Support for multiple editions in Matroska
[mplayer.git] / libfaad2 / ic_predict.c
blob8b9372ec537e35341014a9f1abd8dd561d43d42a
1 /*
2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
4 **
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
9 **
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
20 ** forbidden.
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
25 ** $Id: ic_predict.c,v 1.23 2004/09/04 14:56:28 menno Exp $
26 **/
28 #include "common.h"
29 #include "structs.h"
31 #ifdef MAIN_DEC
33 #include "syntax.h"
34 #include "ic_predict.h"
35 #include "pns.h"
38 static void flt_round(float32_t *pf)
40 int32_t flg;
41 uint32_t tmp, tmp1, tmp2;
43 tmp = *(uint32_t*)pf;
44 flg = tmp & (uint32_t)0x00008000;
45 tmp &= (uint32_t)0xffff0000;
46 tmp1 = tmp;
47 /* round 1/2 lsb toward infinity */
48 if (flg)
50 tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
51 tmp |= (uint32_t)0x00010000; /* insert 1 lsb */
52 tmp2 = tmp; /* add 1 lsb and elided one */
53 tmp &= (uint32_t)0xff800000; /* extract exponent and sign */
55 *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
56 } else {
57 *pf = *(float32_t*)&tmp;
61 static int16_t quant_pred(float32_t x)
63 int16_t q;
64 uint32_t *tmp = (uint32_t*)&x;
66 q = (int16_t)(*tmp>>16);
68 return q;
71 static float32_t inv_quant_pred(int16_t q)
73 float32_t x;
74 uint32_t *tmp = (uint32_t*)&x;
75 *tmp = ((uint32_t)q)<<16;
77 return x;
80 static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
82 uint16_t tmp;
83 int16_t i, j;
84 real_t dr1, predictedvalue;
85 real_t e0, e1;
86 real_t k1, k2;
88 real_t r[2];
89 real_t COR[2];
90 real_t VAR[2];
92 r[0] = inv_quant_pred(state->r[0]);
93 r[1] = inv_quant_pred(state->r[1]);
94 COR[0] = inv_quant_pred(state->COR[0]);
95 COR[1] = inv_quant_pred(state->COR[1]);
96 VAR[0] = inv_quant_pred(state->VAR[0]);
97 VAR[1] = inv_quant_pred(state->VAR[1]);
100 #if 1
101 tmp = state->VAR[0];
102 j = (tmp >> 7);
103 i = tmp & 0x7f;
104 if (j >= 128)
106 j -= 128;
107 k1 = COR[0] * exp_table[j] * mnt_table[i];
108 } else {
109 k1 = REAL_CONST(0);
111 #else
114 #define B 0.953125
115 real_t c = COR[0];
116 real_t v = VAR[0];
117 real_t tmp;
118 if (c == 0 || v <= 1)
120 k1 = 0;
121 } else {
122 tmp = B / v;
123 flt_round(&tmp);
124 k1 = c * tmp;
127 #endif
129 if (pred)
131 #if 1
132 tmp = state->VAR[1];
133 j = (tmp >> 7);
134 i = tmp & 0x7f;
135 if (j >= 128)
137 j -= 128;
138 k2 = COR[1] * exp_table[j] * mnt_table[i];
139 } else {
140 k2 = REAL_CONST(0);
142 #else
144 #define B 0.953125
145 real_t c = COR[1];
146 real_t v = VAR[1];
147 real_t tmp;
148 if (c == 0 || v <= 1)
150 k2 = 0;
151 } else {
152 tmp = B / v;
153 flt_round(&tmp);
154 k2 = c * tmp;
156 #endif
158 predictedvalue = k1*r[0] + k2*r[1];
159 flt_round(&predictedvalue);
160 *output = input + predictedvalue;
163 /* calculate new state data */
164 e0 = *output;
165 e1 = e0 - k1*r[0];
166 dr1 = k1*e0;
168 VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
169 COR[0] = ALPHA*COR[0] + r[0]*e0;
170 VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
171 COR[1] = ALPHA*COR[1] + r[1]*e1;
173 r[1] = A * (r[0]-dr1);
174 r[0] = A * e0;
176 state->r[0] = quant_pred(r[0]);
177 state->r[1] = quant_pred(r[1]);
178 state->COR[0] = quant_pred(COR[0]);
179 state->COR[1] = quant_pred(COR[1]);
180 state->VAR[0] = quant_pred(VAR[0]);
181 state->VAR[1] = quant_pred(VAR[1]);
184 static void reset_pred_state(pred_state *state)
186 state->r[0] = 0;
187 state->r[1] = 0;
188 state->COR[0] = 0;
189 state->COR[1] = 0;
190 state->VAR[0] = 0x3F80;
191 state->VAR[1] = 0x3F80;
194 void pns_reset_pred_state(ic_stream *ics, pred_state *state)
196 uint8_t sfb, g, b;
197 uint16_t i, offs, offs2;
199 /* prediction only for long blocks */
200 if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
201 return;
203 for (g = 0; g < ics->num_window_groups; g++)
205 for (b = 0; b < ics->window_group_length[g]; b++)
207 for (sfb = 0; sfb < ics->max_sfb; sfb++)
209 if (is_noise(ics, g, sfb))
211 offs = ics->swb_offset[sfb];
212 offs2 = ics->swb_offset[sfb+1];
214 for (i = offs; i < offs2; i++)
215 reset_pred_state(&state[i]);
222 void reset_all_predictors(pred_state *state, uint16_t frame_len)
224 uint16_t i;
226 for (i = 0; i < frame_len; i++)
227 reset_pred_state(&state[i]);
230 /* intra channel prediction */
231 void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
232 uint16_t frame_len, uint8_t sf_index)
234 uint8_t sfb;
235 uint16_t bin;
237 if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
239 reset_all_predictors(state, frame_len);
240 } else {
241 for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
243 uint16_t low = ics->swb_offset[sfb];
244 uint16_t high = ics->swb_offset[sfb+1];
246 for (bin = low; bin < high; bin++)
248 ic_predict(&state[bin], spec[bin], &spec[bin],
249 (ics->predictor_data_present && ics->pred.prediction_used[sfb]));
253 if (ics->predictor_data_present)
255 if (ics->pred.predictor_reset)
257 for (bin = ics->pred.predictor_reset_group_number - 1;
258 bin < frame_len; bin += 30)
260 reset_pred_state(&state[bin]);
267 #endif