Get rid of code I neither know nor use anymore.
[mplayer/glamo.git] / libaf / filter.c
bloba637bb6df364f356aad171090a7efeed06b2ad54
1 /*=============================================================================
2 //
3 // This software has been released under the terms of the GNU General Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
5 //
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
7 //
8 //=============================================================================
9 */
11 /* Design and implementation of different types of digital filters
14 #include <string.h>
15 #include <math.h>
16 #include "dsp.h"
18 /******************************************************************************
19 * FIR filter implementations
20 ******************************************************************************/
22 /* C implementation of FIR filter y=w*x
24 n number of filter taps, where mod(n,4)==0
25 w filter taps
26 x input signal must be a circular buffer which is indexed backwards
28 inline _ftype_t af_filter_fir(register unsigned int n, _ftype_t* w, _ftype_t* x)
30 register _ftype_t y; // Output
31 y = 0.0;
32 do{
33 n--;
34 y+=w[n]*x[n];
35 }while(n != 0);
36 return y;
39 /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)
41 n number of filter taps, where mod(n,4)==0
42 d number of filters
43 xi current index in xq
44 w filter taps k by n big
45 x input signal must be a circular buffers which are indexed backwards
46 y output buffer
47 s output buffer stride
49 inline _ftype_t* af_filter_pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s)
51 register _ftype_t* xt = *x + xi;
52 register _ftype_t* wt = *w;
53 register int nt = 2*n;
54 while(d-- > 0){
55 *y = af_filter_fir(n,wt,xt);
56 wt+=n;
57 xt+=nt;
58 y+=s;
60 return y;
63 /* Add new data to circular queue designed to be used with a parallel
64 FIR filter, with d filters. xq is the circular queue, in pointing
65 at the new samples, xi current index in xq and n the length of the
66 filter. xq must be n*2 by k big, s is the index for in.
68 inline int af_filter_updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s)
70 register _ftype_t* txq = *xq + xi;
71 register int nt = n*2;
73 while(d-- >0){
74 *txq= *(txq+n) = *in;
75 txq+=nt;
76 in+=s;
78 return (++xi)&(n-1);
81 /******************************************************************************
82 * FIR filter design
83 ******************************************************************************/
85 /* Design FIR filter using the Window method
87 n filter length must be odd for HP and BS filters
88 w buffer for the filter taps (must be n long)
89 fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
90 0 < fc < 1 where 1 <=> Fs/2
91 flags window and filter type as defined in filter.h
92 variables are ored together: i.e. LP|HAMMING will give a
93 low pass filter designed using a hamming window
94 opt beta constant used only when designing using kaiser windows
96 returns 0 if OK, -1 if fail
98 int af_filter_design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt)
100 unsigned int o = n & 1; // Indicator for odd filter length
101 unsigned int end = ((n + 1) >> 1) - o; // Loop end
102 unsigned int i; // Loop index
104 _ftype_t k1 = 2 * M_PI; // 2*pi*fc1
105 _ftype_t k2 = 0.5 * (_ftype_t)(1 - o);// Constant used if the filter has even length
106 _ftype_t k3; // 2*pi*fc2 Constant used in BP and BS design
107 _ftype_t g = 0.0; // Gain
108 _ftype_t t1,t2,t3; // Temporary variables
109 _ftype_t fc1,fc2; // Cutoff frequencies
111 // Sanity check
112 if(!w || (n == 0)) return -1;
114 // Get window coefficients
115 switch(flags & WINDOW_MASK){
116 case(BOXCAR):
117 af_window_boxcar(n,w); break;
118 case(TRIANG):
119 af_window_triang(n,w); break;
120 case(HAMMING):
121 af_window_hamming(n,w); break;
122 case(HANNING):
123 af_window_hanning(n,w); break;
124 case(BLACKMAN):
125 af_window_blackman(n,w); break;
126 case(FLATTOP):
127 af_window_flattop(n,w); break;
128 case(KAISER):
129 af_window_kaiser(n,w,opt); break;
130 default:
131 return -1;
134 if(flags & (LP | HP)){
135 fc1=*fc;
136 // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
137 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
138 k1 *= fc1;
140 if(flags & LP){ // Low pass filter
142 // If the filter length is odd, there is one point which is exactly
143 // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
144 // where x is zero. To make sure nothing strange happens, we set this
145 // value separately.
146 if (o){
147 w[end] = fc1 * w[end] * 2.0;
148 g=w[end];
151 // Create filter
152 for (i=0 ; i<end ; i++){
153 t1 = (_ftype_t)(i+1) - k2;
154 w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
155 g += 2*w[end-i-1]; // Total gain in filter
158 else{ // High pass filter
159 if (!o) // High pass filters must have odd length
160 return -1;
161 w[end] = 1.0 - (fc1 * w[end] * 2.0);
162 g= w[end];
164 // Create filter
165 for (i=0 ; i<end ; i++){
166 t1 = (_ftype_t)(i+1);
167 w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
168 g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter
173 if(flags & (BP | BS)){
174 fc1=fc[0];
175 fc2=fc[1];
176 // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
177 fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
178 fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25;
179 k3 = k1 * fc2; // 2*pi*fc2
180 k1 *= fc1; // 2*pi*fc1
182 if(flags & BP){ // Band pass
183 // Calculate center tap
184 if (o){
185 g=w[end]*(fc1+fc2);
186 w[end] = (fc2 - fc1) * w[end] * 2.0;
189 // Create filter
190 for (i=0 ; i<end ; i++){
191 t1 = (_ftype_t)(i+1) - k2;
192 t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
193 t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
194 g += w[end-i-1] * (t3 + t2); // Total gain in filter
195 w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
198 else{ // Band stop
199 if (!o) // Band stop filters must have odd length
200 return -1;
201 w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0;
202 g= w[end];
204 // Create filter
205 for (i=0 ; i<end ; i++){
206 t1 = (_ftype_t)(i+1);
207 t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
208 t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
209 w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
210 g += 2*w[end-i-1]; // Total gain in filter
215 // Normalize gain
216 g=1/g;
217 for (i=0; i<n; i++)
218 w[i] *= g;
220 return 0;
223 /* Design polyphase FIR filter from prototype filter
225 n length of prototype filter
226 k number of polyphase components
227 w prototype filter taps
228 pw Parallel FIR filter
229 g Filter gain
230 flags FWD forward indexing
231 REW reverse indexing
232 ODD multiply every 2nd filter tap by -1 => HP filter
234 returns 0 if OK, -1 if fail
236 int af_filter_design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags)
238 int l = (int)n/k; // Length of individual FIR filters
239 int i; // Counters
240 int j;
241 _ftype_t t; // g * w[i]
243 // Sanity check
244 if(l<1 || k<1 || !w || !pw)
245 return -1;
247 // Do the stuff
248 if(flags&REW){
249 for(j=l-1;j>-1;j--){//Columns
250 for(i=0;i<(int)k;i++){//Rows
251 t=g * *w++;
252 pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1);
256 else{
257 for(j=0;j<l;j++){//Columns
258 for(i=0;i<(int)k;i++){//Rows
259 t=g * *w++;
260 pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1);
264 return -1;
267 /******************************************************************************
268 * IIR filter design
269 ******************************************************************************/
271 /* Helper functions for the bilinear transform */
273 /* Pre-warp the coefficients of a numerator or denominator.
274 Note that a0 is assumed to be 1, so there is no wrapping
275 of it.
277 static void af_filter_prewarp(_ftype_t* a, _ftype_t fc, _ftype_t fs)
279 _ftype_t wp;
280 wp = 2.0 * fs * tan(M_PI * fc / fs);
281 a[2] = a[2]/(wp * wp);
282 a[1] = a[1]/wp;
285 /* Transform the numerator and denominator coefficients of s-domain
286 biquad section into corresponding z-domain coefficients.
288 The transfer function for z-domain is:
290 1 + alpha1 * z^(-1) + alpha2 * z^(-2)
291 H(z) = -------------------------------------
292 1 + beta1 * z^(-1) + beta2 * z^(-2)
294 Store the 4 IIR coefficients in array pointed by coef in following
295 order:
296 beta1, beta2 (denominator)
297 alpha1, alpha2 (numerator)
299 Arguments:
300 a - s-domain numerator coefficients
301 b - s-domain denominator coefficients
302 k - filter gain factor. Initially set to 1 and modified by each
303 biquad section in such a way, as to make it the
304 coefficient by which to multiply the overall filter gain
305 in order to achieve a desired overall filter gain,
306 specified in initial value of k.
307 fs - sampling rate (Hz)
308 coef - array of z-domain coefficients to be filled in.
310 Return: On return, set coef z-domain coefficients and k to the gain
311 required to maintain overall gain = 1.0;
313 static void af_filter_bilinear(_ftype_t* a, _ftype_t* b, _ftype_t* k, _ftype_t fs, _ftype_t *coef)
315 _ftype_t ad, bd;
317 /* alpha (Numerator in s-domain) */
318 ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0];
319 /* beta (Denominator in s-domain) */
320 bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0];
322 /* Update gain constant for this section */
323 *k *= ad/bd;
325 /* Denominator */
326 *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */
327 *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */
329 /* Numerator */
330 *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */
331 *coef = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad; /* alpha2 */
336 /* IIR filter design using bilinear transform and prewarp. Transforms
337 2nd order s domain analog filter into a digital IIR biquad link. To
338 create a filter fill in a, b, Q and fs and make space for coef and k.
341 Example Butterworth design:
343 Below are Butterworth polynomials, arranged as a series of 2nd
344 order sections:
346 Note: n is filter order.
348 n Polynomials
349 -------------------------------------------------------------------
350 2 s^2 + 1.4142s + 1
351 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)
352 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)
354 For n=4 we have following equation for the filter transfer function:
356 T(s) = --------------------------- * ----------------------------
357 s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1
359 The filter consists of two 2nd order sections since highest s power
360 is 2. Now we can take the coefficients, or the numbers by which s
361 is multiplied and plug them into a standard formula to be used by
362 bilinear transform.
364 Our standard form for each 2nd order section is:
366 a2 * s^2 + a1 * s + a0
367 H(s) = ----------------------
368 b2 * s^2 + b1 * s + b0
370 Note that Butterworth numerator is 1 for all filter sections, which
371 means s^2 = 0 and s^1 = 0
373 Let's convert standard Butterworth polynomials into this form:
375 0 + 0 + 1 0 + 0 + 1
376 --------------------------- * --------------------------
377 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1
379 Section 1:
380 a2 = 0; a1 = 0; a0 = 1;
381 b2 = 1; b1 = 0.765367; b0 = 1;
383 Section 2:
384 a2 = 0; a1 = 0; a0 = 1;
385 b2 = 1; b1 = 1.847759; b0 = 1;
387 Q is filter quality factor or resonance, in the range of 1 to
388 1000. The overall filter Q is a product of all 2nd order stages.
389 For example, the 6th order filter (3 stages, or biquads) with
390 individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.
393 Arguments:
394 a - s-domain numerator coefficients, a[1] is always assumed to be 1.0
395 b - s-domain denominator coefficients
396 Q - Q value for the filter
397 k - filter gain factor. Initially set to 1 and modified by each
398 biquad section in such a way, as to make it the
399 coefficient by which to multiply the overall filter gain
400 in order to achieve a desired overall filter gain,
401 specified in initial value of k.
402 fs - sampling rate (Hz)
403 coef - array of z-domain coefficients to be filled in.
405 Note: Upon return from each call, the k argument will be set to a
406 value, by which to multiply our actual signal in order for the gain
407 to be one. On second call to szxform() we provide k that was
408 changed by the previous section. During actual audio filtering
409 k can be used for gain compensation.
411 return -1 if fail 0 if success.
413 int af_filter_szxform(_ftype_t* a, _ftype_t* b, _ftype_t Q, _ftype_t fc, _ftype_t fs, _ftype_t *k, _ftype_t *coef)
415 _ftype_t at[3];
416 _ftype_t bt[3];
418 if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0))
419 return -1;
421 memcpy(at,a,3*sizeof(_ftype_t));
422 memcpy(bt,b,3*sizeof(_ftype_t));
424 bt[1]/=Q;
426 /* Calculate a and b and overwrite the original values */
427 af_filter_prewarp(at, fc, fs);
428 af_filter_prewarp(bt, fc, fs);
429 /* Execute bilinear transform */
430 af_filter_bilinear(at, bt, k, fs, coef);
432 return 0;