1 /*=============================================================================
3 // This software has been released under the terms of the GNU General Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
8 //=============================================================================
11 /* Design and implementation of different types of digital filters
18 /******************************************************************************
19 * FIR filter implementations
20 ******************************************************************************/
22 /* C implementation of FIR filter y=w*x
24 n number of filter taps, where mod(n,4)==0
26 x input signal must be a circular buffer which is indexed backwards
28 inline _ftype_t
af_filter_fir(register unsigned int n
, _ftype_t
* w
, _ftype_t
* x
)
30 register _ftype_t y
; // Output
39 /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)
41 n number of filter taps, where mod(n,4)==0
43 xi current index in xq
44 w filter taps k by n big
45 x input signal must be a circular buffers which are indexed backwards
47 s output buffer stride
49 inline _ftype_t
* af_filter_pfir(unsigned int n
, unsigned int d
, unsigned int xi
, _ftype_t
** w
, _ftype_t
** x
, _ftype_t
* y
, unsigned int s
)
51 register _ftype_t
* xt
= *x
+ xi
;
52 register _ftype_t
* wt
= *w
;
53 register int nt
= 2*n
;
55 *y
= af_filter_fir(n
,wt
,xt
);
63 /* Add new data to circular queue designed to be used with a parallel
64 FIR filter, with d filters. xq is the circular queue, in pointing
65 at the new samples, xi current index in xq and n the length of the
66 filter. xq must be n*2 by k big, s is the index for in.
68 inline int af_filter_updatepq(unsigned int n
, unsigned int d
, unsigned int xi
, _ftype_t
** xq
, _ftype_t
* in
, unsigned int s
)
70 register _ftype_t
* txq
= *xq
+ xi
;
71 register int nt
= n
*2;
81 /******************************************************************************
83 ******************************************************************************/
85 /* Design FIR filter using the Window method
87 n filter length must be odd for HP and BS filters
88 w buffer for the filter taps (must be n long)
89 fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
90 0 < fc < 1 where 1 <=> Fs/2
91 flags window and filter type as defined in filter.h
92 variables are ored together: i.e. LP|HAMMING will give a
93 low pass filter designed using a hamming window
94 opt beta constant used only when designing using kaiser windows
96 returns 0 if OK, -1 if fail
98 int af_filter_design_fir(unsigned int n
, _ftype_t
* w
, _ftype_t
* fc
, unsigned int flags
, _ftype_t opt
)
100 unsigned int o
= n
& 1; // Indicator for odd filter length
101 unsigned int end
= ((n
+ 1) >> 1) - o
; // Loop end
102 unsigned int i
; // Loop index
104 _ftype_t k1
= 2 * M_PI
; // 2*pi*fc1
105 _ftype_t k2
= 0.5 * (_ftype_t
)(1 - o
);// Constant used if the filter has even length
106 _ftype_t k3
; // 2*pi*fc2 Constant used in BP and BS design
107 _ftype_t g
= 0.0; // Gain
108 _ftype_t t1
,t2
,t3
; // Temporary variables
109 _ftype_t fc1
,fc2
; // Cutoff frequencies
112 if(!w
|| (n
== 0)) return -1;
114 // Get window coefficients
115 switch(flags
& WINDOW_MASK
){
117 af_window_boxcar(n
,w
); break;
119 af_window_triang(n
,w
); break;
121 af_window_hamming(n
,w
); break;
123 af_window_hanning(n
,w
); break;
125 af_window_blackman(n
,w
); break;
127 af_window_flattop(n
,w
); break;
129 af_window_kaiser(n
,w
,opt
); break;
134 if(flags
& (LP
| HP
)){
136 // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
137 fc1
= ((fc1
<= 1.0) && (fc1
> 0.0)) ? fc1
/2 : 0.25;
140 if(flags
& LP
){ // Low pass filter
142 // If the filter length is odd, there is one point which is exactly
143 // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
144 // where x is zero. To make sure nothing strange happens, we set this
147 w
[end
] = fc1
* w
[end
] * 2.0;
152 for (i
=0 ; i
<end
; i
++){
153 t1
= (_ftype_t
)(i
+1) - k2
;
154 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * sin(k1
* t1
)/(M_PI
* t1
); // Sinc
155 g
+= 2*w
[end
-i
-1]; // Total gain in filter
158 else{ // High pass filter
159 if (!o
) // High pass filters must have odd length
161 w
[end
] = 1.0 - (fc1
* w
[end
] * 2.0);
165 for (i
=0 ; i
<end
; i
++){
166 t1
= (_ftype_t
)(i
+1);
167 w
[end
-i
-1] = w
[n
-end
+i
] = -1 * w
[end
-i
-1] * sin(k1
* t1
)/(M_PI
* t1
); // Sinc
168 g
+= ((i
&1) ? (2*w
[end
-i
-1]) : (-2*w
[end
-i
-1])); // Total gain in filter
173 if(flags
& (BP
| BS
)){
176 // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
177 fc1
= ((fc1
<= 1.0) && (fc1
> 0.0)) ? fc1
/2 : 0.25;
178 fc2
= ((fc2
<= 1.0) && (fc2
> 0.0)) ? fc2
/2 : 0.25;
179 k3
= k1
* fc2
; // 2*pi*fc2
180 k1
*= fc1
; // 2*pi*fc1
182 if(flags
& BP
){ // Band pass
183 // Calculate center tap
186 w
[end
] = (fc2
- fc1
) * w
[end
] * 2.0;
190 for (i
=0 ; i
<end
; i
++){
191 t1
= (_ftype_t
)(i
+1) - k2
;
192 t2
= sin(k3
* t1
)/(M_PI
* t1
); // Sinc fc2
193 t3
= sin(k1
* t1
)/(M_PI
* t1
); // Sinc fc1
194 g
+= w
[end
-i
-1] * (t3
+ t2
); // Total gain in filter
195 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * (t2
- t3
);
199 if (!o
) // Band stop filters must have odd length
201 w
[end
] = 1.0 - (fc2
- fc1
) * w
[end
] * 2.0;
205 for (i
=0 ; i
<end
; i
++){
206 t1
= (_ftype_t
)(i
+1);
207 t2
= sin(k1
* t1
)/(M_PI
* t1
); // Sinc fc1
208 t3
= sin(k3
* t1
)/(M_PI
* t1
); // Sinc fc2
209 w
[end
-i
-1] = w
[n
-end
+i
] = w
[end
-i
-1] * (t2
- t3
);
210 g
+= 2*w
[end
-i
-1]; // Total gain in filter
223 /* Design polyphase FIR filter from prototype filter
225 n length of prototype filter
226 k number of polyphase components
227 w prototype filter taps
228 pw Parallel FIR filter
230 flags FWD forward indexing
232 ODD multiply every 2nd filter tap by -1 => HP filter
234 returns 0 if OK, -1 if fail
236 int af_filter_design_pfir(unsigned int n
, unsigned int k
, _ftype_t
* w
, _ftype_t
** pw
, _ftype_t g
, unsigned int flags
)
238 int l
= (int)n
/k
; // Length of individual FIR filters
241 _ftype_t t
; // g * w[i]
244 if(l
<1 || k
<1 || !w
|| !pw
)
249 for(j
=l
-1;j
>-1;j
--){//Columns
250 for(i
=0;i
<(int)k
;i
++){//Rows
252 pw
[i
][j
]=t
* ((flags
& ODD
) ? ((j
& 1) ? -1 : 1) : 1);
257 for(j
=0;j
<l
;j
++){//Columns
258 for(i
=0;i
<(int)k
;i
++){//Rows
260 pw
[i
][j
]=t
* ((flags
& ODD
) ? ((j
& 1) ? 1 : -1) : 1);
267 /******************************************************************************
269 ******************************************************************************/
271 /* Helper functions for the bilinear transform */
273 /* Pre-warp the coefficients of a numerator or denominator.
274 Note that a0 is assumed to be 1, so there is no wrapping
277 static void af_filter_prewarp(_ftype_t
* a
, _ftype_t fc
, _ftype_t fs
)
280 wp
= 2.0 * fs
* tan(M_PI
* fc
/ fs
);
281 a
[2] = a
[2]/(wp
* wp
);
285 /* Transform the numerator and denominator coefficients of s-domain
286 biquad section into corresponding z-domain coefficients.
288 The transfer function for z-domain is:
290 1 + alpha1 * z^(-1) + alpha2 * z^(-2)
291 H(z) = -------------------------------------
292 1 + beta1 * z^(-1) + beta2 * z^(-2)
294 Store the 4 IIR coefficients in array pointed by coef in following
296 beta1, beta2 (denominator)
297 alpha1, alpha2 (numerator)
300 a - s-domain numerator coefficients
301 b - s-domain denominator coefficients
302 k - filter gain factor. Initially set to 1 and modified by each
303 biquad section in such a way, as to make it the
304 coefficient by which to multiply the overall filter gain
305 in order to achieve a desired overall filter gain,
306 specified in initial value of k.
307 fs - sampling rate (Hz)
308 coef - array of z-domain coefficients to be filled in.
310 Return: On return, set coef z-domain coefficients and k to the gain
311 required to maintain overall gain = 1.0;
313 static void af_filter_bilinear(_ftype_t
* a
, _ftype_t
* b
, _ftype_t
* k
, _ftype_t fs
, _ftype_t
*coef
)
317 /* alpha (Numerator in s-domain) */
318 ad
= 4. * a
[2] * fs
* fs
+ 2. * a
[1] * fs
+ a
[0];
319 /* beta (Denominator in s-domain) */
320 bd
= 4. * b
[2] * fs
* fs
+ 2. * b
[1] * fs
+ b
[0];
322 /* Update gain constant for this section */
326 *coef
++ = (2. * b
[0] - 8. * b
[2] * fs
* fs
)/bd
; /* beta1 */
327 *coef
++ = (4. * b
[2] * fs
* fs
- 2. * b
[1] * fs
+ b
[0])/bd
; /* beta2 */
330 *coef
++ = (2. * a
[0] - 8. * a
[2] * fs
* fs
)/ad
; /* alpha1 */
331 *coef
= (4. * a
[2] * fs
* fs
- 2. * a
[1] * fs
+ a
[0])/ad
; /* alpha2 */
336 /* IIR filter design using bilinear transform and prewarp. Transforms
337 2nd order s domain analog filter into a digital IIR biquad link. To
338 create a filter fill in a, b, Q and fs and make space for coef and k.
341 Example Butterworth design:
343 Below are Butterworth polynomials, arranged as a series of 2nd
346 Note: n is filter order.
349 -------------------------------------------------------------------
351 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)
352 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)
354 For n=4 we have following equation for the filter transfer function:
356 T(s) = --------------------------- * ----------------------------
357 s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1
359 The filter consists of two 2nd order sections since highest s power
360 is 2. Now we can take the coefficients, or the numbers by which s
361 is multiplied and plug them into a standard formula to be used by
364 Our standard form for each 2nd order section is:
366 a2 * s^2 + a1 * s + a0
367 H(s) = ----------------------
368 b2 * s^2 + b1 * s + b0
370 Note that Butterworth numerator is 1 for all filter sections, which
371 means s^2 = 0 and s^1 = 0
373 Let's convert standard Butterworth polynomials into this form:
376 --------------------------- * --------------------------
377 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1
380 a2 = 0; a1 = 0; a0 = 1;
381 b2 = 1; b1 = 0.765367; b0 = 1;
384 a2 = 0; a1 = 0; a0 = 1;
385 b2 = 1; b1 = 1.847759; b0 = 1;
387 Q is filter quality factor or resonance, in the range of 1 to
388 1000. The overall filter Q is a product of all 2nd order stages.
389 For example, the 6th order filter (3 stages, or biquads) with
390 individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.
394 a - s-domain numerator coefficients, a[1] is always assumed to be 1.0
395 b - s-domain denominator coefficients
396 Q - Q value for the filter
397 k - filter gain factor. Initially set to 1 and modified by each
398 biquad section in such a way, as to make it the
399 coefficient by which to multiply the overall filter gain
400 in order to achieve a desired overall filter gain,
401 specified in initial value of k.
402 fs - sampling rate (Hz)
403 coef - array of z-domain coefficients to be filled in.
405 Note: Upon return from each call, the k argument will be set to a
406 value, by which to multiply our actual signal in order for the gain
407 to be one. On second call to szxform() we provide k that was
408 changed by the previous section. During actual audio filtering
409 k can be used for gain compensation.
411 return -1 if fail 0 if success.
413 int af_filter_szxform(_ftype_t
* a
, _ftype_t
* b
, _ftype_t Q
, _ftype_t fc
, _ftype_t fs
, _ftype_t
*k
, _ftype_t
*coef
)
418 if(!a
|| !b
|| !k
|| !coef
|| (Q
>1000.0 || Q
< 1.0))
421 memcpy(at
,a
,3*sizeof(_ftype_t
));
422 memcpy(bt
,b
,3*sizeof(_ftype_t
));
426 /* Calculate a and b and overwrite the original values */
427 af_filter_prewarp(at
, fc
, fs
);
428 af_filter_prewarp(bt
, fc
, fs
);
429 /* Execute bilinear transform */
430 af_filter_bilinear(at
, bt
, k
, fs
, coef
);