Support VDPAU hardware accelerated decoding of MPEG-4 ASP on capable
[mplayer/glamo.git] / libfaad2 / hcr.c
blob00cb655fb01d52fecaa82d0ff6e716481d11813d
1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2004 G.C. Pascutto, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: hcr.c,v 1.18 2004/09/04 14:56:28 menno Exp $
26 **/
28 #include "common.h"
29 #include "structs.h"
31 #include <stdlib.h>
32 #include <string.h>
34 #include "specrec.h"
35 #include "huffman.h"
37 /* ISO/IEC 14496-3/Amd.1
38 * 8.5.3.3: Huffman Codeword Reordering for AAC spectral data (HCR)
40 * HCR devides the spectral data in known fixed size segments, and
41 * sorts it by the importance of the data. The importance is firstly
42 * the (lower) position in the spectrum, and secondly the largest
43 * value in the used codebook.
44 * The most important data is written at the start of each segment
45 * (at known positions), the remaining data is interleaved inbetween,
46 * with the writing direction alternating.
47 * Data length is not increased.
50 #ifdef ERROR_RESILIENCE
52 /* 8.5.3.3.1 Pre-sorting */
54 #define NUM_CB 6
55 #define NUM_CB_ER 22
56 #define MAX_CB 32
57 #define VCB11_FIRST 16
58 #define VCB11_LAST 31
60 static const uint8_t PreSortCB_STD[NUM_CB] =
61 { 11, 9, 7, 5, 3, 1};
63 static const uint8_t PreSortCB_ER[NUM_CB_ER] =
64 { 11, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 9, 7, 5, 3, 1};
66 /* 8.5.3.3.2 Derivation of segment width */
68 static const uint8_t maxCwLen[MAX_CB] = {0, 11, 9, 20, 16, 13, 11, 14, 12, 17, 14, 49,
69 0, 0, 0, 0, 14, 17, 21, 21, 25, 25, 29, 29, 29, 29, 33, 33, 33, 37, 37, 41};
71 #define segmentWidth(cb) min(maxCwLen[cb], ics->length_of_longest_codeword)
73 /* bit-twiddling helpers */
74 static const uint8_t S[] = {1, 2, 4, 8, 16};
75 static const uint32_t B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};
77 typedef struct
79 uint8_t cb;
80 uint8_t decoded;
81 uint16_t sp_offset;
82 bits_t bits;
83 } codeword_t;
85 /* rewind and reverse */
86 /* 32 bit version */
87 static uint32_t rewrev_word(uint32_t v, const uint8_t len)
89 /* 32 bit reverse */
90 v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
91 v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
92 v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
93 v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
94 v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);
96 /* shift off low bits */
97 v >>= (32 - len);
99 return v;
102 /* 64 bit version */
103 static void rewrev_lword(uint32_t *hi, uint32_t *lo, const uint8_t len)
105 if (len <= 32) {
106 *hi = 0;
107 *lo = rewrev_word(*lo, len);
108 } else
110 uint32_t t = *hi, v = *lo;
112 /* double 32 bit reverse */
113 v = ((v >> S[0]) & B[0]) | ((v << S[0]) & ~B[0]);
114 t = ((t >> S[0]) & B[0]) | ((t << S[0]) & ~B[0]);
115 v = ((v >> S[1]) & B[1]) | ((v << S[1]) & ~B[1]);
116 t = ((t >> S[1]) & B[1]) | ((t << S[1]) & ~B[1]);
117 v = ((v >> S[2]) & B[2]) | ((v << S[2]) & ~B[2]);
118 t = ((t >> S[2]) & B[2]) | ((t << S[2]) & ~B[2]);
119 v = ((v >> S[3]) & B[3]) | ((v << S[3]) & ~B[3]);
120 t = ((t >> S[3]) & B[3]) | ((t << S[3]) & ~B[3]);
121 v = ((v >> S[4]) & B[4]) | ((v << S[4]) & ~B[4]);
122 t = ((t >> S[4]) & B[4]) | ((t << S[4]) & ~B[4]);
124 /* last 32<>32 bit swap is implicit below */
126 /* shift off low bits (this is really only one 64 bit shift) */
127 *lo = (t >> (64 - len)) | (v << (len - 32));
128 *hi = v >> (64 - len);
133 /* bits_t version */
134 static void rewrev_bits(bits_t *bits)
136 if (bits->len == 0) return;
137 rewrev_lword(&bits->bufb, &bits->bufa, bits->len);
141 /* merge bits of a to b */
142 static void concat_bits(bits_t *b, bits_t *a)
144 uint32_t bl, bh, al, ah;
146 if (a->len == 0) return;
148 al = a->bufa;
149 ah = a->bufb;
151 if (b->len > 32)
153 /* maskoff superfluous high b bits */
154 bl = b->bufa;
155 bh = b->bufb & ((1 << (b->len-32)) - 1);
156 /* left shift a b->len bits */
157 ah = al << (b->len - 32);
158 al = 0;
159 } else {
160 bl = b->bufa & ((1 << (b->len)) - 1);
161 bh = 0;
162 ah = (ah << (b->len)) | (al >> (32 - b->len));
163 al = al << b->len;
166 /* merge */
167 b->bufa = bl | al;
168 b->bufb = bh | ah;
170 b->len += a->len;
173 uint8_t is_good_cb(uint8_t this_CB, uint8_t this_sec_CB)
175 /* only want spectral data CB's */
176 if ((this_sec_CB > ZERO_HCB && this_sec_CB <= ESC_HCB) || (this_sec_CB >= VCB11_FIRST && this_sec_CB <= VCB11_LAST))
178 if (this_CB < ESC_HCB)
180 /* normal codebook pairs */
181 return ((this_sec_CB == this_CB) || (this_sec_CB == this_CB + 1));
182 } else
184 /* escape codebook */
185 return (this_sec_CB == this_CB);
188 return 0;
191 void read_segment(bits_t *segment, uint8_t segwidth, bitfile *ld)
193 segment->len = segwidth;
195 if (segwidth > 32)
197 segment->bufb = faad_getbits(ld, segwidth - 32);
198 segment->bufa = faad_getbits(ld, 32);
200 } else {
201 segment->bufa = faad_getbits(ld, segwidth);
202 segment->bufb = 0;
206 void fill_in_codeword(codeword_t *codeword, uint16_t index, uint16_t sp, uint8_t cb)
208 codeword[index].sp_offset = sp;
209 codeword[index].cb = cb;
210 codeword[index].decoded = 0;
211 codeword[index].bits.len = 0;
214 uint8_t reordered_spectral_data(NeAACDecHandle hDecoder, ic_stream *ics,
215 bitfile *ld, int16_t *spectral_data)
217 uint16_t PCWs_done;
218 uint16_t numberOfSegments, numberOfSets, numberOfCodewords;
220 codeword_t codeword[512];
221 bits_t segment[512];
223 uint16_t sp_offset[8];
224 uint16_t g, i, sortloop, set, bitsread;
225 uint8_t w_idx, sfb, this_CB, last_CB, this_sec_CB;
227 const uint16_t nshort = hDecoder->frameLength/8;
228 const uint16_t sp_data_len = ics->length_of_reordered_spectral_data;
230 const uint8_t *PreSortCb;
232 /* no data (e.g. silence) */
233 if (sp_data_len == 0)
234 return 0;
236 /* since there is spectral data, at least one codeword has nonzero length */
237 if (ics->length_of_longest_codeword == 0)
238 return 10;
240 if (sp_data_len < ics->length_of_longest_codeword)
241 return 10;
243 sp_offset[0] = 0;
244 for (g = 1; g < ics->num_window_groups; g++)
246 sp_offset[g] = sp_offset[g-1] + nshort*ics->window_group_length[g-1];
249 PCWs_done = 0;
250 numberOfSegments = 0;
251 numberOfCodewords = 0;
252 bitsread = 0;
254 /* VCB11 code books in use */
255 if (hDecoder->aacSectionDataResilienceFlag)
257 PreSortCb = PreSortCB_ER;
258 last_CB = NUM_CB_ER;
259 } else
261 PreSortCb = PreSortCB_STD;
262 last_CB = NUM_CB;
265 /* step 1: decode PCW's (set 0), and stuff data in easier-to-use format */
266 for (sortloop = 0; sortloop < last_CB; sortloop++)
268 /* select codebook to process this pass */
269 this_CB = PreSortCb[sortloop];
271 /* loop over sfbs */
272 for (sfb = 0; sfb < ics->max_sfb; sfb++)
274 /* loop over all in this sfb, 4 lines per loop */
275 for (w_idx = 0; 4*w_idx < (ics->swb_offset[sfb+1] - ics->swb_offset[sfb]); w_idx++)
277 for(g = 0; g < ics->num_window_groups; g++)
279 for (i = 0; i < ics->num_sec[g]; i++)
281 /* check whether sfb used here is the one we want to process */
282 if ((ics->sect_start[g][i] <= sfb) && (ics->sect_end[g][i] > sfb))
284 /* check whether codebook used here is the one we want to process */
285 this_sec_CB = ics->sect_cb[g][i];
287 if (is_good_cb(this_CB, this_sec_CB))
289 /* precalculate some stuff */
290 uint16_t sect_sfb_size = ics->sect_sfb_offset[g][sfb+1] - ics->sect_sfb_offset[g][sfb];
291 uint8_t inc = (this_sec_CB < FIRST_PAIR_HCB) ? QUAD_LEN : PAIR_LEN;
292 uint16_t group_cws_count = (4*ics->window_group_length[g])/inc;
293 uint8_t segwidth = segmentWidth(this_sec_CB);
294 uint16_t cws;
296 /* read codewords until end of sfb or end of window group (shouldn't only 1 trigger?) */
297 for (cws = 0; (cws < group_cws_count) && ((cws + w_idx*group_cws_count) < sect_sfb_size); cws++)
299 uint16_t sp = sp_offset[g] + ics->sect_sfb_offset[g][sfb] + inc * (cws + w_idx*group_cws_count);
301 /* read and decode PCW */
302 if (!PCWs_done)
304 /* read in normal segments */
305 if (bitsread + segwidth <= sp_data_len)
307 read_segment(&segment[numberOfSegments], segwidth, ld);
308 bitsread += segwidth;
310 huffman_spectral_data_2(this_sec_CB, &segment[numberOfSegments], &spectral_data[sp]);
312 /* keep leftover bits */
313 rewrev_bits(&segment[numberOfSegments]);
315 numberOfSegments++;
316 } else {
317 /* remaining stuff after last segment, we unfortunately couldn't read
318 this in earlier because it might not fit in 64 bits. since we already
319 decoded (and removed) the PCW it is now guaranteed to fit */
320 if (bitsread < sp_data_len)
322 const uint8_t additional_bits = sp_data_len - bitsread;
324 read_segment(&segment[numberOfSegments], additional_bits, ld);
325 segment[numberOfSegments].len += segment[numberOfSegments-1].len;
326 rewrev_bits(&segment[numberOfSegments]);
328 if (segment[numberOfSegments-1].len > 32)
330 segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb +
331 showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len - 32);
332 segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
333 showbits_hcr(&segment[numberOfSegments-1], 32);
334 } else {
335 segment[numberOfSegments-1].bufa = segment[numberOfSegments].bufa +
336 showbits_hcr(&segment[numberOfSegments-1], segment[numberOfSegments-1].len);
337 segment[numberOfSegments-1].bufb = segment[numberOfSegments].bufb;
339 segment[numberOfSegments-1].len += additional_bits;
341 bitsread = sp_data_len;
342 PCWs_done = 1;
344 fill_in_codeword(codeword, 0, sp, this_sec_CB);
346 } else {
347 fill_in_codeword(codeword, numberOfCodewords - numberOfSegments, sp, this_sec_CB);
349 numberOfCodewords++;
359 if (numberOfSegments == 0)
360 return 10;
362 numberOfSets = numberOfCodewords / numberOfSegments;
364 /* step 2: decode nonPCWs */
365 for (set = 1; set <= numberOfSets; set++)
367 uint16_t trial;
369 for (trial = 0; trial < numberOfSegments; trial++)
371 uint16_t codewordBase;
373 for (codewordBase = 0; codewordBase < numberOfSegments; codewordBase++)
375 const uint16_t segment_idx = (trial + codewordBase) % numberOfSegments;
376 const uint16_t codeword_idx = codewordBase + set*numberOfSegments - numberOfSegments;
378 /* data up */
379 if (codeword_idx >= numberOfCodewords - numberOfSegments) break;
381 if (!codeword[codeword_idx].decoded && segment[segment_idx].len > 0)
383 uint8_t tmplen;
385 if (codeword[codeword_idx].bits.len != 0)
386 concat_bits(&segment[segment_idx], &codeword[codeword_idx].bits);
388 tmplen = segment[segment_idx].len;
390 if (huffman_spectral_data_2(codeword[codeword_idx].cb, &segment[segment_idx],
391 &spectral_data[codeword[codeword_idx].sp_offset]) >= 0)
393 codeword[codeword_idx].decoded = 1;
394 } else
396 codeword[codeword_idx].bits = segment[segment_idx];
397 codeword[codeword_idx].bits.len = tmplen;
403 for (i = 0; i < numberOfSegments; i++)
404 rewrev_bits(&segment[i]);
407 return 0;
409 #endif