options: move lavfdopts to option struct
[mplayer/glamo.git] / drivers / generic_math.h
blobf606cce3d8c9d9e38a4ad9528529863581386867
1 /*
2 * generic implementation of sin(x) and cos(x) functions specially for Linux
3 * Copyright (C) 2002 Nick Kurshev
5 * This file is part of MPlayer.
7 * MPlayer is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * MPlayer is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #ifndef MPLAYER_GENERIC_MATH_H
23 #define MPLAYER_GENERIC_MATH_H
25 typedef struct gen_sincos
27 double x;
28 double sinx;
29 double cosx;
30 }gen_sincos_t;
32 static gen_sincos_t g_sincos[201] = {
33 { -3.141600e+00, 7.346410e-06, -1.000000e-00 },
34 { -3.110184e+00, -3.140349e-02, -9.995068e-01 },
35 { -3.078768e+00, -6.278333e-02, -9.980272e-01 },
36 { -3.047352e+00, -9.410122e-02, -9.955626e-01 },
37 { -3.015936e+00, -1.253262e-01, -9.921156e-01 },
38 { -2.984520e+00, -1.564276e-01, -9.876894e-01 },
39 { -2.953104e+00, -1.873745e-01, -9.822885e-01 },
40 { -2.921688e+00, -2.181366e-01, -9.759183e-01 },
41 { -2.890272e+00, -2.486833e-01, -9.685848e-01 },
42 { -2.858856e+00, -2.789847e-01, -9.602956e-01 },
43 { -2.827440e+00, -3.090107e-01, -9.510586e-01 },
44 { -2.796024e+00, -3.387318e-01, -9.408830e-01 },
45 { -2.764608e+00, -3.681185e-01, -9.297789e-01 },
46 { -2.733192e+00, -3.971420e-01, -9.177572e-01 },
47 { -2.701776e+00, -4.257736e-01, -9.048297e-01 },
48 { -2.670360e+00, -4.539849e-01, -8.910094e-01 },
49 { -2.638944e+00, -4.817483e-01, -8.763097e-01 },
50 { -2.607528e+00, -5.090362e-01, -8.607451e-01 },
51 { -2.576112e+00, -5.358217e-01, -8.443312e-01 },
52 { -2.544696e+00, -5.620785e-01, -8.270839e-01 },
53 { -2.513280e+00, -5.877805e-01, -8.090204e-01 },
54 { -2.481864e+00, -6.129025e-01, -7.901586e-01 },
55 { -2.450448e+00, -6.374196e-01, -7.705169e-01 },
56 { -2.419032e+00, -6.613076e-01, -7.501148e-01 },
57 { -2.387616e+00, -6.845430e-01, -7.289724e-01 },
58 { -2.356200e+00, -7.071029e-01, -7.071107e-01 },
59 { -2.324784e+00, -7.289649e-01, -6.845511e-01 },
60 { -2.293368e+00, -7.501075e-01, -6.613159e-01 },
61 { -2.261952e+00, -7.705099e-01, -6.374281e-01 },
62 { -2.230536e+00, -7.901518e-01, -6.129112e-01 },
63 { -2.199120e+00, -8.090140e-01, -5.877894e-01 },
64 { -2.167704e+00, -8.270777e-01, -5.620876e-01 },
65 { -2.136288e+00, -8.443252e-01, -5.358310e-01 },
66 { -2.104872e+00, -8.607395e-01, -5.090457e-01 },
67 { -2.073456e+00, -8.763043e-01, -4.817579e-01 },
68 { -2.042040e+00, -8.910044e-01, -4.539948e-01 },
69 { -2.010624e+00, -9.048251e-01, -4.257835e-01 },
70 { -1.979208e+00, -9.177528e-01, -3.971521e-01 },
71 { -1.947792e+00, -9.297748e-01, -3.681288e-01 },
72 { -1.916376e+00, -9.408793e-01, -3.387421e-01 },
73 { -1.884960e+00, -9.510552e-01, -3.090212e-01 },
74 { -1.853544e+00, -9.602925e-01, -2.789953e-01 },
75 { -1.822128e+00, -9.685821e-01, -2.486940e-01 },
76 { -1.790712e+00, -9.759158e-01, -2.181473e-01 },
77 { -1.759296e+00, -9.822865e-01, -1.873854e-01 },
78 { -1.727880e+00, -9.876877e-01, -1.564385e-01 },
79 { -1.696464e+00, -9.921142e-01, -1.253372e-01 },
80 { -1.665048e+00, -9.955616e-01, -9.411219e-02 },
81 { -1.633632e+00, -9.980265e-01, -6.279433e-02 },
82 { -1.602216e+00, -9.995064e-01, -3.141450e-02 },
83 { -1.570800e+00, -1.000000e-00, -3.673205e-06 },
84 { -1.539384e+00, -9.995067e-01, 3.140716e-02 },
85 { -1.507968e+00, -9.980269e-01, 6.278700e-02 },
86 { -1.476552e+00, -9.955623e-01, 9.410488e-02 },
87 { -1.445136e+00, -9.921151e-01, 1.253299e-01 },
88 { -1.413720e+00, -9.876889e-01, 1.564312e-01 },
89 { -1.382304e+00, -9.822879e-01, 1.873781e-01 },
90 { -1.350888e+00, -9.759175e-01, 2.181402e-01 },
91 { -1.319472e+00, -9.685839e-01, 2.486869e-01 },
92 { -1.288056e+00, -9.602945e-01, 2.789882e-01 },
93 { -1.256640e+00, -9.510574e-01, 3.090142e-01 },
94 { -1.225224e+00, -9.408817e-01, 3.387352e-01 },
95 { -1.193808e+00, -9.297775e-01, 3.681220e-01 },
96 { -1.162392e+00, -9.177557e-01, 3.971454e-01 },
97 { -1.130976e+00, -9.048282e-01, 4.257769e-01 },
98 { -1.099560e+00, -8.910077e-01, 4.539882e-01 },
99 { -1.068144e+00, -8.763079e-01, 4.817515e-01 },
100 { -1.036728e+00, -8.607433e-01, 5.090393e-01 },
101 { -1.005312e+00, -8.443292e-01, 5.358248e-01 },
102 { -9.738960e-01, -8.270819e-01, 5.620815e-01 },
103 { -9.424800e-01, -8.090183e-01, 5.877835e-01 },
104 { -9.110640e-01, -7.901563e-01, 6.129054e-01 },
105 { -8.796480e-01, -7.705146e-01, 6.374224e-01 },
106 { -8.482320e-01, -7.501124e-01, 6.613104e-01 },
107 { -8.168160e-01, -7.289699e-01, 6.845457e-01 },
108 { -7.854000e-01, -7.071081e-01, 7.071055e-01 },
109 { -7.539840e-01, -6.845484e-01, 7.289674e-01 },
110 { -7.225680e-01, -6.613131e-01, 7.501100e-01 },
111 { -6.911520e-01, -6.374252e-01, 7.705122e-01 },
112 { -6.597360e-01, -6.129083e-01, 7.901541e-01 },
113 { -6.283200e-01, -5.877864e-01, 8.090161e-01 },
114 { -5.969040e-01, -5.620845e-01, 8.270798e-01 },
115 { -5.654880e-01, -5.358279e-01, 8.443272e-01 },
116 { -5.340720e-01, -5.090425e-01, 8.607414e-01 },
117 { -5.026560e-01, -4.817547e-01, 8.763061e-01 },
118 { -4.712400e-01, -4.539915e-01, 8.910060e-01 },
119 { -4.398240e-01, -4.257802e-01, 9.048266e-01 },
120 { -4.084080e-01, -3.971488e-01, 9.177542e-01 },
121 { -3.769920e-01, -3.681254e-01, 9.297762e-01 },
122 { -3.455760e-01, -3.387387e-01, 9.408805e-01 },
123 { -3.141600e-01, -3.090177e-01, 9.510563e-01 },
124 { -2.827440e-01, -2.789917e-01, 9.602935e-01 },
125 { -2.513280e-01, -2.486905e-01, 9.685830e-01 },
126 { -2.199120e-01, -2.181437e-01, 9.759166e-01 },
127 { -1.884960e-01, -1.873817e-01, 9.822872e-01 },
128 { -1.570800e-01, -1.564348e-01, 9.876883e-01 },
129 { -1.256640e-01, -1.253335e-01, 9.921147e-01 },
130 { -9.424800e-02, -9.410853e-02, 9.955619e-01 },
131 { -6.283200e-02, -6.279067e-02, 9.980267e-01 },
132 { -3.141600e-02, -3.141083e-02, 9.995066e-01 },
133 { 0.000000e+00, 0.000000e+00, 1.000000e+00 },
134 { 3.141600e-02, 3.141083e-02, 9.995066e-01 },
135 { 6.283200e-02, 6.279067e-02, 9.980267e-01 },
136 { 9.424800e-02, 9.410853e-02, 9.955619e-01 },
137 { 1.256640e-01, 1.253335e-01, 9.921147e-01 },
138 { 1.570800e-01, 1.564348e-01, 9.876883e-01 },
139 { 1.884960e-01, 1.873817e-01, 9.822872e-01 },
140 { 2.199120e-01, 2.181437e-01, 9.759166e-01 },
141 { 2.513280e-01, 2.486905e-01, 9.685830e-01 },
142 { 2.827440e-01, 2.789917e-01, 9.602935e-01 },
143 { 3.141600e-01, 3.090177e-01, 9.510563e-01 },
144 { 3.455760e-01, 3.387387e-01, 9.408805e-01 },
145 { 3.769920e-01, 3.681254e-01, 9.297762e-01 },
146 { 4.084080e-01, 3.971488e-01, 9.177542e-01 },
147 { 4.398240e-01, 4.257802e-01, 9.048266e-01 },
148 { 4.712400e-01, 4.539915e-01, 8.910060e-01 },
149 { 5.026560e-01, 4.817547e-01, 8.763061e-01 },
150 { 5.340720e-01, 5.090425e-01, 8.607414e-01 },
151 { 5.654880e-01, 5.358279e-01, 8.443272e-01 },
152 { 5.969040e-01, 5.620845e-01, 8.270798e-01 },
153 { 6.283200e-01, 5.877864e-01, 8.090161e-01 },
154 { 6.597360e-01, 6.129083e-01, 7.901541e-01 },
155 { 6.911520e-01, 6.374252e-01, 7.705122e-01 },
156 { 7.225680e-01, 6.613131e-01, 7.501100e-01 },
157 { 7.539840e-01, 6.845484e-01, 7.289674e-01 },
158 { 7.854000e-01, 7.071081e-01, 7.071055e-01 },
159 { 8.168160e-01, 7.289699e-01, 6.845457e-01 },
160 { 8.482320e-01, 7.501124e-01, 6.613104e-01 },
161 { 8.796480e-01, 7.705146e-01, 6.374224e-01 },
162 { 9.110640e-01, 7.901563e-01, 6.129054e-01 },
163 { 9.424800e-01, 8.090183e-01, 5.877835e-01 },
164 { 9.738960e-01, 8.270819e-01, 5.620815e-01 },
165 { 1.005312e+00, 8.443292e-01, 5.358248e-01 },
166 { 1.036728e+00, 8.607433e-01, 5.090393e-01 },
167 { 1.068144e+00, 8.763079e-01, 4.817515e-01 },
168 { 1.099560e+00, 8.910077e-01, 4.539882e-01 },
169 { 1.130976e+00, 9.048282e-01, 4.257769e-01 },
170 { 1.162392e+00, 9.177557e-01, 3.971454e-01 },
171 { 1.193808e+00, 9.297775e-01, 3.681220e-01 },
172 { 1.225224e+00, 9.408817e-01, 3.387352e-01 },
173 { 1.256640e+00, 9.510574e-01, 3.090142e-01 },
174 { 1.288056e+00, 9.602945e-01, 2.789882e-01 },
175 { 1.319472e+00, 9.685839e-01, 2.486869e-01 },
176 { 1.350888e+00, 9.759175e-01, 2.181402e-01 },
177 { 1.382304e+00, 9.822879e-01, 1.873781e-01 },
178 { 1.413720e+00, 9.876889e-01, 1.564312e-01 },
179 { 1.445136e+00, 9.921151e-01, 1.253299e-01 },
180 { 1.476552e+00, 9.955623e-01, 9.410488e-02 },
181 { 1.507968e+00, 9.980269e-01, 6.278700e-02 },
182 { 1.539384e+00, 9.995067e-01, 3.140716e-02 },
183 { 1.570800e+00, 1.000000e-00, -3.673205e-06 },
184 { 1.602216e+00, 9.995064e-01, -3.141450e-02 },
185 { 1.633632e+00, 9.980265e-01, -6.279433e-02 },
186 { 1.665048e+00, 9.955616e-01, -9.411219e-02 },
187 { 1.696464e+00, 9.921142e-01, -1.253372e-01 },
188 { 1.727880e+00, 9.876877e-01, -1.564385e-01 },
189 { 1.759296e+00, 9.822865e-01, -1.873854e-01 },
190 { 1.790712e+00, 9.759158e-01, -2.181473e-01 },
191 { 1.822128e+00, 9.685821e-01, -2.486940e-01 },
192 { 1.853544e+00, 9.602925e-01, -2.789953e-01 },
193 { 1.884960e+00, 9.510552e-01, -3.090212e-01 },
194 { 1.916376e+00, 9.408793e-01, -3.387421e-01 },
195 { 1.947792e+00, 9.297748e-01, -3.681288e-01 },
196 { 1.979208e+00, 9.177528e-01, -3.971521e-01 },
197 { 2.010624e+00, 9.048251e-01, -4.257835e-01 },
198 { 2.042040e+00, 8.910044e-01, -4.539948e-01 },
199 { 2.073456e+00, 8.763043e-01, -4.817579e-01 },
200 { 2.104872e+00, 8.607395e-01, -5.090457e-01 },
201 { 2.136288e+00, 8.443252e-01, -5.358310e-01 },
202 { 2.167704e+00, 8.270777e-01, -5.620876e-01 },
203 { 2.199120e+00, 8.090140e-01, -5.877894e-01 },
204 { 2.230536e+00, 7.901518e-01, -6.129112e-01 },
205 { 2.261952e+00, 7.705099e-01, -6.374281e-01 },
206 { 2.293368e+00, 7.501075e-01, -6.613159e-01 },
207 { 2.324784e+00, 7.289649e-01, -6.845511e-01 },
208 { 2.356200e+00, 7.071029e-01, -7.071107e-01 },
209 { 2.387616e+00, 6.845430e-01, -7.289724e-01 },
210 { 2.419032e+00, 6.613076e-01, -7.501148e-01 },
211 { 2.450448e+00, 6.374196e-01, -7.705169e-01 },
212 { 2.481864e+00, 6.129025e-01, -7.901586e-01 },
213 { 2.513280e+00, 5.877805e-01, -8.090204e-01 },
214 { 2.544696e+00, 5.620785e-01, -8.270839e-01 },
215 { 2.576112e+00, 5.358217e-01, -8.443312e-01 },
216 { 2.607528e+00, 5.090362e-01, -8.607451e-01 },
217 { 2.638944e+00, 4.817483e-01, -8.763097e-01 },
218 { 2.670360e+00, 4.539849e-01, -8.910094e-01 },
219 { 2.701776e+00, 4.257736e-01, -9.048297e-01 },
220 { 2.733192e+00, 3.971420e-01, -9.177572e-01 },
221 { 2.764608e+00, 3.681185e-01, -9.297789e-01 },
222 { 2.796024e+00, 3.387318e-01, -9.408830e-01 },
223 { 2.827440e+00, 3.090107e-01, -9.510586e-01 },
224 { 2.858856e+00, 2.789847e-01, -9.602956e-01 },
225 { 2.890272e+00, 2.486833e-01, -9.685848e-01 },
226 { 2.921688e+00, 2.181366e-01, -9.759183e-01 },
227 { 2.953104e+00, 1.873745e-01, -9.822885e-01 },
228 { 2.984520e+00, 1.564276e-01, -9.876894e-01 },
229 { 3.015936e+00, 1.253262e-01, -9.921156e-01 },
230 { 3.047352e+00, 9.410122e-02, -9.955626e-01 },
231 { 3.078768e+00, 6.278333e-02, -9.980272e-01 },
232 { 3.110184e+00, 3.140349e-02, -9.995068e-01 },
233 { 3.141600e+00, -7.346410e-06, -1.000000e-00 }
236 # define M_PI 3.14159265358979323846 /* pi */
238 static double inline gen_sin(double x)
240 int i;
241 if(x < 0) while(x < -M_PI) x+= M_PI;
242 else while(x > M_PI) x-= M_PI;
243 for(i=0;i<sizeof(g_sincos)/sizeof(gen_sincos_t)-1;i++)
245 if(x>=g_sincos[i].x && x <= g_sincos[i+1].x)
247 return (g_sincos[i+1].sinx-g_sincos[i].sinx)*(x-g_sincos[i].x)/(g_sincos[i+1].x-g_sincos[i].x)+g_sincos[i].sinx;
250 return x<0?1:-1;
252 #undef sin
253 #define sin(x) gen_sin(x)
255 static double inline gen_cos(double x)
257 int i;
258 if(x < 0) while(x < -M_PI) x+= M_PI;
259 else while(x > M_PI) x-= M_PI;
260 for(i=0;i<sizeof(g_sincos)/sizeof(gen_sincos_t)-1;i++)
262 if(x>=g_sincos[i].x && x <= g_sincos[i+1].x)
264 return (g_sincos[i+1].cosx-g_sincos[i].cosx)*(x-g_sincos[i].x)/(g_sincos[i+1].x-g_sincos[i].x)+g_sincos[i].cosx;
267 return x<0?1:-1;
269 #undef cos
270 #define cos(x) gen_cos(x)
272 #endif /* MPLAYER_GENERIC_MATH_H */