m_config.c: cosmetics: Move functions to avoid forward declarations
[mplayer.git] / libmpcodecs / vf_zrmjpeg.c
blob7d504ad290ca636b7056eb643052a4eb3b44877c
1 /*
2 * This files includes a straightforward (to be) optimized JPEG encoder for
3 * the YUV422 format, based on mjpeg code from ffmpeg.
5 * For an excellent introduction to the JPEG format, see:
6 * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
8 * Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>
9 * - based on vd_lavc.c by A'rpi (C) 2002-2003
10 * - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
12 * This file is part of MPlayer.
14 * MPlayer is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * MPlayer is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
29 /**
30 * \file vf_zrmjpeg.c
32 * \brief Does mjpeg encoding as required by the zrmjpeg filter as well
33 * as by the zr video driver.
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <inttypes.h>
41 #include "config.h"
42 #include "mp_msg.h"
44 #include "img_format.h"
45 #include "mp_image.h"
46 #include "vd_ffmpeg.h"
47 #include "vf.h"
49 /* We need this #define because we need ../libavcodec/common.h to #define
50 * be2me_32, otherwise the linker will complain that it doesn't exist */
51 #define HAVE_AV_CONFIG_H
52 #include "libavcodec/avcodec.h"
53 #include "libavcodec/mjpegenc.h"
55 #undef malloc
56 #undef free
58 /* some convenient #define's, is this portable enough? */
59 /// Printout with vf_zrmjpeg: prefix at VERBOSE level
60 #define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
61 /// Printout with vf_zrmjpeg: prefix at ERROR level
62 #define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
63 /// Printout with vf_zrmjpeg: prefix at WARNING level
64 #define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
65 "vf_zrmjpeg: " __VA_ARGS__)
67 /// The get_pixels() routine to use. The real routine comes from dsputil
68 static void (*get_pixels)(DCTELEM *restrict block, const uint8_t *pixels, int line_size);
70 /* Begin excessive code duplication ************************************/
71 /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
73 /// copy of the table in mpegvideo.c
74 static const unsigned short aanscales[64] = {
75 /**< precomputed values scaled up by 14 bits */
76 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
77 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
78 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
79 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
80 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
81 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
82 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
83 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
86 /// Precompute DCT quantizing matrix
87 /**
88 * This routine will precompute the combined DCT matrix with qscale
89 * and DCT renorm needed by the MPEG encoder here. It is basically the
90 * same as the routine with the same name in mpegvideo.c, except for
91 * some coefficient changes. The matrix will be computed in two variations,
92 * depending on the DCT version used. The second used by the MMX version of DCT.
94 * \param s MpegEncContext pointer
95 * \param qmat[OUT] pointer to where the matrix is stored
96 * \param qmat16[OUT] pointer to where matrix for MMX is stored.
97 * This matrix is not permutated
98 * and second 64 entries are bias
99 * \param quant_matrix[IN] the quantizion matrix to use
100 * \param bias bias for the quantizer
101 * \param qmin minimum qscale value to set up for
102 * \param qmax maximum qscale value to set up for
104 * Only rows between qmin and qmax will be populated in the matrix.
105 * In this MJPEG encoder, only the value 8 for qscale is used.
107 static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
108 uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix,
109 int bias, int qmin, int qmax) {
110 int qscale;
112 for(qscale = qmin; qscale <= qmax; qscale++) {
113 int i;
114 if (s->dsp.fdct == ff_jpeg_fdct_islow) {
115 for (i = 0; i < 64; i++) {
116 const int j = s->dsp.idct_permutation[i];
117 /* 16 <= qscale * quant_matrix[i] <= 7905
118 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
119 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
120 * >= (1<<36)/249205026
121 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
122 qmat[qscale][i] = (int)((UINT64_C(1) <<
123 (QMAT_SHIFT-3))/
124 (qscale*quant_matrix[j]));
126 } else if (s->dsp.fdct == fdct_ifast) {
127 for (i = 0; i < 64; i++) {
128 const int j = s->dsp.idct_permutation[i];
129 /* 16 <= qscale * quant_matrix[i] <= 7905
130 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
131 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
132 * >= (1<<36)/249205026
133 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
134 qmat[qscale][i] = (int)((UINT64_C(1) <<
135 (QMAT_SHIFT + 11))/(aanscales[i]
136 *qscale * quant_matrix[j]));
138 } else {
139 for (i = 0; i < 64; i++) {
140 const int j = s->dsp.idct_permutation[i];
141 /* We can safely assume that 16 <= quant_matrix[i] <= 255
142 * So 16 <= qscale * quant_matrix[i] <= 7905
143 * so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
144 * so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
145 qmat[qscale][i] = (int)((UINT64_C(1) <<
146 QMAT_SHIFT_MMX) / (qscale
147 *quant_matrix[j]));
148 qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX)
149 /(qscale * quant_matrix[j]);
151 if (qmat16[qscale][0][i] == 0 ||
152 qmat16[qscale][0][i] == 128*256)
153 qmat16[qscale][0][i]=128*256-1;
154 qmat16[qscale][1][i]=ROUNDED_DIV(bias
155 <<(16-QUANT_BIAS_SHIFT),
156 qmat16[qscale][0][i]);
162 /// Emit the DC value into a MJPEG code sream
164 * This routine is only intended to be used from encode_block
166 * \param s pointer to MpegEncContext structure
167 * \param val the DC value to emit
168 * \param huff_size pointer to huffman code size array
169 * \param huff_code pointer to the code array corresponding to \a huff_size
171 * This routine is a clone of mjpeg_encode_dc
173 static inline void encode_dc(MpegEncContext *s, int val,
174 uint8_t *huff_size, uint16_t *huff_code) {
175 int mant, nbits;
177 if (val == 0) {
178 put_bits(&s->pb, huff_size[0], huff_code[0]);
179 } else {
180 mant = val;
181 if (val < 0) {
182 val = -val;
183 mant--;
185 nbits= av_log2_16bit(val) + 1;
186 put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
187 put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
191 /// Huffman encode and emit one DCT block into the MJPEG code stream
193 * \param s pointer to MpegEncContext structure
194 * \param block pointer to the DCT block to emit
195 * \param n
197 * This routine is a duplicate of encode_block in mjpeg.c
199 static void encode_block(MpegEncContext *s, DCTELEM *block, int n) {
200 int mant, nbits, code, i, j;
201 int component, dc, run, last_index, val;
202 MJpegContext *m = s->mjpeg_ctx;
203 uint8_t *huff_size_ac;
204 uint16_t *huff_code_ac;
206 /* DC coef */
207 component = (n <= 3 ? 0 : n - 4 + 1);
208 dc = block[0]; /* overflow is impossible */
209 val = dc - s->last_dc[component];
210 if (n < 4) {
211 encode_dc(s, val, m->huff_size_dc_luminance,
212 m->huff_code_dc_luminance);
213 huff_size_ac = m->huff_size_ac_luminance;
214 huff_code_ac = m->huff_code_ac_luminance;
215 } else {
216 encode_dc(s, val, m->huff_size_dc_chrominance,
217 m->huff_code_dc_chrominance);
218 huff_size_ac = m->huff_size_ac_chrominance;
219 huff_code_ac = m->huff_code_ac_chrominance;
221 s->last_dc[component] = dc;
223 /* AC coefs */
225 run = 0;
226 last_index = s->block_last_index[n];
227 for (i = 1; i <= last_index; i++) {
228 j = s->intra_scantable.permutated[i];
229 val = block[j];
230 if (val == 0) run++;
231 else {
232 while (run >= 16) {
233 put_bits(&s->pb, huff_size_ac[0xf0],
234 huff_code_ac[0xf0]);
235 run -= 16;
237 mant = val;
238 if (val < 0) {
239 val = -val;
240 mant--;
243 nbits= av_log2_16bit(val) + 1;
244 code = (run << 4) | nbits;
246 put_bits(&s->pb, huff_size_ac[code],
247 huff_code_ac[code]);
248 put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
249 run = 0;
253 /* output EOB only if not already 64 values */
254 if (last_index < 63 || run != 0)
255 put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
258 /// clip overflowing DCT coefficients
260 * If the computed DCT coefficients in a block overflow, this routine
261 * will go through them and clip them to be in the valid range.
263 * \param s pointer to MpegEncContext
264 * \param block pointer to DCT block to process
265 * \param last_index index of the last non-zero coefficient in block
267 * The max and min level, which are clipped to, are stored in
268 * s->min_qcoeff and s->max_qcoeff respectively.
270 static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block,
271 int last_index) {
272 int i;
273 const int maxlevel= s->max_qcoeff;
274 const int minlevel= s->min_qcoeff;
276 for (i = 0; i <= last_index; i++) {
277 const int j = s->intra_scantable.permutated[i];
278 int level = block[j];
280 if (level > maxlevel) level=maxlevel;
281 else if(level < minlevel) level=minlevel;
282 block[j]= level;
286 /* End excessive code duplication **************************************/
288 typedef struct {
289 struct MpegEncContext *s;
290 int cheap_upsample;
291 int bw;
292 int y_rs;
293 int u_rs;
294 int v_rs;
295 } jpeg_enc_t;
297 // Huffman encode and emit one MCU of MJPEG code
299 * \param j pointer to jpeg_enc_t structure
301 * This function huffman encodes one MCU, and emits the
302 * resulting bitstream into the MJPEG code that is currently worked on.
304 * this function is a reproduction of the one in mjpeg, it includes two
305 * changes, it allows for black&white encoding (it skips the U and V
306 * macroblocks and it outputs the huffman code for 'no change' (dc) and
307 * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
309 static av_always_inline void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
311 MJpegContext *m = j->s->mjpeg_ctx;
313 encode_block(j->s, j->s->block[0], 0);
314 encode_block(j->s, j->s->block[1], 1);
315 if (j->bw) {
316 /* U */
317 put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
318 m->huff_code_dc_chrominance[0]);
319 put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
320 m->huff_code_ac_chrominance[0]);
321 /* V */
322 put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
323 m->huff_code_dc_chrominance[0]);
324 put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
325 m->huff_code_ac_chrominance[0]);
326 } else {
327 /* we trick encode_block here so that it uses
328 * chrominance huffman tables instead of luminance ones
329 * (see the effect of second argument of encode_block) */
330 encode_block(j->s, j->s->block[2], 4);
331 encode_block(j->s, j->s->block[3], 5);
335 /// Fill one DCT MCU from planar storage
337 * This routine will convert one MCU from YUYV planar storage into 4
338 * DCT macro blocks, converting from 8-bit format in the planar
339 * storage to 16-bit format used in the DCT.
341 * \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
342 * \param x pixel x-coordinate for the first pixel
343 * \param y pixel y-coordinate for the first pixel
344 * \param y_data pointer to the Y plane
345 * \param u_data pointer to the U plane
346 * \param v_data pointer to the V plane
348 static av_always_inline void fill_block(jpeg_enc_t *j, int x, int y,
349 unsigned char *y_data, unsigned char *u_data,
350 unsigned char *v_data)
352 int i, k;
353 short int *dest;
354 unsigned char *source;
356 // The first Y, Y0
357 get_pixels(j->s->block[0], y*8*j->y_rs + 16*x + y_data, j->y_rs);
358 // The second Y, Y1
359 get_pixels(j->s->block[1], y*8*j->y_rs + 16*x + 8 + y_data, j->y_rs);
361 if (!j->bw && j->cheap_upsample) {
362 source = y * 4 * j->u_rs + 8*x + u_data;
363 dest = j->s->block[2];
364 for (i = 0; i < 4; i++) {
365 for (k = 0; k < 8; k++) {
366 dest[k] = source[k]; // First row
367 dest[k+8] = source[k]; // Duplicate to next row
370 dest += 16;
371 source += j->u_rs;
373 source = y * 4 * j->v_rs + 8*x + v_data;
374 dest = j->s->block[3];
375 for (i = 0; i < 4; i++) {
376 for (k = 0; k < 8; k++) {
377 dest[k] = source[k];
378 dest[k+8] = source[k];
380 dest += 16;
381 source += j->u_rs;
383 } else if (!j->bw && !j->cheap_upsample) {
384 // U
385 get_pixels(j->s->block[2], y*8*j->u_rs + 8*x + u_data, j->u_rs);
386 // V
387 get_pixels(j->s->block[3], y*8*j->v_rs + 8*x + v_data, j->v_rs);
392 * \brief initialize mjpeg encoder
394 * This routine is to set up the parameters and initialize the mjpeg encoder.
395 * It does all the initializations needed of lower level routines.
396 * The formats accepted by this encoder is YUV422P and YUV420
398 * \param w width in pixels of the image to encode, must be a multiple of 16
399 * \param h height in pixels of the image to encode, must be a multiple of 8
400 * \param y_rsize size of each plane row Y component
401 * \param y_rsize size of each plane row U component
402 * \param v_rsize size of each plane row V component
403 * \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
404 * when set to 1, the encoder will assume that there is only half th
405 * number of rows of chroma information, and every chroma row is
406 * duplicated.
407 * \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
408 * is best quality and 20 is the worst quality.
409 * \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
410 * In that case, the colour information is omitted, and actually the
411 * colour planes are not touched.
413 * \returns an appropriately set up jpeg_enc_t structure
415 * The actual plane buffer addreses are passed by jpeg_enc_frame().
417 * The encoder doesn't know anything about interlacing, the halve height
418 * needs to be passed and the double rowstride. Which field gets encoded
419 * is decided by what buffers are passed to mjpeg_encode_frame()
421 static jpeg_enc_t *jpeg_enc_init(int w, int h, int y_rsize,
422 int u_rsize, int v_rsize,
423 int cu, int q, int b) {
424 jpeg_enc_t *j;
425 int i = 0;
426 VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
427 w, h, y_rsize, u_rsize, v_rsize, cu, q, b);
429 j = av_mallocz(sizeof(jpeg_enc_t));
430 if (j == NULL) return NULL;
432 j->s = av_mallocz(sizeof(MpegEncContext));
433 if (j->s == NULL) {
434 av_free(j);
435 return NULL;
438 /* info on how to access the pixels */
439 j->y_rs = y_rsize;
440 j->u_rs = u_rsize;
441 j->v_rs = v_rsize;
443 j->s->width = w; // image width and height
444 j->s->height = h;
445 j->s->qscale = q; // Encoding quality
447 j->s->out_format = FMT_MJPEG;
448 j->s->intra_only = 1; // Generate only intra pictures for jpeg
449 j->s->encoding = 1; // Set mode to encode
450 j->s->pict_type = FF_I_TYPE;
451 j->s->y_dc_scale = 8;
452 j->s->c_dc_scale = 8;
455 * This sets up the MCU (Minimal Code Unit) number
456 * of appearances of the various component
457 * for the SOF0 table in the generated MJPEG.
458 * The values are not used for anything else.
459 * The current setup is simply YUV422, with two horizontal Y components
460 * for every UV component.
462 //FIXME j->s->mjpeg_write_tables = 1; // setup to write tables
463 j->s->mjpeg_vsample[0] = 1; // 1 appearance of Y vertically
464 j->s->mjpeg_vsample[1] = 1; // 1 appearance of U vertically
465 j->s->mjpeg_vsample[2] = 1; // 1 appearance of V vertically
466 j->s->mjpeg_hsample[0] = 2; // 2 appearances of Y horizontally
467 j->s->mjpeg_hsample[1] = 1; // 1 appearance of U horizontally
468 j->s->mjpeg_hsample[2] = 1; // 1 appearance of V horizontally
470 j->cheap_upsample = cu;
471 j->bw = b;
473 init_avcodec();
475 // Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
476 if (ff_mjpeg_encode_init(j->s) < 0) {
477 av_free(j->s);
478 av_free(j);
479 return NULL;
482 /* alloc bogus avctx to keep MPV_common_init from segfaulting */
483 j->s->avctx = avcodec_alloc_context();
484 if (j->s->avctx == NULL) {
485 av_free(j->s);
486 av_free(j);
487 return NULL;
490 // Set some a minimum amount of default values that are needed
491 // Indicates that we should generated normal MJPEG
492 j->s->avctx->codec_id = CODEC_ID_MJPEG;
493 // Which DCT method to use. AUTO will select the fastest one
494 j->s->avctx->dct_algo = FF_DCT_AUTO;
495 j->s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x
496 // indicate we 'decode' to jpeg 4:2:2
497 j->s->avctx->pix_fmt = PIX_FMT_YUVJ422P;
499 j->s->avctx->thread_count = 1;
501 /* make MPV_common_init allocate important buffers, like s->block
502 * Also initializes dsputil */
503 if (MPV_common_init(j->s) < 0) {
504 av_free(j->s);
505 av_free(j);
506 return NULL;
509 /* correct the value for sc->mb_height. MPV_common_init put other
510 * values there */
511 j->s->mb_height = j->s->height/8;
512 j->s->mb_intra = 1;
514 // Init q matrix
515 j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
516 for (i = 1; i < 64; i++)
517 j->s->intra_matrix[i] = av_clip_uint8(
518 (ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
520 // precompute matrix
521 convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
522 j->s->intra_matrix, j->s->intra_quant_bias, 8, 8);
524 /* Pick up the selection of the optimal get_pixels() routine
525 * to use, which was done in MPV_common_init() */
526 get_pixels = j->s->dsp.get_pixels;
528 return j;
532 * \brief mjpeg encode an image
534 * This routine will take a 3-plane YUV422 image and encoded it with MJPEG
535 * base line format, as suitable as input for the Zoran hardare MJPEG chips.
537 * It requires that the \a j parameter points the structure set up by the
538 * jpeg_enc_init() routine.
540 * \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
541 * \param y_data pointer to Y component plane, packed one byte/pixel
542 * \param u_data pointer to U component plane, packed one byte per every
543 * other pixel
544 * \param v_data pointer to V component plane, packed one byte per every
545 * other pixel
546 * \param bufr pointer to the buffer where the mjpeg encoded code is stored
548 * \returns the number of bytes stored into \a bufr
550 * If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
551 * otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
552 * variable will be reset to 0 by the routine.
554 static int jpeg_enc_frame(jpeg_enc_t *j, uint8_t *y_data,
555 uint8_t *u_data, uint8_t *v_data, uint8_t *bufr) {
556 int mb_x, mb_y, overflow;
557 /* initialize the buffer */
559 init_put_bits(&j->s->pb, bufr, 1024*256);
561 // Emit the mjpeg header blocks
562 ff_mjpeg_encode_picture_header(j->s);
564 j->s->header_bits = put_bits_count(&j->s->pb);
566 j->s->last_dc[0] = 128;
567 j->s->last_dc[1] = 128;
568 j->s->last_dc[2] = 128;
570 for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
571 for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
573 * Fill one DCT block (8x8 pixels) from
574 * 2 Y macroblocks and one U and one V
576 fill_block(j, mb_x, mb_y, y_data, u_data, v_data);
577 emms_c(); /* is this really needed? */
579 j->s->block_last_index[0] =
580 j->s->dct_quantize(j->s, j->s->block[0],
581 0, 8, &overflow);
582 if (overflow) clip_coeffs(j->s, j->s->block[0],
583 j->s->block_last_index[0]);
584 j->s->block_last_index[1] =
585 j->s->dct_quantize(j->s, j->s->block[1],
586 1, 8, &overflow);
587 if (overflow) clip_coeffs(j->s, j->s->block[1],
588 j->s->block_last_index[1]);
590 if (!j->bw) {
591 j->s->block_last_index[4] =
592 j->s->dct_quantize(j->s, j->s->block[2],
593 4, 8, &overflow);
594 if (overflow) clip_coeffs(j->s, j->s->block[2],
595 j->s->block_last_index[2]);
596 j->s->block_last_index[5] =
597 j->s->dct_quantize(j->s, j->s->block[3],
598 5, 8, &overflow);
599 if (overflow) clip_coeffs(j->s, j->s->block[3],
600 j->s->block_last_index[3]);
602 zr_mjpeg_encode_mb(j);
605 emms_c();
606 ff_mjpeg_encode_picture_trailer(j->s);
607 flush_put_bits(&j->s->pb);
609 //FIXME
610 //if (j->s->mjpeg_write_tables == 1)
611 // j->s->mjpeg_write_tables = 0;
613 return put_bits_ptr(&(j->s->pb)) - j->s->pb.buf;
616 /// the real uninit routine
618 * This is the real routine that does the uninit of the ZRMJPEG filter
620 * \param j pointer to jpeg_enc structure
622 static void jpeg_enc_uninit(jpeg_enc_t *j) {
623 ff_mjpeg_encode_close(j->s);
624 av_free(j->s);
625 av_free(j);
628 /// Private structure for ZRMJPEG filter
629 struct vf_priv_s {
630 jpeg_enc_t *j;
631 unsigned char buf[256*1024];
632 int bw, fd, hdec, vdec;
633 int fields;
634 int y_stride;
635 int c_stride;
636 int quality;
637 int maxwidth;
638 int maxheight;
641 /// vf CONFIGURE entry point for the ZRMJPEG filter
643 * \param vf video filter instance pointer
644 * \param width image source width in pixels
645 * \param height image source height in pixels
646 * \param d_width width of requested window, just a hint
647 * \param d_height height of requested window, just a hint
648 * \param flags vf filter flags
649 * \param outfmt
651 * \returns returns 0 on error
653 * This routine will make the necessary hardware-related decisions for
654 * the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
655 * then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
656 * arrange to dispatch to the config() entry pointer for the one
657 * selected.
659 static int config(struct vf_instance *vf, int width, int height, int d_width,
660 int d_height, unsigned int flags, unsigned int outfmt){
661 struct vf_priv_s *priv = vf->priv;
662 float aspect_decision;
663 int stretchx, stretchy, err = 0, maxstretchx = 4;
664 priv->fields = 1;
666 VERBOSE("config() called\n");
668 if (priv->j) {
669 VERBOSE("re-configuring, resetting JPEG encoder\n");
670 jpeg_enc_uninit(priv->j);
671 priv->j = NULL;
674 aspect_decision = ((float)d_width/(float)d_height)/
675 ((float)width/(float)height);
677 if (aspect_decision > 1.8 && aspect_decision < 2.2) {
678 VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width, priv->maxwidth);
679 if (2*width <= priv->maxwidth) {
680 d_width = 2*width;
681 d_height = height;
682 maxstretchx = 2;
683 } else {
684 WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
685 d_width = width;
686 d_height = height;
688 /* prestretch movie */
689 } else {
690 /* uncorrecting output for now */
691 d_width = width;
692 d_height = height;
694 /* make the scaling decision
695 * we are capable of stretching the image in the horizontal
696 * direction by factors 1, 2 and 4
697 * we can stretch the image in the vertical direction by a
698 * factor of 1 and 2 AND we must decide about interlacing */
699 if (d_width > priv->maxwidth/2 || height > priv->maxheight/2
700 || maxstretchx == 1) {
701 stretchx = 1;
702 stretchy = 1;
703 priv->fields = 2;
704 if (priv->vdec == 2) {
705 priv->fields = 1;
706 } else if (priv->vdec == 4) {
707 priv->fields = 1;
708 stretchy = 2;
710 if (priv->hdec > maxstretchx) {
711 if (priv->fd) {
712 WARNING("horizontal decimation too high, "
713 "changing to %d (use fd to keep"
714 " hdec=%d)\n",
715 maxstretchx, priv->hdec);
716 priv->hdec = maxstretchx;
719 stretchx = priv->hdec;
720 } else if (d_width > priv->maxwidth/4 ||
721 height > priv->maxheight/4 ||
722 maxstretchx == 2) {
723 stretchx = 2;
724 stretchy = 1;
725 priv->fields = 1;
726 if (priv->vdec == 2) {
727 stretchy = 2;
728 } else if (priv->vdec == 4) {
729 if (!priv->fd) {
730 WARNING("vertical decimation too high, "
731 "changing to 2 (use fd to keep "
732 "vdec=4)\n");
733 priv->vdec = 2;
735 stretchy = 2;
737 if (priv->hdec == 2) {
738 stretchx = 4;
739 } else if (priv->hdec == 4) {
740 if (priv->fd) {
741 WARNING("horizontal decimation too high, "
742 "changing to 2 (use fd to keep "
743 "hdec=4)\n");
744 priv->hdec = 2;
746 stretchx = 4;
748 } else {
749 /* output image is maximally stretched */
750 stretchx = 4;
751 stretchy = 2;
752 priv->fields = 1;
753 if (priv->vdec != 1 && !priv->fd) {
754 WARNING("vertical decimation too high, changing to 1 "
755 "(use fd to keep vdec=%d)\n",
756 priv->vdec);
757 priv->vdec = 1;
759 if (priv->hdec != 1 && !priv->fd) {
760 WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv->hdec);
761 priv->hdec = 1;
765 VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
766 width/priv->hdec, (priv->fields == 2) ? "(" : "",
767 height/(priv->vdec*priv->fields),
768 (priv->fields == 2) ? "x2)" : "",
769 (width/priv->hdec)*stretchx,
770 (height/(priv->vdec*priv->fields))*
771 stretchy*priv->fields);
774 if ((width/priv->hdec)*stretchx > priv->maxwidth ||
775 (height/(priv->vdec*priv->fields))*
776 stretchy*priv->fields > priv->maxheight) {
777 ERROR("output dimensions too large (%dx%d), max (%dx%d) "
778 "insert crop to fix\n",
779 (width/priv->hdec)*stretchx,
780 (height/(priv->vdec*priv->fields))*
781 stretchy*priv->fields,
782 priv->maxwidth, priv->maxheight);
783 err = 1;
786 if (width%(16*priv->hdec) != 0) {
787 ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
788 priv->hdec*16);
789 err = 1;
792 if (height%(8*priv->fields*priv->vdec) != 0) {
793 ERROR("height must be a multiple of 8*fields*vdec (%d),"
794 " use expand\n", priv->vdec*priv->fields*8);
795 err = 1;
798 if (err) return 0;
800 priv->y_stride = width;
801 priv->c_stride = width/2;
802 priv->j = jpeg_enc_init(width, height/priv->fields,
803 priv->fields*priv->y_stride,
804 priv->fields*priv->c_stride,
805 priv->fields*priv->c_stride,
806 1, priv->quality, priv->bw);
808 if (!priv->j) return 0;
809 return vf_next_config(vf, width, height, d_width, d_height, flags,
810 (priv->fields == 2) ? IMGFMT_ZRMJPEGIT : IMGFMT_ZRMJPEGNI);
813 /// put_image entrypoint for the ZRMJPEG vf filter
814 /***
815 * \param vf pointer to vf_instance
816 * \param mpi pointer to mp_image_t structure
817 * \param pts
819 static int put_image(struct vf_instance *vf, mp_image_t *mpi, double pts){
820 struct vf_priv_s *priv = vf->priv;
821 int size = 0;
822 int i;
823 mp_image_t* dmpi;
824 for (i = 0; i < priv->fields; i++)
825 size += jpeg_enc_frame(priv->j,
826 mpi->planes[0] + i*priv->y_stride,
827 mpi->planes[1] + i*priv->c_stride,
828 mpi->planes[2] + i*priv->c_stride,
829 priv->buf + size);
831 dmpi = vf_get_image(vf->next, IMGFMT_ZRMJPEGNI,
832 MP_IMGTYPE_EXPORT, 0, mpi->w, mpi->h);
833 dmpi->planes[0] = (uint8_t*)priv->buf;
834 dmpi->planes[1] = (uint8_t*)size;
835 return vf_next_put_image(vf,dmpi, pts);
838 /// query_format entrypoint for the ZRMJPEG vf filter
839 /***
840 * \param vf pointer to vf_instance
841 * \param fmt image format to query for
843 * \returns 0 if image format in fmt is not supported
845 * Given the image format specified by \a fmt, this routine is called
846 * to ask if the format is supported or not.
848 static int query_format(struct vf_instance *vf, unsigned int fmt){
849 VERBOSE("query_format() called\n");
851 switch (fmt) {
852 case IMGFMT_YV12:
853 case IMGFMT_YUY2:
854 /* strictly speaking the output format of
855 * this filter will be known after config(),
856 * but everything that supports IMGFMT_ZRMJPEGNI
857 * should also support all other IMGFMT_ZRMJPEG* */
858 return vf_next_query_format(vf, IMGFMT_ZRMJPEGNI);
861 return 0;
864 /// vf UNINIT entry point for the ZRMJPEG filter
866 * \param vf pointer to the vf instance structure
868 static void uninit(vf_instance_t *vf) {
869 struct vf_priv_s *priv = vf->priv;
870 VERBOSE("uninit() called\n");
871 if (priv->j) jpeg_enc_uninit(priv->j);
872 free(priv);
875 /// vf OPEN entry point for the ZRMJPEG filter
877 * \param vf pointer to the vf instance structure
878 * \param args the argument list string for the -vf zrmjpeg command
880 * \returns 0 for error, 1 for success
882 * This routine will do some basic initialization of local structures etc.,
883 * and then parse the command line arguments specific for the ZRMJPEG filter.
885 static int vf_open(vf_instance_t *vf, char *args){
886 struct vf_priv_s *priv;
887 VERBOSE("vf_open() called: args=\"%s\"\n", args);
889 vf->config = config;
890 vf->put_image = put_image;
891 vf->query_format = query_format;
892 vf->uninit = uninit;
894 priv = vf->priv = calloc(sizeof(*priv), 1);
895 if (!vf->priv) {
896 ERROR("out of memory error\n");
897 return 0;
900 /* maximum displayable size by zoran card, these defaults
901 * are for my own zoran card in PAL mode, these can be changed
902 * by filter options. But... in an ideal world these values would
903 * be queried from the vo device itself... */
904 priv->maxwidth = 768;
905 priv->maxheight = 576;
907 priv->quality = 2;
908 priv->hdec = 1;
909 priv->vdec = 1;
911 init_avcodec();
913 if (args) {
914 char *arg, *tmp, *ptr, junk;
915 int last = 0, input;
917 /* save arguments, to be able to safely modify them */
918 arg = strdup(args);
919 if (!arg) {
920 ERROR("out of memory, this is bad\n");
921 return 0;
924 tmp = ptr = arg;
925 do {
926 while (*tmp != ':' && *tmp) tmp++;
927 if (*tmp == ':') *tmp++ = '\0';
928 else last = 1;
929 VERBOSE("processing filter option \"%s\"\n", ptr);
930 /* These options deal with the maximum output
931 * resolution of the zoran card. These should
932 * be queried from the vo device, but it is currently
933 * too difficult, so the user should tell the filter */
934 if (!strncmp("maxheight=", ptr, 10)) {
935 if (sscanf(ptr+10, "%d%c", &input, &junk) != 1)
936 ERROR(
937 "error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
938 , ptr + 10);
939 else {
940 priv->maxheight = input;
941 VERBOSE("setting maxheight to %d\n",
942 priv->maxheight);
944 } else if (!strncmp("quality=", ptr, 8)) {
945 if (sscanf(ptr+8, "%d%c", &input, &junk) != 1)
946 ERROR(
947 "error parsing parameter to \"quality=\", \"%s\", ignoring\n"
948 , ptr + 8);
949 else if (input < 1 || input > 20)
950 ERROR(
951 "parameter to \"quality=\" out of range (1..20), %d\n", input);
952 else {
953 priv->quality = input;
954 VERBOSE("setting JPEG quality to %d\n",
955 priv->quality);
957 } else if (!strncmp("maxwidth=", ptr, 9)) {
958 if (sscanf(ptr+9, "%d%c", &input, &junk) != 1)
959 ERROR(
960 "error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
961 , ptr + 9);
962 else {
963 priv->maxwidth = input;
964 VERBOSE("setting maxwidth to %d\n",
965 priv->maxwidth);
967 } else if (!strncmp("hdec=", ptr, 5)) {
968 if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
969 ERROR(
970 "error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
971 , ptr + 9);
972 else if (input != 1 && input != 2 && input != 4)
973 ERROR(
974 "illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
975 input);
976 else {
977 priv->hdec = input;
978 VERBOSE(
979 "setting horizontal decimation to %d\n", priv->maxwidth);
981 } else if (!strncmp("vdec=", ptr, 5)) {
982 if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
983 ERROR(
984 "error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
985 , ptr + 9);
986 else if (input != 1 && input != 2 && input != 4)
987 ERROR(
988 "illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
989 input);
990 else {
991 priv->vdec = input;
992 VERBOSE(
993 "setting vertical decimation to %d\n", priv->maxwidth);
995 } else if (!strcasecmp("dc10+-PAL", ptr) ||
996 !strcasecmp("dc10-PAL", ptr)) {
997 priv->maxwidth = 768;
998 priv->maxheight = 576;
999 VERBOSE("setting DC10(+) PAL profile\n");
1000 } else if (!strcasecmp("fd", ptr)) {
1001 priv->fd = 1;
1002 VERBOSE("forcing decimation\n");
1003 } else if (!strcasecmp("nofd", ptr)) {
1004 priv->fd = 0;
1005 VERBOSE("decimate only if beautiful\n");
1006 } else if (!strcasecmp("bw", ptr)) {
1007 priv->bw = 1;
1008 VERBOSE("setting black and white encoding\n");
1009 } else if (!strcasecmp("color", ptr)) {
1010 priv->bw = 0;
1011 VERBOSE("setting color encoding\n");
1012 } else if (!strcasecmp("dc10+-NTSC", ptr) ||
1013 !strcasecmp("dc10-NTSC", ptr)) {
1014 priv->maxwidth = 640;
1015 priv->maxheight = 480;
1016 VERBOSE("setting DC10(+) NTSC profile\n");
1017 } else if (!strcasecmp("buz-PAL", ptr) ||
1018 !strcasecmp("lml33-PAL", ptr)) {
1019 priv->maxwidth = 720;
1020 priv->maxheight = 576;
1021 VERBOSE("setting buz/lml33 PAL profile\n");
1022 } else if (!strcasecmp("buz-NTSC", ptr) ||
1023 !strcasecmp("lml33-NTSC", ptr)) {
1024 priv->maxwidth = 720;
1025 priv->maxheight = 480;
1026 VERBOSE("setting buz/lml33 NTSC profile\n");
1027 } else {
1028 WARNING("ignoring unknown filter option "
1029 "\"%s\", or missing argument\n",
1030 ptr);
1032 ptr = tmp;
1033 } while (!last);
1035 free(arg);
1039 return 1;
1042 const vf_info_t vf_info_zrmjpeg = {
1043 "realtime zoran MJPEG encoding",
1044 "zrmjpeg",
1045 "Rik Snel",
1047 vf_open,
1048 NULL