Get rid of code I neither know nor use anymore.
[mplayer/glamo.git] / libaf / af_equalizer.c
blob18d76c5442adb0f0e8da974e9126a6b6e5f61a05
1 /*=============================================================================
2 //
3 // This software has been released under the terms of the GNU General Public
4 // license. See http://www.gnu.org/copyleft/gpl.html for details.
5 //
6 // Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
7 //
8 //=============================================================================
9 */
11 /* Equalizer filter, implementation of a 10 band time domain graphic
12 equalizer using IIR filters. The IIR filters are implemented using a
13 Direct Form II approach, but has been modified (b1 == 0 always) to
14 save computation.
17 #include <stdio.h>
18 #include <stdlib.h>
20 #include <unistd.h>
21 #include <inttypes.h>
22 #include <math.h>
24 #include "af.h"
26 #define L 2 // Storage for filter taps
27 #define KM 10 // Max number of bands
29 #define Q 1.2247449 /* Q value for band-pass filters 1.2247=(3/2)^(1/2)
30 gives 4dB suppression @ Fc*2 and Fc/2 */
32 /* Center frequencies for band-pass filters
33 The different frequency bands are:
34 nr. center frequency
35 0 31.25 Hz
36 1 62.50 Hz
37 2 125.0 Hz
38 3 250.0 Hz
39 4 500.0 Hz
40 5 1.000 kHz
41 6 2.000 kHz
42 7 4.000 kHz
43 8 8.000 kHz
44 9 16.00 kHz
46 #define CF {31.25,62.5,125,250,500,1000,2000,4000,8000,16000}
48 // Maximum and minimum gain for the bands
49 #define G_MAX +12.0
50 #define G_MIN -12.0
52 // Data for specific instances of this filter
53 typedef struct af_equalizer_s
55 float a[KM][L]; // A weights
56 float b[KM][L]; // B weights
57 float wq[AF_NCH][KM][L]; // Circular buffer for W data
58 float g[AF_NCH][KM]; // Gain factor for each channel and band
59 int K; // Number of used eq bands
60 int channels; // Number of channels
61 float gain_factor; // applied at output to avoid clipping
62 } af_equalizer_t;
64 // 2nd order Band-pass Filter design
65 static void bp2(float* a, float* b, float fc, float q){
66 double th= 2.0 * M_PI * fc;
67 double C = (1.0 - tan(th*q/2.0))/(1.0 + tan(th*q/2.0));
69 a[0] = (1.0 + C) * cos(th);
70 a[1] = -1 * C;
72 b[0] = (1.0 - C)/2.0;
73 b[1] = -1.0050;
76 // Initialization and runtime control
77 static int control(struct af_instance_s* af, int cmd, void* arg)
79 af_equalizer_t* s = (af_equalizer_t*)af->setup;
81 switch(cmd){
82 case AF_CONTROL_REINIT:{
83 int k =0, i =0;
84 float F[KM] = CF;
86 s->gain_factor=0.0;
88 // Sanity check
89 if(!arg) return AF_ERROR;
91 af->data->rate = ((af_data_t*)arg)->rate;
92 af->data->nch = ((af_data_t*)arg)->nch;
93 af->data->format = AF_FORMAT_FLOAT_NE;
94 af->data->bps = 4;
96 // Calculate number of active filters
97 s->K=KM;
98 while(F[s->K-1] > (float)af->data->rate/2.2)
99 s->K--;
101 if(s->K != KM)
102 af_msg(AF_MSG_INFO,"[equalizer] Limiting the number of filters to"
103 " %i due to low sample rate.\n",s->K);
105 // Generate filter taps
106 for(k=0;k<s->K;k++)
107 bp2(s->a[k],s->b[k],F[k]/((float)af->data->rate),Q);
109 // Calculate how much this plugin adds to the overall time delay
110 af->delay += 2000.0/((float)af->data->rate);
112 // Calculate gain factor to prevent clipping at output
113 for(k=0;k<AF_NCH;k++)
115 for(i=0;i<KM;i++)
117 if(s->gain_factor < s->g[k][i]) s->gain_factor=s->g[k][i];
121 s->gain_factor=log10(s->gain_factor + 1.0) * 20.0;
123 if(s->gain_factor > 0.0)
125 s->gain_factor=0.1+(s->gain_factor/12.0);
126 }else{
127 s->gain_factor=1;
130 return af_test_output(af,arg);
132 case AF_CONTROL_COMMAND_LINE:{
133 float g[10]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
134 int i,j;
135 sscanf((char*)arg,"%f:%f:%f:%f:%f:%f:%f:%f:%f:%f", &g[0], &g[1],
136 &g[2], &g[3], &g[4], &g[5], &g[6], &g[7], &g[8] ,&g[9]);
137 for(i=0;i<AF_NCH;i++){
138 for(j=0;j<KM;j++){
139 ((af_equalizer_t*)af->setup)->g[i][j] =
140 pow(10.0,clamp(g[j],G_MIN,G_MAX)/20.0)-1.0;
143 return AF_OK;
145 case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_SET:{
146 float* gain = ((af_control_ext_t*)arg)->arg;
147 int ch = ((af_control_ext_t*)arg)->ch;
148 int k;
149 if(ch >= AF_NCH || ch < 0)
150 return AF_ERROR;
152 for(k = 0 ; k<KM ; k++)
153 s->g[ch][k] = pow(10.0,clamp(gain[k],G_MIN,G_MAX)/20.0)-1.0;
155 return AF_OK;
157 case AF_CONTROL_EQUALIZER_GAIN | AF_CONTROL_GET:{
158 float* gain = ((af_control_ext_t*)arg)->arg;
159 int ch = ((af_control_ext_t*)arg)->ch;
160 int k;
161 if(ch >= AF_NCH || ch < 0)
162 return AF_ERROR;
164 for(k = 0 ; k<KM ; k++)
165 gain[k] = log10(s->g[ch][k]+1.0) * 20.0;
167 return AF_OK;
170 return AF_UNKNOWN;
173 // Deallocate memory
174 static void uninit(struct af_instance_s* af)
176 if(af->data)
177 free(af->data);
178 if(af->setup)
179 free(af->setup);
182 // Filter data through filter
183 static af_data_t* play(struct af_instance_s* af, af_data_t* data)
185 af_data_t* c = data; // Current working data
186 af_equalizer_t* s = (af_equalizer_t*)af->setup; // Setup
187 uint32_t ci = af->data->nch; // Index for channels
188 uint32_t nch = af->data->nch; // Number of channels
190 while(ci--){
191 float* g = s->g[ci]; // Gain factor
192 float* in = ((float*)c->audio)+ci;
193 float* out = ((float*)c->audio)+ci;
194 float* end = in + c->len/4; // Block loop end
196 while(in < end){
197 register int k = 0; // Frequency band index
198 register float yt = *in; // Current input sample
199 in+=nch;
201 // Run the filters
202 for(;k<s->K;k++){
203 // Pointer to circular buffer wq
204 register float* wq = s->wq[ci][k];
205 // Calculate output from AR part of current filter
206 register float w=yt*s->b[k][0] + wq[0]*s->a[k][0] + wq[1]*s->a[k][1];
207 // Calculate output form MA part of current filter
208 yt+=(w + wq[1]*s->b[k][1])*g[k];
209 // Update circular buffer
210 wq[1] = wq[0];
211 wq[0] = w;
213 // Calculate output
214 *out=yt*s->gain_factor;
215 out+=nch;
218 return c;
221 // Allocate memory and set function pointers
222 static int open(af_instance_t* af){
223 af->control=control;
224 af->uninit=uninit;
225 af->play=play;
226 af->mul.n=1;
227 af->mul.d=1;
228 af->data=calloc(1,sizeof(af_data_t));
229 af->setup=calloc(1,sizeof(af_equalizer_t));
230 if(af->data == NULL || af->setup == NULL)
231 return AF_ERROR;
232 return AF_OK;
235 // Description of this filter
236 af_info_t af_info_equalizer = {
237 "Equalizer audio filter",
238 "equalizer",
239 "Anders",
241 AF_FLAGS_NOT_REENTRANT,
242 open