOS) {
314 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
315 coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
316 if (floatd>p) coeff=0;
317 } else if (flags & SWS_BILINEAR) {
318 coeff= (1<<30) - d;
319 if (coeff<0) coeff=0;
320 coeff *= fone >> 30;
321 } else if (flags & SWS_SPLINE) {
322 double p=-2.196152422706632;
323 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
324 } else {
325 coeff= 0.0; //GCC warning killer
326 assert(0);
329 filter[i*filterSize + j]= coeff;
330 xx++;
332 xDstInSrc+= 2*xInc;
336 /* apply src & dst Filter to filter -> filter2
337 av_free(filter);
339 assert(filterSize>0);
340 filter2Size= filterSize;
341 if (srcFilter) filter2Size+= srcFilter->length - 1;
342 if (dstFilter) filter2Size+= dstFilter->length - 1;
343 assert(filter2Size>0);
344 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
346 for (i=0; i<dstW; i++) {
347 int j, k;
349 if(srcFilter) {
350 for (k=0; k<srcFilter->length; k++) {
351 for (j=0; j<filterSize; j++)
352 filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
354 } else {
355 for (j=0; j<filterSize; j++)
356 filter2[i*filter2Size + j]= filter[i*filterSize + j];
358 //FIXME dstFilter
360 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
362 av_freep(&filter);
364 /* try to reduce the filter-size (step1 find size and shift left) */
365 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
366 minFilterSize= 0;
367 for (i=dstW-1; i>=0; i--) {
368 int min= filter2Size;
369 int j;
370 int64_t cutOff=0.0;
372 /* get rid of near zero elements on the left by shifting left */
373 for (j=0; j<filter2Size; j++) {
374 int k;
375 cutOff += FFABS(filter2[i*filter2Size]);
377 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
379 /* preserve monotonicity because the core can't handle the filter otherwise */
380 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
382 // move filter coefficients left
383 for (k=1; k<filter2Size; k++)
384 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
385 filter2[i*filter2Size + k - 1]= 0;
386 (*filterPos)[i]++;
389 cutOff=0;
390 /* count near zeros on the right */
391 for (j=filter2Size-1; j>0; j--) {
392 cutOff += FFABS(filter2[i*filter2Size + j]);
394 if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
395 min--;
398 if (min>minFilterSize) minFilterSize= min;
401 if (flags & SWS_CPU_CAPS_ALTIVEC) {
402 // we can handle the special case 4,
403 // so we don't want to go to the full 8
404 if (minFilterSize < 5)
405 filterAlign = 4;
407 // We really don't want to waste our time
408 // doing useless computation, so fall back on
409 // the scalar C code for very small filters.
410 // Vectorizing is worth it only if you have a
411 // decent-sized vector.
412 if (minFilterSize < 3)
413 filterAlign = 1;
416 if (flags & SWS_CPU_CAPS_MMX) {
417 // special case for unscaled vertical filtering
418 if (minFilterSize == 1 && filterAlign == 2)
419 filterAlign= 1;
422 assert(minFilterSize > 0);
423 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
424 assert(filterSize > 0);
425 filter= av_malloc(filterSize*dstW*sizeof(*filter));
426 if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
427 goto fail;
428 *outFilterSize= filterSize;
430 if (flags&SWS_PRINT_INFO)
431 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
432 /* try to reduce the filter-size (step2 reduce it) */
433 for (i=0; i<dstW; i++) {
434 int j;
436 for (j=0; j<filterSize; j++) {
437 if (j>=filter2Size) filter[i*filterSize + j]= 0;
438 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
439 if((flags & SWS_BITEXACT) && j>=minFilterSize)
440 filter[i*filterSize + j]= 0;
444 //FIXME try to align filterPos if possible
446 //fix borders
447 for (i=0; i<dstW; i++) {
448 int j;
449 if ((*filterPos)[i] < 0) {
450 // move filter coefficients left to compensate for filterPos
451 for (j=1; j<filterSize; j++) {
452 int left= FFMAX(j + (*filterPos)[i], 0);
453 filter[i*filterSize + left] += filter[i*filterSize + j];
454 filter[i*filterSize + j]=0;
456 (*filterPos)[i]= 0;
459 if ((*filterPos)[i] + filterSize > srcW) {
460 int shift= (*filterPos)[i] + filterSize - srcW;
461 // move filter coefficients right to compensate for filterPos
462 for (j=filterSize-2; j>=0; j--) {
463 int right= FFMIN(j + shift, filterSize-1);
464 filter[i*filterSize +right] += filter[i*filterSize +j];
465 filter[i*filterSize +j]=0;
467 (*filterPos)[i]= srcW - filterSize;
471 // Note the +1 is for the MMX scaler which reads over the end
472 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
473 FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
475 /* normalize & store in outFilter */
476 for (i=0; i<dstW; i++) {
477 int j;
478 int64_t error=0;
479 int64_t sum=0;
481 for (j=0; j<filterSize; j++) {
482 sum+= filter[i*filterSize + j];
484 sum= (sum + one/2)/ one;
485 for (j=0; j<*outFilterSize; j++) {
486 int64_t v= filter[i*filterSize + j] + error;
487 int intV= ROUNDED_DIV(v, sum);
488 (*outFilter)[i*(*outFilterSize) + j]= intV;
489 error= v - intV*sum;
493 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
494 for (i=0; i<*outFilterSize; i++) {
495 int j= dstW*(*outFilterSize);
496 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
499 ret=0;
500 fail:
501 av_free(filter);
502 av_free(filter2);
503 return ret;
506 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
507 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
509 uint8_t *fragmentA;
510 x86_reg imm8OfPShufW1A;
511 x86_reg imm8OfPShufW2A;
512 x86_reg fragmentLengthA;
513 uint8_t *fragmentB;
514 x86_reg imm8OfPShufW1B;
515 x86_reg imm8OfPShufW2B;
516 x86_reg fragmentLengthB;
517 int fragmentPos;
519 int xpos, i;
521 // create an optimized horizontal scaling routine
522 /* This scaler is made of runtime-generated MMX2 code using specially
523 * tuned pshufw instructions. For every four output pixels, if four
524 * input pixels are enough for the fast bilinear scaling, then a chunk
525 * of fragmentB is used. If five input pixels are needed, then a chunk
526 * of fragmentA is used.
529 //code fragment
531 __asm__ volatile(
532 "jmp 9f \n\t"
533 // Begin
534 "0: \n\t"
535 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
536 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
537 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
538 "punpcklbw %%mm7, %%mm1 \n\t"
539 "punpcklbw %%mm7, %%mm0 \n\t"
540 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
541 "1: \n\t"
542 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
543 "2: \n\t"
544 "psubw %%mm1, %%mm0 \n\t"
545 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
546 "pmullw %%mm3, %%mm0 \n\t"
547 "psllw $7, %%mm1 \n\t"
548 "paddw %%mm1, %%mm0 \n\t"
550 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
552 "add $8, %%"REG_a" \n\t"
553 // End
554 "9: \n\t"
555 // "int $3 \n\t"
556 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
557 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
558 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
559 "dec %1 \n\t"
560 "dec %2 \n\t"
561 "sub %0, %1 \n\t"
562 "sub %0, %2 \n\t"
563 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
564 "sub %0, %3 \n\t"
567 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
568 "=r" (fragmentLengthA)
571 __asm__ volatile(
572 "jmp 9f \n\t"
573 // Begin
574 "0: \n\t"
575 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
576 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
577 "punpcklbw %%mm7, %%mm0 \n\t"
578 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
579 "1: \n\t"
580 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
581 "2: \n\t"
582 "psubw %%mm1, %%mm0 \n\t"
583 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
584 "pmullw %%mm3, %%mm0 \n\t"
585 "psllw $7, %%mm1 \n\t"
586 "paddw %%mm1, %%mm0 \n\t"
588 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
590 "add $8, %%"REG_a" \n\t"
591 // End
592 "9: \n\t"
593 // "int $3 \n\t"
594 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
595 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
596 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
597 "dec %1 \n\t"
598 "dec %2 \n\t"
599 "sub %0, %1 \n\t"
600 "sub %0, %2 \n\t"
601 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
602 "sub %0, %3 \n\t"
605 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
606 "=r" (fragmentLengthB)
609 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
610 fragmentPos=0;
612 for (i=0; i<dstW/numSplits; i++) {
613 int xx=xpos>>16;
615 if ((i&3) == 0) {
616 int a=0;
617 int b=((xpos+xInc)>>16) - xx;
618 int c=((xpos+xInc*2)>>16) - xx;
619 int d=((xpos+xInc*3)>>16) - xx;
620 int inc = (d+1<4);
621 uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
622 x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
623 x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
624 x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
625 int maxShift= 3-(d+inc);
626 int shift=0;
628 if (filterCode) {
629 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
630 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
631 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
632 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
633 filterPos[i/2]= xx;
635 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
637 filterCode[fragmentPos + imm8OfPShufW1]=
638 (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
639 filterCode[fragmentPos + imm8OfPShufW2]=
640 a | (b<<2) | (c<<4) | (d<<6);
642 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
643 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
645 if (shift && i>=shift) {
646 filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
647 filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
648 filterPos[i/2]-=shift;
652 fragmentPos+= fragmentLength;
654 if (filterCode)
655 filterCode[fragmentPos]= RET;
657 xpos+=xInc;
659 if (filterCode)
660 filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
662 return fragmentPos + 1;
664 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
666 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
668 *h = av_pix_fmt_descriptors[format].log2_chroma_w;
669 *v = av_pix_fmt_descriptors[format].log2_chroma_h;
672 static uint16_t roundToInt16(int64_t f)
674 int r= (f + (1<<15))>>16;
675 if (r<-0x7FFF) return 0x8000;
676 else if (r> 0x7FFF) return 0x7FFF;
677 else return r;
680 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
682 int64_t crv = inv_table[0];
683 int64_t cbu = inv_table[1];
684 int64_t cgu = -inv_table[2];
685 int64_t cgv = -inv_table[3];
686 int64_t cy = 1<<16;
687 int64_t oy = 0;
689 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
690 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
692 c->brightness= brightness;
693 c->contrast = contrast;
694 c->saturation= saturation;
695 c->srcRange = srcRange;
696 c->dstRange = dstRange;
697 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
699 c->uOffset= 0x0400040004000400LL;
700 c->vOffset= 0x0400040004000400LL;
702 if (!srcRange) {
703 cy= (cy*255) / 219;
704 oy= 16<<16;
705 } else {
706 crv= (crv*224) / 255;
707 cbu= (cbu*224) / 255;
708 cgu= (cgu*224) / 255;
709 cgv= (cgv*224) / 255;
712 cy = (cy *contrast )>>16;
713 crv= (crv*contrast * saturation)>>32;
714 cbu= (cbu*contrast * saturation)>>32;
715 cgu= (cgu*contrast * saturation)>>32;
716 cgv= (cgv*contrast * saturation)>>32;
718 oy -= 256*brightness;
720 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
721 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
722 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
723 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
724 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
725 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
727 c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
728 c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
729 c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
730 c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
731 c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
732 c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
734 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
735 //FIXME factorize
737 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
738 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
739 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
740 #endif
741 return 0;
744 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
746 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
748 *inv_table = c->srcColorspaceTable;
749 *table = c->dstColorspaceTable;
750 *srcRange = c->srcRange;
751 *dstRange = c->dstRange;
752 *brightness= c->brightness;
753 *contrast = c->contrast;
754 *saturation= c->saturation;
756 return 0;
759 static int handle_jpeg(enum PixelFormat *format)
761 switch (*format) {
762 case PIX_FMT_YUVJ420P:
763 *format = PIX_FMT_YUV420P;
764 return 1;
765 case PIX_FMT_YUVJ422P:
766 *format = PIX_FMT_YUV422P;
767 return 1;
768 case PIX_FMT_YUVJ444P:
769 *format = PIX_FMT_YUV444P;
770 return 1;
771 case PIX_FMT_YUVJ440P:
772 *format = PIX_FMT_YUV440P;
773 return 1;
774 default:
775 return 0;
779 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
780 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
781 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
784 SwsContext *c;
785 int i;
786 int usesVFilter, usesHFilter;
787 int unscaled;
788 int srcRange, dstRange;
789 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
790 #if ARCH_X86
791 if (flags & SWS_CPU_CAPS_MMX)
792 __asm__ volatile("emms\n\t"::: "memory");
793 #endif
795 #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
796 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
797 flags |= ff_hardcodedcpuflags();
798 #endif /* CONFIG_RUNTIME_CPUDETECT */
799 if (!rgb15to16) sws_rgb2rgb_init(flags);
801 unscaled = (srcW == dstW && srcH == dstH);
803 srcRange = handle_jpeg(&srcFormat);
804 dstRange = handle_jpeg(&dstFormat);
806 if (!isSupportedIn(srcFormat)) {
807 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
808 return NULL;
810 if (!isSupportedOut(dstFormat)) {
811 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
812 return NULL;
815 i= flags & ( SWS_POINT
816 |SWS_AREA
817 |SWS_BILINEAR
818 |SWS_FAST_BILINEAR
819 |SWS_BICUBIC
820 |SWS_X
821 |SWS_GAUSS
822 |SWS_LANCZOS
823 |SWS_SINC
824 |SWS_SPLINE
825 |SWS_BICUBLIN);
826 if(!i || (i & (i-1))) {
827 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
828 return NULL;
831 /* sanity check */
832 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
833 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
834 srcW, srcH, dstW, dstH);
835 return NULL;
837 if(srcW > VOFW || dstW > VOFW) {
838 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
839 return NULL;
842 if (!dstFilter) dstFilter= &dummyFilter;
843 if (!srcFilter) srcFilter= &dummyFilter;
845 FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail);
847 c->av_class = &sws_context_class;
848 c->srcW= srcW;
849 c->srcH= srcH;
850 c->dstW= dstW;
851 c->dstH= dstH;
852 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
853 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
854 c->flags= flags;
855 c->dstFormat= dstFormat;
856 c->srcFormat= srcFormat;
857 c->vRounder= 4* 0x0001000100010001ULL;
859 usesHFilter= usesVFilter= 0;
860 if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
861 if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
862 if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
863 if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
864 if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
865 if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
866 if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
867 if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
869 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
870 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
872 // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
873 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
875 // drop some chroma lines if the user wants it
876 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
877 c->chrSrcVSubSample+= c->vChrDrop;
879 // drop every other pixel for chroma calculation unless user wants full chroma
880 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
881 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
882 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
883 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
884 && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
885 c->chrSrcHSubSample=1;
887 if (param) {
888 c->param[0] = param[0];
889 c->param[1] = param[1];
890 } else {
891 c->param[0] =
892 c->param[1] = SWS_PARAM_DEFAULT;
895 // Note the -((-x)>>y) is so that we always round toward +inf.
896 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
897 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
898 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
899 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
901 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
903 /* unscaled special cases */
904 if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat))) {
905 ff_get_unscaled_swscale(c);
907 if (c->swScale) {
908 if (flags&SWS_PRINT_INFO)
909 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
910 sws_format_name(srcFormat), sws_format_name(dstFormat));
911 return c;
915 if (flags & SWS_CPU_CAPS_MMX2) {
916 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
917 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
918 if (flags&SWS_PRINT_INFO)
919 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
921 if (usesHFilter) c->canMMX2BeUsed=0;
923 else
924 c->canMMX2BeUsed=0;
926 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
927 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
929 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
930 // but only for the FAST_BILINEAR mode otherwise do correct scaling
931 // n-2 is the last chrominance sample available
932 // this is not perfect, but no one should notice the difference, the more correct variant
933 // would be like the vertical one, but that would require some special code for the
934 // first and last pixel
935 if (flags&SWS_FAST_BILINEAR) {
936 if (c->canMMX2BeUsed) {
937 c->lumXInc+= 20;
938 c->chrXInc+= 20;
940 //we don't use the x86 asm scaler if MMX is available
941 else if (flags & SWS_CPU_CAPS_MMX) {
942 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
943 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
947 /* precalculate horizontal scaler filter coefficients */
949 #if ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL
950 // can't downscale !!!
951 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
952 c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
953 c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
955 #ifdef MAP_ANONYMOUS
956 c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
957 c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
958 #elif HAVE_VIRTUALALLOC
959 c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
960 c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
961 #else
962 c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
963 c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
964 #endif
966 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
967 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
968 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
969 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
971 initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
972 initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
974 #ifdef MAP_ANONYMOUS
975 mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
976 mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
977 #endif
978 } else
979 #endif /* ARCH_X86 && (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL */
981 const int filterAlign=
982 (flags & SWS_CPU_CAPS_MMX) ? 4 :
983 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
986 if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
987 srcW , dstW, filterAlign, 1<<14,
988 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
989 srcFilter->lumH, dstFilter->lumH, c->param) < 0)
990 goto fail;
991 if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
992 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
993 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
994 srcFilter->chrH, dstFilter->chrH, c->param) < 0)
995 goto fail;
997 } // initialize horizontal stuff
999 /* precalculate vertical scaler filter coefficients */
1001 const int filterAlign=
1002 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
1003 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1006 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
1007 srcH , dstH, filterAlign, (1<<12),
1008 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
1009 srcFilter->lumV, dstFilter->lumV, c->param) < 0)
1010 goto fail;
1011 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
1012 c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
1013 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1014 srcFilter->chrV, dstFilter->chrV, c->param) < 0)
1015 goto fail;
1017 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1018 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
1019 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
1021 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
1022 int j;
1023 short *p = (short *)&c->vYCoeffsBank[i];
1024 for (j=0;j<8;j++)
1025 p[j] = c->vLumFilter[i];
1028 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
1029 int j;
1030 short *p = (short *)&c->vCCoeffsBank[i];
1031 for (j=0;j<8;j++)
1032 p[j] = c->vChrFilter[i];
1034 #endif
1037 // calculate buffer sizes so that they won't run out while handling these damn slices
1038 c->vLumBufSize= c->vLumFilterSize;
1039 c->vChrBufSize= c->vChrFilterSize;
1040 for (i=0; i<dstH; i++) {
1041 int chrI= i*c->chrDstH / dstH;
1042 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
1043 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
1045 nextSlice>>= c->chrSrcVSubSample;
1046 nextSlice<<= c->chrSrcVSubSample;
1047 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
1048 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
1049 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
1050 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
1053 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
1054 // allocate several megabytes to handle all possible cases)
1055 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1056 FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
1057 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1058 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
1059 //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
1060 /* align at 16 bytes for AltiVec */
1061 for (i=0; i<c->vLumBufSize; i++) {
1062 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail);
1063 c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
1065 for (i=0; i<c->vChrBufSize; i++) {
1066 FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail);
1067 c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize];
1069 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1070 for (i=0; i<c->vLumBufSize; i++) {
1071 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail);
1072 c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
1075 //try to avoid drawing green stuff between the right end and the stride end
1076 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
1078 assert(2*VOFW == VOF);
1080 assert(c->chrDstH <= dstH);
1082 if (flags&SWS_PRINT_INFO) {
1083 if (flags&SWS_FAST_BILINEAR)
1084 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1085 else if (flags&SWS_BILINEAR)
1086 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1087 else if (flags&SWS_BICUBIC)
1088 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1089 else if (flags&SWS_X)
1090 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1091 else if (flags&SWS_POINT)
1092 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1093 else if (flags&SWS_AREA)
1094 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1095 else if (flags&SWS_BICUBLIN)
1096 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1097 else if (flags&SWS_GAUSS)
1098 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1099 else if (flags&SWS_SINC)
1100 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1101 else if (flags&SWS_LANCZOS)
1102 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1103 else if (flags&SWS_SPLINE)
1104 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1105 else
1106 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1108 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1109 sws_format_name(srcFormat),
1110 #ifdef DITHER1XBPP
1111 dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ? "dithered " : "",
1112 #else
1114 #endif
1115 sws_format_name(dstFormat));
1117 if (flags & SWS_CPU_CAPS_MMX2)
1118 av_log(c, AV_LOG_INFO, "using MMX2\n");
1119 else if (flags & SWS_CPU_CAPS_3DNOW)
1120 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1121 else if (flags & SWS_CPU_CAPS_MMX)
1122 av_log(c, AV_LOG_INFO, "using MMX\n");
1123 else if (flags & SWS_CPU_CAPS_ALTIVEC)
1124 av_log(c, AV_LOG_INFO, "using AltiVec\n");
1125 else
1126 av_log(c, AV_LOG_INFO, "using C\n");
1129 if (flags & SWS_PRINT_INFO) {
1130 if (flags & SWS_CPU_CAPS_MMX) {
1131 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
1132 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
1133 else {
1134 if (c->hLumFilterSize==4)
1135 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
1136 else if (c->hLumFilterSize==8)
1137 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
1138 else
1139 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
1141 if (c->hChrFilterSize==4)
1142 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
1143 else if (c->hChrFilterSize==8)
1144 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
1145 else
1146 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
1148 } else {
1149 #if ARCH_X86
1150 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
1151 #else
1152 if (flags & SWS_FAST_BILINEAR)
1153 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
1154 else
1155 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
1156 #endif
1158 if (isPlanarYUV(dstFormat)) {
1159 if (c->vLumFilterSize==1)
1160 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1161 else
1162 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1163 } else {
1164 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
1165 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
1166 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1167 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
1168 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1169 else
1170 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1173 if (dstFormat==PIX_FMT_BGR24)
1174 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
1175 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
1176 else if (dstFormat==PIX_FMT_RGB32)
1177 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1178 else if (dstFormat==PIX_FMT_BGR565)
1179 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1180 else if (dstFormat==PIX_FMT_BGR555)
1181 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
1183 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1185 if (flags & SWS_PRINT_INFO) {
1186 av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1187 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1188 av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1189 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
1192 c->swScale= ff_getSwsFunc(c);
1193 return c;
1195 fail:
1196 sws_freeContext(c);
1197 return NULL;
1200 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1201 float lumaSharpen, float chromaSharpen,
1202 float chromaHShift, float chromaVShift,
1203 int verbose)
1205 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
1206 if (!filter)
1207 return NULL;
1209 if (lumaGBlur!=0.0) {
1210 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
1211 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
1212 } else {
1213 filter->lumH= sws_getIdentityVec();
1214 filter->lumV= sws_getIdentityVec();
1217 if (chromaGBlur!=0.0) {
1218 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
1219 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
1220 } else {
1221 filter->chrH= sws_getIdentityVec();
1222 filter->chrV= sws_getIdentityVec();
1225 if (chromaSharpen!=0.0) {
1226 SwsVector *id= sws_getIdentityVec();
1227 sws_scaleVec(filter->chrH, -chromaSharpen);
1228 sws_scaleVec(filter->chrV, -chromaSharpen);
1229 sws_addVec(filter->chrH, id);
1230 sws_addVec(filter->chrV, id);
1231 sws_freeVec(id);
1234 if (lumaSharpen!=0.0) {
1235 SwsVector *id= sws_getIdentityVec();
1236 sws_scaleVec(filter->lumH, -lumaSharpen);
1237 sws_scaleVec(filter->lumV, -lumaSharpen);
1238 sws_addVec(filter->lumH, id);
1239 sws_addVec(filter->lumV, id);
1240 sws_freeVec(id);
1243 if (chromaHShift != 0.0)
1244 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
1246 if (chromaVShift != 0.0)
1247 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
1249 sws_normalizeVec(filter->chrH, 1.0);
1250 sws_normalizeVec(filter->chrV, 1.0);
1251 sws_normalizeVec(filter->lumH, 1.0);
1252 sws_normalizeVec(filter->lumV, 1.0);
1254 if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1255 if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1257 return filter;
1260 SwsVector *sws_allocVec(int length)
1262 SwsVector *vec = av_malloc(sizeof(SwsVector));
1263 if (!vec)
1264 return NULL;
1265 vec->length = length;
1266 vec->coeff = av_malloc(sizeof(double) * length);
1267 if (!vec->coeff)
1268 av_freep(&vec);
1269 return vec;
1272 SwsVector *sws_getGaussianVec(double variance, double quality)
1274 const int length= (int)(variance*quality + 0.5) | 1;
1275 int i;
1276 double middle= (length-1)*0.5;
1277 SwsVector *vec= sws_allocVec(length);
1279 if (!vec)
1280 return NULL;
1282 for (i=0; i<length; i++) {
1283 double dist= i-middle;
1284 vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
1287 sws_normalizeVec(vec, 1.0);
1289 return vec;
1292 SwsVector *sws_getConstVec(double c, int length)
1294 int i;
1295 SwsVector *vec= sws_allocVec(length);
1297 if (!vec)
1298 return NULL;
1300 for (i=0; i<length; i++)
1301 vec->coeff[i]= c;
1303 return vec;
1306 SwsVector *sws_getIdentityVec(void)
1308 return sws_getConstVec(1.0, 1);
1311 double sws_dcVec(SwsVector *a)
1313 int i;
1314 double sum=0;
1316 for (i=0; i<a->length; i++)
1317 sum+= a->coeff[i];
1319 return sum;
1322 void sws_scaleVec(SwsVector *a, double scalar)
1324 int i;
1326 for (i=0; i<a->length; i++)
1327 a->coeff[i]*= scalar;
1330 void sws_normalizeVec(SwsVector *a, double height)
1332 sws_scaleVec(a, height/sws_dcVec(a));
1335 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1337 int length= a->length + b->length - 1;
1338 int i, j;
1339 SwsVector *vec= sws_getConstVec(0.0, length);
1341 if (!vec)
1342 return NULL;
1344 for (i=0; i<a->length; i++) {
1345 for (j=0; j<b->length; j++) {
1346 vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
1350 return vec;
1353 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1355 int length= FFMAX(a->length, b->length);
1356 int i;
1357 SwsVector *vec= sws_getConstVec(0.0, length);
1359 if (!vec)
1360 return NULL;
1362 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1363 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
1365 return vec;
1368 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1370 int length= FFMAX(a->length, b->length);
1371 int i;
1372 SwsVector *vec= sws_getConstVec(0.0, length);
1374 if (!vec)
1375 return NULL;
1377 for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
1378 for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
1380 return vec;
1383 /* shift left / or right if "shift" is negative */
1384 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1386 int length= a->length + FFABS(shift)*2;
1387 int i;
1388 SwsVector *vec= sws_getConstVec(0.0, length);
1390 if (!vec)
1391 return NULL;
1393 for (i=0; i<a->length; i++) {
1394 vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
1397 return vec;
1400 void sws_shiftVec(SwsVector *a, int shift)
1402 SwsVector *shifted= sws_getShiftedVec(a, shift);
1403 av_free(a->coeff);
1404 a->coeff= shifted->coeff;
1405 a->length= shifted->length;
1406 av_free(shifted);
1409 void sws_addVec(SwsVector *a, SwsVector *b)
1411 SwsVector *sum= sws_sumVec(a, b);
1412 av_free(a->coeff);
1413 a->coeff= sum->coeff;
1414 a->length= sum->length;
1415 av_free(sum);
1418 void sws_subVec(SwsVector *a, SwsVector *b)
1420 SwsVector *diff= sws_diffVec(a, b);
1421 av_free(a->coeff);
1422 a->coeff= diff->coeff;
1423 a->length= diff->length;
1424 av_free(diff);
1427 void sws_convVec(SwsVector *a, SwsVector *b)
1429 SwsVector *conv= sws_getConvVec(a, b);
1430 av_free(a->coeff);
1431 a->coeff= conv->coeff;
1432 a->length= conv->length;
1433 av_free(conv);
1436 SwsVector *sws_cloneVec(SwsVector *a)
1438 int i;
1439 SwsVector *vec= sws_allocVec(a->length);
1441 if (!vec)
1442 return NULL;
1444 for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
1446 return vec;
1449 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1451 int i;
1452 double max=0;
1453 double min=0;
1454 double range;
1456 for (i=0; i<a->length; i++)
1457 if (a->coeff[i]>max) max= a->coeff[i];
1459 for (i=0; i<a->length; i++)
1460 if (a->coeff[i]<min) min= a->coeff[i];
1462 range= max - min;
1464 for (i=0; i<a->length; i++) {
1465 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
1466 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1467 for (;x>0; x--) av_log(log_ctx, log_level, " ");
1468 av_log(log_ctx, log_level, "|\n");
1472 #if LIBSWSCALE_VERSION_MAJOR < 1
1473 void sws_printVec(SwsVector *a)
1475 sws_printVec2(a, NULL, AV_LOG_DEBUG);
1477 #endif
1479 void sws_freeVec(SwsVector *a)
1481 if (!a) return;
1482 av_freep(&a->coeff);
1483 a->length=0;
1484 av_free(a);
1487 void sws_freeFilter(SwsFilter *filter)
1489 if (!filter) return;
1491 if (filter->lumH) sws_freeVec(filter->lumH);
1492 if (filter->lumV) sws_freeVec(filter->lumV);
1493 if (filter->chrH) sws_freeVec(filter->chrH);
1494 if (filter->chrV) sws_freeVec(filter->chrV);
1495 av_free(filter);
1498 void sws_freeContext(SwsContext *c)
1500 int i;
1501 if (!c) return;
1503 if (c->lumPixBuf) {
1504 for (i=0; i<c->vLumBufSize; i++)
1505 av_freep(&c->lumPixBuf[i]);
1506 av_freep(&c->lumPixBuf);
1509 if (c->chrPixBuf) {
1510 for (i=0; i<c->vChrBufSize; i++)
1511 av_freep(&c->chrPixBuf[i]);
1512 av_freep(&c->chrPixBuf);
1515 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1516 for (i=0; i<c->vLumBufSize; i++)
1517 av_freep(&c->alpPixBuf[i]);
1518 av_freep(&c->alpPixBuf);
1521 av_freep(&c->vLumFilter);
1522 av_freep(&c->vChrFilter);
1523 av_freep(&c->hLumFilter);
1524 av_freep(&c->hChrFilter);
1525 #if ARCH_PPC && (HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT)
1526 av_freep(&c->vYCoeffsBank);
1527 av_freep(&c->vCCoeffsBank);
1528 #endif
1530 av_freep(&c->vLumFilterPos);
1531 av_freep(&c->vChrFilterPos);
1532 av_freep(&c->hLumFilterPos);
1533 av_freep(&c->hChrFilterPos);
1535 #if ARCH_X86 && CONFIG_GPL
1536 #ifdef MAP_ANONYMOUS
1537 if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
1538 if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
1539 #elif HAVE_VIRTUALALLOC
1540 if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, MEM_RELEASE);
1541 if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, MEM_RELEASE);
1542 #else
1543 av_free(c->lumMmx2FilterCode);
1544 av_free(c->chrMmx2FilterCode);
1545 #endif
1546 c->lumMmx2FilterCode=NULL;
1547 c->chrMmx2FilterCode=NULL;
1548 #endif /* ARCH_X86 && CONFIG_GPL */
1550 av_freep(&c->yuvTable);
1552 av_free(c);
1555 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
1556 int srcW, int srcH, enum PixelFormat srcFormat,
1557 int dstW, int dstH, enum PixelFormat dstFormat, int flags,
1558 SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
1560 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
1562 if (!param)
1563 param = default_param;
1565 if (context) {
1566 if (context->srcW != srcW || context->srcH != srcH ||
1567 context->srcFormat != srcFormat ||
1568 context->dstW != dstW || context->dstH != dstH ||
1569 context->dstFormat != dstFormat || context->flags != flags ||
1570 context->param[0] != param[0] || context->param[1] != param[1])
1572 sws_freeContext(context);
1573 context = NULL;
1576 if (!context) {
1577 return sws_getContext(srcW, srcH, srcFormat,
1578 dstW, dstH, dstFormat, flags,
1579 srcFilter, dstFilter, param);
1581 return context;