handle the lavfpref demuxer in the same way as the lavf one
[mplayer.git] / libswscale / swscale.c
blobccdeae8185290df1c580b37615f7fe97ec1707b5
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 * the C code (not assembly, mmx, ...) of this file can be used
21 * under the LGPL license too
25 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27 {BGR,RGB}{1,4,8,15,16} support dithering
29 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31 x -> x
32 YUV9 -> YV12
33 YUV9/YV12 -> Y800
34 Y800 -> YUV9/YV12
35 BGR24 -> BGR32 & RGB24 -> RGB32
36 BGR32 -> BGR24 & RGB32 -> RGB24
37 BGR15 -> BGR16
41 tested special converters (most are tested actually, but I did not write it down ...)
42 YV12 -> BGR16
43 YV12 -> YV12
44 BGR15 -> BGR16
45 BGR16 -> BGR16
46 YVU9 -> YV12
48 untested special converters
49 YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50 YV12/I420 -> YV12/I420
51 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52 BGR24 -> BGR32 & RGB24 -> RGB32
53 BGR32 -> BGR24 & RGB32 -> RGB24
54 BGR24 -> YV12
57 #include <inttypes.h>
58 #include <string.h>
59 #include <math.h>
60 #include <stdio.h>
61 #include <unistd.h>
62 #include "config.h"
63 #include <assert.h>
64 #ifdef HAVE_SYS_MMAN_H
65 #include <sys/mman.h>
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
68 #endif
69 #endif
70 #include "swscale.h"
71 #include "swscale_internal.h"
72 #include "rgb2rgb.h"
73 #include "libavutil/x86_cpu.h"
74 #include "libavutil/bswap.h"
76 #undef MOVNTQ
77 #undef PAVGB
79 //#undef HAVE_MMX2
80 //#define HAVE_3DNOW
81 //#undef HAVE_MMX
82 //#undef ARCH_X86
83 //#define WORDS_BIGENDIAN
84 #define DITHER1XBPP
86 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
88 #define RET 0xC3 //near return opcode for X86
90 #ifdef M_PI
91 #define PI M_PI
92 #else
93 #define PI 3.14159265358979323846
94 #endif
96 #define isSupportedIn(x) ( \
97 (x)==PIX_FMT_YUV420P \
98 || (x)==PIX_FMT_YUVA420P \
99 || (x)==PIX_FMT_YUYV422 \
100 || (x)==PIX_FMT_UYVY422 \
101 || (x)==PIX_FMT_RGB32 \
102 || (x)==PIX_FMT_BGR24 \
103 || (x)==PIX_FMT_BGR565 \
104 || (x)==PIX_FMT_BGR555 \
105 || (x)==PIX_FMT_BGR32 \
106 || (x)==PIX_FMT_RGB24 \
107 || (x)==PIX_FMT_RGB565 \
108 || (x)==PIX_FMT_RGB555 \
109 || (x)==PIX_FMT_GRAY8 \
110 || (x)==PIX_FMT_YUV410P \
111 || (x)==PIX_FMT_GRAY16BE \
112 || (x)==PIX_FMT_GRAY16LE \
113 || (x)==PIX_FMT_YUV444P \
114 || (x)==PIX_FMT_YUV422P \
115 || (x)==PIX_FMT_YUV411P \
116 || (x)==PIX_FMT_PAL8 \
117 || (x)==PIX_FMT_BGR8 \
118 || (x)==PIX_FMT_RGB8 \
119 || (x)==PIX_FMT_BGR4_BYTE \
120 || (x)==PIX_FMT_RGB4_BYTE \
121 || (x)==PIX_FMT_YUV440P \
123 #define isSupportedOut(x) ( \
124 (x)==PIX_FMT_YUV420P \
125 || (x)==PIX_FMT_YUYV422 \
126 || (x)==PIX_FMT_UYVY422 \
127 || (x)==PIX_FMT_YUV444P \
128 || (x)==PIX_FMT_YUV422P \
129 || (x)==PIX_FMT_YUV411P \
130 || isRGB(x) \
131 || isBGR(x) \
132 || (x)==PIX_FMT_NV12 \
133 || (x)==PIX_FMT_NV21 \
134 || (x)==PIX_FMT_GRAY16BE \
135 || (x)==PIX_FMT_GRAY16LE \
136 || (x)==PIX_FMT_GRAY8 \
137 || (x)==PIX_FMT_YUV410P \
139 #define isPacked(x) ( \
140 (x)==PIX_FMT_PAL8 \
141 || (x)==PIX_FMT_YUYV422 \
142 || (x)==PIX_FMT_UYVY422 \
143 || isRGB(x) \
144 || isBGR(x) \
147 #define RGB2YUV_SHIFT 16
148 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
149 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
150 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
151 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
152 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
153 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
154 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
155 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
156 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
158 extern const int32_t Inverse_Table_6_9[8][4];
161 NOTES
162 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
164 TODO
165 more intelligent misalignment avoidance for the horizontal scaler
166 write special vertical cubic upscale version
167 Optimize C code (yv12 / minmax)
168 add support for packed pixel yuv input & output
169 add support for Y8 output
170 optimize bgr24 & bgr32
171 add BGR4 output support
172 write special BGR->BGR scaler
175 #if defined(ARCH_X86) && defined (CONFIG_GPL)
176 DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
177 DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
178 DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
179 DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
180 DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
181 DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
182 DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
183 DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
185 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
186 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
187 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
188 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
190 const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
191 0x0103010301030103LL,
192 0x0200020002000200LL,};
194 const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
195 0x0602060206020602LL,
196 0x0004000400040004LL,};
198 DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
199 DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
200 DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
201 DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
202 DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
203 DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
205 DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
206 DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
207 DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
209 #ifdef FAST_BGR2YV12
210 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
211 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
212 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
213 #else
214 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
215 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
216 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
217 #endif /* FAST_BGR2YV12 */
218 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
219 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
220 DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
221 #endif /* defined(ARCH_X86) */
223 // clipping helper table for C implementations:
224 static unsigned char clip_table[768];
226 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
228 extern const uint8_t dither_2x2_4[2][8];
229 extern const uint8_t dither_2x2_8[2][8];
230 extern const uint8_t dither_8x8_32[8][8];
231 extern const uint8_t dither_8x8_73[8][8];
232 extern const uint8_t dither_8x8_220[8][8];
234 const char *sws_format_name(enum PixelFormat format)
236 switch (format) {
237 case PIX_FMT_YUV420P:
238 return "yuv420p";
239 case PIX_FMT_YUVA420P:
240 return "yuva420p";
241 case PIX_FMT_YUYV422:
242 return "yuyv422";
243 case PIX_FMT_RGB24:
244 return "rgb24";
245 case PIX_FMT_BGR24:
246 return "bgr24";
247 case PIX_FMT_YUV422P:
248 return "yuv422p";
249 case PIX_FMT_YUV444P:
250 return "yuv444p";
251 case PIX_FMT_RGB32:
252 return "rgb32";
253 case PIX_FMT_YUV410P:
254 return "yuv410p";
255 case PIX_FMT_YUV411P:
256 return "yuv411p";
257 case PIX_FMT_RGB565:
258 return "rgb565";
259 case PIX_FMT_RGB555:
260 return "rgb555";
261 case PIX_FMT_GRAY16BE:
262 return "gray16be";
263 case PIX_FMT_GRAY16LE:
264 return "gray16le";
265 case PIX_FMT_GRAY8:
266 return "gray8";
267 case PIX_FMT_MONOWHITE:
268 return "mono white";
269 case PIX_FMT_MONOBLACK:
270 return "mono black";
271 case PIX_FMT_PAL8:
272 return "Palette";
273 case PIX_FMT_YUVJ420P:
274 return "yuvj420p";
275 case PIX_FMT_YUVJ422P:
276 return "yuvj422p";
277 case PIX_FMT_YUVJ444P:
278 return "yuvj444p";
279 case PIX_FMT_XVMC_MPEG2_MC:
280 return "xvmc_mpeg2_mc";
281 case PIX_FMT_XVMC_MPEG2_IDCT:
282 return "xvmc_mpeg2_idct";
283 case PIX_FMT_UYVY422:
284 return "uyvy422";
285 case PIX_FMT_UYYVYY411:
286 return "uyyvyy411";
287 case PIX_FMT_RGB32_1:
288 return "rgb32x";
289 case PIX_FMT_BGR32_1:
290 return "bgr32x";
291 case PIX_FMT_BGR32:
292 return "bgr32";
293 case PIX_FMT_BGR565:
294 return "bgr565";
295 case PIX_FMT_BGR555:
296 return "bgr555";
297 case PIX_FMT_BGR8:
298 return "bgr8";
299 case PIX_FMT_BGR4:
300 return "bgr4";
301 case PIX_FMT_BGR4_BYTE:
302 return "bgr4 byte";
303 case PIX_FMT_RGB8:
304 return "rgb8";
305 case PIX_FMT_RGB4:
306 return "rgb4";
307 case PIX_FMT_RGB4_BYTE:
308 return "rgb4 byte";
309 case PIX_FMT_NV12:
310 return "nv12";
311 case PIX_FMT_NV21:
312 return "nv21";
313 case PIX_FMT_YUV440P:
314 return "yuv440p";
315 default:
316 return "Unknown format";
320 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
321 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
322 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
324 //FIXME Optimize (just quickly writen not opti..)
325 int i;
326 for (i=0; i<dstW; i++)
328 int val=1<<18;
329 int j;
330 for (j=0; j<lumFilterSize; j++)
331 val += lumSrc[j][i] * lumFilter[j];
333 dest[i]= av_clip_uint8(val>>19);
336 if (uDest)
337 for (i=0; i<chrDstW; i++)
339 int u=1<<18;
340 int v=1<<18;
341 int j;
342 for (j=0; j<chrFilterSize; j++)
344 u += chrSrc[j][i] * chrFilter[j];
345 v += chrSrc[j][i + VOFW] * chrFilter[j];
348 uDest[i]= av_clip_uint8(u>>19);
349 vDest[i]= av_clip_uint8(v>>19);
353 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
354 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
355 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
357 //FIXME Optimize (just quickly writen not opti..)
358 int i;
359 for (i=0; i<dstW; i++)
361 int val=1<<18;
362 int j;
363 for (j=0; j<lumFilterSize; j++)
364 val += lumSrc[j][i] * lumFilter[j];
366 dest[i]= av_clip_uint8(val>>19);
369 if (!uDest)
370 return;
372 if (dstFormat == PIX_FMT_NV12)
373 for (i=0; i<chrDstW; i++)
375 int u=1<<18;
376 int v=1<<18;
377 int j;
378 for (j=0; j<chrFilterSize; j++)
380 u += chrSrc[j][i] * chrFilter[j];
381 v += chrSrc[j][i + VOFW] * chrFilter[j];
384 uDest[2*i]= av_clip_uint8(u>>19);
385 uDest[2*i+1]= av_clip_uint8(v>>19);
387 else
388 for (i=0; i<chrDstW; i++)
390 int u=1<<18;
391 int v=1<<18;
392 int j;
393 for (j=0; j<chrFilterSize; j++)
395 u += chrSrc[j][i] * chrFilter[j];
396 v += chrSrc[j][i + VOFW] * chrFilter[j];
399 uDest[2*i]= av_clip_uint8(v>>19);
400 uDest[2*i+1]= av_clip_uint8(u>>19);
404 #define YSCALE_YUV_2_PACKEDX_C(type) \
405 for (i=0; i<(dstW>>1); i++){\
406 int j;\
407 int Y1 = 1<<18;\
408 int Y2 = 1<<18;\
409 int U = 1<<18;\
410 int V = 1<<18;\
411 type av_unused *r, *b, *g;\
412 const int i2= 2*i;\
414 for (j=0; j<lumFilterSize; j++)\
416 Y1 += lumSrc[j][i2] * lumFilter[j];\
417 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
419 for (j=0; j<chrFilterSize; j++)\
421 U += chrSrc[j][i] * chrFilter[j];\
422 V += chrSrc[j][i+VOFW] * chrFilter[j];\
424 Y1>>=19;\
425 Y2>>=19;\
426 U >>=19;\
427 V >>=19;\
428 if ((Y1|Y2|U|V)&256)\
430 if (Y1>255) Y1=255; \
431 else if (Y1<0)Y1=0; \
432 if (Y2>255) Y2=255; \
433 else if (Y2<0)Y2=0; \
434 if (U>255) U=255; \
435 else if (U<0) U=0; \
436 if (V>255) V=255; \
437 else if (V<0) V=0; \
440 #define YSCALE_YUV_2_RGBX_C(type) \
441 YSCALE_YUV_2_PACKEDX_C(type) \
442 r = (type *)c->table_rV[V]; \
443 g = (type *)(c->table_gU[U] + c->table_gV[V]); \
444 b = (type *)c->table_bU[U]; \
446 #define YSCALE_YUV_2_PACKED2_C \
447 for (i=0; i<(dstW>>1); i++){ \
448 const int i2= 2*i; \
449 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
450 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
451 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
452 int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
454 #define YSCALE_YUV_2_RGB2_C(type) \
455 YSCALE_YUV_2_PACKED2_C\
456 type *r, *b, *g;\
457 r = (type *)c->table_rV[V];\
458 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
459 b = (type *)c->table_bU[U];\
461 #define YSCALE_YUV_2_PACKED1_C \
462 for (i=0; i<(dstW>>1); i++){\
463 const int i2= 2*i;\
464 int Y1= buf0[i2 ]>>7;\
465 int Y2= buf0[i2+1]>>7;\
466 int U= (uvbuf1[i ])>>7;\
467 int V= (uvbuf1[i+VOFW])>>7;\
469 #define YSCALE_YUV_2_RGB1_C(type) \
470 YSCALE_YUV_2_PACKED1_C\
471 type *r, *b, *g;\
472 r = (type *)c->table_rV[V];\
473 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
474 b = (type *)c->table_bU[U];\
476 #define YSCALE_YUV_2_PACKED1B_C \
477 for (i=0; i<(dstW>>1); i++){\
478 const int i2= 2*i;\
479 int Y1= buf0[i2 ]>>7;\
480 int Y2= buf0[i2+1]>>7;\
481 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
482 int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
484 #define YSCALE_YUV_2_RGB1B_C(type) \
485 YSCALE_YUV_2_PACKED1B_C\
486 type *r, *b, *g;\
487 r = (type *)c->table_rV[V];\
488 g = (type *)(c->table_gU[U] + c->table_gV[V]);\
489 b = (type *)c->table_bU[U];\
491 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
492 switch(c->dstFormat)\
494 case PIX_FMT_RGB32:\
495 case PIX_FMT_BGR32:\
496 func(uint32_t)\
497 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
498 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
500 break;\
501 case PIX_FMT_RGB24:\
502 func(uint8_t)\
503 ((uint8_t*)dest)[0]= r[Y1];\
504 ((uint8_t*)dest)[1]= g[Y1];\
505 ((uint8_t*)dest)[2]= b[Y1];\
506 ((uint8_t*)dest)[3]= r[Y2];\
507 ((uint8_t*)dest)[4]= g[Y2];\
508 ((uint8_t*)dest)[5]= b[Y2];\
509 dest+=6;\
511 break;\
512 case PIX_FMT_BGR24:\
513 func(uint8_t)\
514 ((uint8_t*)dest)[0]= b[Y1];\
515 ((uint8_t*)dest)[1]= g[Y1];\
516 ((uint8_t*)dest)[2]= r[Y1];\
517 ((uint8_t*)dest)[3]= b[Y2];\
518 ((uint8_t*)dest)[4]= g[Y2];\
519 ((uint8_t*)dest)[5]= r[Y2];\
520 dest+=6;\
522 break;\
523 case PIX_FMT_RGB565:\
524 case PIX_FMT_BGR565:\
526 const int dr1= dither_2x2_8[y&1 ][0];\
527 const int dg1= dither_2x2_4[y&1 ][0];\
528 const int db1= dither_2x2_8[(y&1)^1][0];\
529 const int dr2= dither_2x2_8[y&1 ][1];\
530 const int dg2= dither_2x2_4[y&1 ][1];\
531 const int db2= dither_2x2_8[(y&1)^1][1];\
532 func(uint16_t)\
533 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
534 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
537 break;\
538 case PIX_FMT_RGB555:\
539 case PIX_FMT_BGR555:\
541 const int dr1= dither_2x2_8[y&1 ][0];\
542 const int dg1= dither_2x2_8[y&1 ][1];\
543 const int db1= dither_2x2_8[(y&1)^1][0];\
544 const int dr2= dither_2x2_8[y&1 ][1];\
545 const int dg2= dither_2x2_8[y&1 ][0];\
546 const int db2= dither_2x2_8[(y&1)^1][1];\
547 func(uint16_t)\
548 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
549 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
552 break;\
553 case PIX_FMT_RGB8:\
554 case PIX_FMT_BGR8:\
556 const uint8_t * const d64= dither_8x8_73[y&7];\
557 const uint8_t * const d32= dither_8x8_32[y&7];\
558 func(uint8_t)\
559 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
560 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
563 break;\
564 case PIX_FMT_RGB4:\
565 case PIX_FMT_BGR4:\
567 const uint8_t * const d64= dither_8x8_73 [y&7];\
568 const uint8_t * const d128=dither_8x8_220[y&7];\
569 func(uint8_t)\
570 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
571 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
574 break;\
575 case PIX_FMT_RGB4_BYTE:\
576 case PIX_FMT_BGR4_BYTE:\
578 const uint8_t * const d64= dither_8x8_73 [y&7];\
579 const uint8_t * const d128=dither_8x8_220[y&7];\
580 func(uint8_t)\
581 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
582 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
585 break;\
586 case PIX_FMT_MONOBLACK:\
588 const uint8_t * const d128=dither_8x8_220[y&7];\
589 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
590 for (i=0; i<dstW-7; i+=8){\
591 int acc;\
592 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
593 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
594 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
595 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
596 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
597 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
598 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
599 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
600 ((uint8_t*)dest)[0]= acc;\
601 dest++;\
605 ((uint8_t*)dest)-= dstW>>4;\
607 int acc=0;\
608 int left=0;\
609 static int top[1024];\
610 static int last_new[1024][1024];\
611 static int last_in3[1024][1024];\
612 static int drift[1024][1024];\
613 int topLeft=0;\
614 int shift=0;\
615 int count=0;\
616 const uint8_t * const d128=dither_8x8_220[y&7];\
617 int error_new=0;\
618 int error_in3=0;\
619 int f=0;\
621 for (i=dstW>>1; i<dstW; i++){\
622 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
623 int in2 = (76309 * (in - 16) + 32768) >> 16;\
624 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
625 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
626 + (last_new[y][i] - in3)*f/256;\
627 int new= old> 128 ? 255 : 0;\
629 error_new+= FFABS(last_new[y][i] - new);\
630 error_in3+= FFABS(last_in3[y][i] - in3);\
631 f= error_new - error_in3*4;\
632 if (f<0) f=0;\
633 if (f>256) f=256;\
635 topLeft= top[i];\
636 left= top[i]= old - new;\
637 last_new[y][i]= new;\
638 last_in3[y][i]= in3;\
640 acc+= acc + (new&1);\
641 if ((i&7)==6){\
642 ((uint8_t*)dest)[0]= acc;\
643 ((uint8_t*)dest)++;\
649 break;\
650 case PIX_FMT_YUYV422:\
651 func2\
652 ((uint8_t*)dest)[2*i2+0]= Y1;\
653 ((uint8_t*)dest)[2*i2+1]= U;\
654 ((uint8_t*)dest)[2*i2+2]= Y2;\
655 ((uint8_t*)dest)[2*i2+3]= V;\
657 break;\
658 case PIX_FMT_UYVY422:\
659 func2\
660 ((uint8_t*)dest)[2*i2+0]= U;\
661 ((uint8_t*)dest)[2*i2+1]= Y1;\
662 ((uint8_t*)dest)[2*i2+2]= V;\
663 ((uint8_t*)dest)[2*i2+3]= Y2;\
665 break;\
669 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
670 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
671 uint8_t *dest, int dstW, int y)
673 int i;
674 switch(c->dstFormat)
676 case PIX_FMT_BGR32:
677 case PIX_FMT_RGB32:
678 YSCALE_YUV_2_RGBX_C(uint32_t)
679 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
680 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
682 break;
683 case PIX_FMT_RGB24:
684 YSCALE_YUV_2_RGBX_C(uint8_t)
685 ((uint8_t*)dest)[0]= r[Y1];
686 ((uint8_t*)dest)[1]= g[Y1];
687 ((uint8_t*)dest)[2]= b[Y1];
688 ((uint8_t*)dest)[3]= r[Y2];
689 ((uint8_t*)dest)[4]= g[Y2];
690 ((uint8_t*)dest)[5]= b[Y2];
691 dest+=6;
693 break;
694 case PIX_FMT_BGR24:
695 YSCALE_YUV_2_RGBX_C(uint8_t)
696 ((uint8_t*)dest)[0]= b[Y1];
697 ((uint8_t*)dest)[1]= g[Y1];
698 ((uint8_t*)dest)[2]= r[Y1];
699 ((uint8_t*)dest)[3]= b[Y2];
700 ((uint8_t*)dest)[4]= g[Y2];
701 ((uint8_t*)dest)[5]= r[Y2];
702 dest+=6;
704 break;
705 case PIX_FMT_RGB565:
706 case PIX_FMT_BGR565:
708 const int dr1= dither_2x2_8[y&1 ][0];
709 const int dg1= dither_2x2_4[y&1 ][0];
710 const int db1= dither_2x2_8[(y&1)^1][0];
711 const int dr2= dither_2x2_8[y&1 ][1];
712 const int dg2= dither_2x2_4[y&1 ][1];
713 const int db2= dither_2x2_8[(y&1)^1][1];
714 YSCALE_YUV_2_RGBX_C(uint16_t)
715 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
716 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
719 break;
720 case PIX_FMT_RGB555:
721 case PIX_FMT_BGR555:
723 const int dr1= dither_2x2_8[y&1 ][0];
724 const int dg1= dither_2x2_8[y&1 ][1];
725 const int db1= dither_2x2_8[(y&1)^1][0];
726 const int dr2= dither_2x2_8[y&1 ][1];
727 const int dg2= dither_2x2_8[y&1 ][0];
728 const int db2= dither_2x2_8[(y&1)^1][1];
729 YSCALE_YUV_2_RGBX_C(uint16_t)
730 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
731 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
734 break;
735 case PIX_FMT_RGB8:
736 case PIX_FMT_BGR8:
738 const uint8_t * const d64= dither_8x8_73[y&7];
739 const uint8_t * const d32= dither_8x8_32[y&7];
740 YSCALE_YUV_2_RGBX_C(uint8_t)
741 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
742 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
745 break;
746 case PIX_FMT_RGB4:
747 case PIX_FMT_BGR4:
749 const uint8_t * const d64= dither_8x8_73 [y&7];
750 const uint8_t * const d128=dither_8x8_220[y&7];
751 YSCALE_YUV_2_RGBX_C(uint8_t)
752 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
753 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
756 break;
757 case PIX_FMT_RGB4_BYTE:
758 case PIX_FMT_BGR4_BYTE:
760 const uint8_t * const d64= dither_8x8_73 [y&7];
761 const uint8_t * const d128=dither_8x8_220[y&7];
762 YSCALE_YUV_2_RGBX_C(uint8_t)
763 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
764 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
767 break;
768 case PIX_FMT_MONOBLACK:
770 const uint8_t * const d128=dither_8x8_220[y&7];
771 uint8_t *g= c->table_gU[128] + c->table_gV[128];
772 int acc=0;
773 for (i=0; i<dstW-1; i+=2){
774 int j;
775 int Y1=1<<18;
776 int Y2=1<<18;
778 for (j=0; j<lumFilterSize; j++)
780 Y1 += lumSrc[j][i] * lumFilter[j];
781 Y2 += lumSrc[j][i+1] * lumFilter[j];
783 Y1>>=19;
784 Y2>>=19;
785 if ((Y1|Y2)&256)
787 if (Y1>255) Y1=255;
788 else if (Y1<0)Y1=0;
789 if (Y2>255) Y2=255;
790 else if (Y2<0)Y2=0;
792 acc+= acc + g[Y1+d128[(i+0)&7]];
793 acc+= acc + g[Y2+d128[(i+1)&7]];
794 if ((i&7)==6){
795 ((uint8_t*)dest)[0]= acc;
796 dest++;
800 break;
801 case PIX_FMT_YUYV422:
802 YSCALE_YUV_2_PACKEDX_C(void)
803 ((uint8_t*)dest)[2*i2+0]= Y1;
804 ((uint8_t*)dest)[2*i2+1]= U;
805 ((uint8_t*)dest)[2*i2+2]= Y2;
806 ((uint8_t*)dest)[2*i2+3]= V;
808 break;
809 case PIX_FMT_UYVY422:
810 YSCALE_YUV_2_PACKEDX_C(void)
811 ((uint8_t*)dest)[2*i2+0]= U;
812 ((uint8_t*)dest)[2*i2+1]= Y1;
813 ((uint8_t*)dest)[2*i2+2]= V;
814 ((uint8_t*)dest)[2*i2+3]= Y2;
816 break;
821 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
822 //Plain C versions
823 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
824 #define COMPILE_C
825 #endif
827 #ifdef ARCH_POWERPC
828 #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
829 #define COMPILE_ALTIVEC
830 #endif //HAVE_ALTIVEC
831 #endif //ARCH_POWERPC
833 #if defined(ARCH_X86)
835 #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
836 #define COMPILE_MMX
837 #endif
839 #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
840 #define COMPILE_MMX2
841 #endif
843 #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
844 #define COMPILE_3DNOW
845 #endif
846 #endif //ARCH_X86 || ARCH_X86_64
848 #undef HAVE_MMX
849 #undef HAVE_MMX2
850 #undef HAVE_3DNOW
852 #ifdef COMPILE_C
853 #undef HAVE_MMX
854 #undef HAVE_MMX2
855 #undef HAVE_3DNOW
856 #undef HAVE_ALTIVEC
857 #define RENAME(a) a ## _C
858 #include "swscale_template.c"
859 #endif
861 #ifdef COMPILE_ALTIVEC
862 #undef RENAME
863 #define HAVE_ALTIVEC
864 #define RENAME(a) a ## _altivec
865 #include "swscale_template.c"
866 #endif
868 #if defined(ARCH_X86)
870 //X86 versions
872 #undef RENAME
873 #undef HAVE_MMX
874 #undef HAVE_MMX2
875 #undef HAVE_3DNOW
876 #define ARCH_X86
877 #define RENAME(a) a ## _X86
878 #include "swscale_template.c"
880 //MMX versions
881 #ifdef COMPILE_MMX
882 #undef RENAME
883 #define HAVE_MMX
884 #undef HAVE_MMX2
885 #undef HAVE_3DNOW
886 #define RENAME(a) a ## _MMX
887 #include "swscale_template.c"
888 #endif
890 //MMX2 versions
891 #ifdef COMPILE_MMX2
892 #undef RENAME
893 #define HAVE_MMX
894 #define HAVE_MMX2
895 #undef HAVE_3DNOW
896 #define RENAME(a) a ## _MMX2
897 #include "swscale_template.c"
898 #endif
900 //3DNOW versions
901 #ifdef COMPILE_3DNOW
902 #undef RENAME
903 #define HAVE_MMX
904 #undef HAVE_MMX2
905 #define HAVE_3DNOW
906 #define RENAME(a) a ## _3DNow
907 #include "swscale_template.c"
908 #endif
910 #endif //ARCH_X86 || ARCH_X86_64
912 // minor note: the HAVE_xyz is messed up after that line so don't use it
914 static double getSplineCoeff(double a, double b, double c, double d, double dist)
916 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
917 if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
918 else return getSplineCoeff( 0.0,
919 b+ 2.0*c + 3.0*d,
920 c + 3.0*d,
921 -b- 3.0*c - 6.0*d,
922 dist-1.0);
925 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
926 int srcW, int dstW, int filterAlign, int one, int flags,
927 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
929 int i;
930 int filterSize;
931 int filter2Size;
932 int minFilterSize;
933 double *filter=NULL;
934 double *filter2=NULL;
935 int ret= -1;
936 #if defined(ARCH_X86)
937 if (flags & SWS_CPU_CAPS_MMX)
938 asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
939 #endif
941 // Note the +1 is for the MMXscaler which reads over the end
942 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
944 if (FFABS(xInc - 0x10000) <10) // unscaled
946 int i;
947 filterSize= 1;
948 filter= av_malloc(dstW*sizeof(double)*filterSize);
949 for (i=0; i<dstW*filterSize; i++) filter[i]=0;
951 for (i=0; i<dstW; i++)
953 filter[i*filterSize]=1;
954 (*filterPos)[i]=i;
958 else if (flags&SWS_POINT) // lame looking point sampling mode
960 int i;
961 int xDstInSrc;
962 filterSize= 1;
963 filter= av_malloc(dstW*sizeof(double)*filterSize);
965 xDstInSrc= xInc/2 - 0x8000;
966 for (i=0; i<dstW; i++)
968 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
970 (*filterPos)[i]= xx;
971 filter[i]= 1.0;
972 xDstInSrc+= xInc;
975 else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
977 int i;
978 int xDstInSrc;
979 if (flags&SWS_BICUBIC) filterSize= 4;
980 else if (flags&SWS_X ) filterSize= 4;
981 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
982 filter= av_malloc(dstW*sizeof(double)*filterSize);
984 xDstInSrc= xInc/2 - 0x8000;
985 for (i=0; i<dstW; i++)
987 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
988 int j;
990 (*filterPos)[i]= xx;
991 //Bilinear upscale / linear interpolate / Area averaging
992 for (j=0; j<filterSize; j++)
994 double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
995 double coeff= 1.0 - d;
996 if (coeff<0) coeff=0;
997 filter[i*filterSize + j]= coeff;
998 xx++;
1000 xDstInSrc+= xInc;
1003 else
1005 double xDstInSrc;
1006 double sizeFactor, filterSizeInSrc;
1007 const double xInc1= (double)xInc / (double)(1<<16);
1009 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
1010 else if (flags&SWS_X) sizeFactor= 8.0;
1011 else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1012 else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
1013 else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1014 else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
1015 else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
1016 else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
1017 else {
1018 sizeFactor= 0.0; //GCC warning killer
1019 assert(0);
1022 if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
1023 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1025 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1026 if (filterSize > srcW-2) filterSize=srcW-2;
1028 filter= av_malloc(dstW*sizeof(double)*filterSize);
1030 xDstInSrc= xInc1 / 2.0 - 0.5;
1031 for (i=0; i<dstW; i++)
1033 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1034 int j;
1035 (*filterPos)[i]= xx;
1036 for (j=0; j<filterSize; j++)
1038 double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1039 double coeff;
1040 if (flags & SWS_BICUBIC)
1042 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1043 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1045 if (d<1.0)
1046 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1047 else if (d<2.0)
1048 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1049 else
1050 coeff=0.0;
1052 /* else if (flags & SWS_X)
1054 double p= param ? param*0.01 : 0.3;
1055 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1056 coeff*= pow(2.0, - p*d*d);
1058 else if (flags & SWS_X)
1060 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1062 if (d<1.0)
1063 coeff = cos(d*PI);
1064 else
1065 coeff=-1.0;
1066 if (coeff<0.0) coeff= -pow(-coeff, A);
1067 else coeff= pow( coeff, A);
1068 coeff= coeff*0.5 + 0.5;
1070 else if (flags & SWS_AREA)
1072 double srcPixelSize= 1.0/xInc1;
1073 if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
1074 else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1075 else coeff=0.0;
1077 else if (flags & SWS_GAUSS)
1079 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1080 coeff = pow(2.0, - p*d*d);
1082 else if (flags & SWS_SINC)
1084 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1086 else if (flags & SWS_LANCZOS)
1088 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1089 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1090 if (d>p) coeff=0;
1092 else if (flags & SWS_BILINEAR)
1094 coeff= 1.0 - d;
1095 if (coeff<0) coeff=0;
1097 else if (flags & SWS_SPLINE)
1099 double p=-2.196152422706632;
1100 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1102 else {
1103 coeff= 0.0; //GCC warning killer
1104 assert(0);
1107 filter[i*filterSize + j]= coeff;
1108 xx++;
1110 xDstInSrc+= xInc1;
1114 /* apply src & dst Filter to filter -> filter2
1115 av_free(filter);
1117 assert(filterSize>0);
1118 filter2Size= filterSize;
1119 if (srcFilter) filter2Size+= srcFilter->length - 1;
1120 if (dstFilter) filter2Size+= dstFilter->length - 1;
1121 assert(filter2Size>0);
1122 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1124 for (i=0; i<dstW; i++)
1126 int j;
1127 SwsVector scaleFilter;
1128 SwsVector *outVec;
1130 scaleFilter.coeff= filter + i*filterSize;
1131 scaleFilter.length= filterSize;
1133 if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1134 else outVec= &scaleFilter;
1136 assert(outVec->length == filter2Size);
1137 //FIXME dstFilter
1139 for (j=0; j<outVec->length; j++)
1141 filter2[i*filter2Size + j]= outVec->coeff[j];
1144 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1146 if (outVec != &scaleFilter) sws_freeVec(outVec);
1148 av_freep(&filter);
1150 /* try to reduce the filter-size (step1 find size and shift left) */
1151 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1152 minFilterSize= 0;
1153 for (i=dstW-1; i>=0; i--)
1155 int min= filter2Size;
1156 int j;
1157 double cutOff=0.0;
1159 /* get rid off near zero elements on the left by shifting left */
1160 for (j=0; j<filter2Size; j++)
1162 int k;
1163 cutOff += FFABS(filter2[i*filter2Size]);
1165 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1167 /* preserve monotonicity because the core can't handle the filter otherwise */
1168 if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1170 // Move filter coeffs left
1171 for (k=1; k<filter2Size; k++)
1172 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1173 filter2[i*filter2Size + k - 1]= 0.0;
1174 (*filterPos)[i]++;
1177 cutOff=0.0;
1178 /* count near zeros on the right */
1179 for (j=filter2Size-1; j>0; j--)
1181 cutOff += FFABS(filter2[i*filter2Size + j]);
1183 if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1184 min--;
1187 if (min>minFilterSize) minFilterSize= min;
1190 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1191 // we can handle the special case 4,
1192 // so we don't want to go to the full 8
1193 if (minFilterSize < 5)
1194 filterAlign = 4;
1196 // we really don't want to waste our time
1197 // doing useless computation, so fall-back on
1198 // the scalar C code for very small filter.
1199 // vectorizing is worth it only if you have
1200 // decent-sized vector.
1201 if (minFilterSize < 3)
1202 filterAlign = 1;
1205 if (flags & SWS_CPU_CAPS_MMX) {
1206 // special case for unscaled vertical filtering
1207 if (minFilterSize == 1 && filterAlign == 2)
1208 filterAlign= 1;
1211 assert(minFilterSize > 0);
1212 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1213 assert(filterSize > 0);
1214 filter= av_malloc(filterSize*dstW*sizeof(double));
1215 if (filterSize >= MAX_FILTER_SIZE || !filter)
1216 goto error;
1217 *outFilterSize= filterSize;
1219 if (flags&SWS_PRINT_INFO)
1220 av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1221 /* try to reduce the filter-size (step2 reduce it) */
1222 for (i=0; i<dstW; i++)
1224 int j;
1226 for (j=0; j<filterSize; j++)
1228 if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
1229 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1234 //FIXME try to align filterpos if possible
1236 //fix borders
1237 for (i=0; i<dstW; i++)
1239 int j;
1240 if ((*filterPos)[i] < 0)
1242 // Move filter coeffs left to compensate for filterPos
1243 for (j=1; j<filterSize; j++)
1245 int left= FFMAX(j + (*filterPos)[i], 0);
1246 filter[i*filterSize + left] += filter[i*filterSize + j];
1247 filter[i*filterSize + j]=0;
1249 (*filterPos)[i]= 0;
1252 if ((*filterPos)[i] + filterSize > srcW)
1254 int shift= (*filterPos)[i] + filterSize - srcW;
1255 // Move filter coeffs right to compensate for filterPos
1256 for (j=filterSize-2; j>=0; j--)
1258 int right= FFMIN(j + shift, filterSize-1);
1259 filter[i*filterSize +right] += filter[i*filterSize +j];
1260 filter[i*filterSize +j]=0;
1262 (*filterPos)[i]= srcW - filterSize;
1266 // Note the +1 is for the MMXscaler which reads over the end
1267 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1268 *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1270 /* Normalize & Store in outFilter */
1271 for (i=0; i<dstW; i++)
1273 int j;
1274 double error=0;
1275 double sum=0;
1276 double scale= one;
1278 for (j=0; j<filterSize; j++)
1280 sum+= filter[i*filterSize + j];
1282 scale/= sum;
1283 for (j=0; j<*outFilterSize; j++)
1285 double v= filter[i*filterSize + j]*scale + error;
1286 int intV= floor(v + 0.5);
1287 (*outFilter)[i*(*outFilterSize) + j]= intV;
1288 error = v - intV;
1292 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1293 for (i=0; i<*outFilterSize; i++)
1295 int j= dstW*(*outFilterSize);
1296 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1299 ret=0;
1300 error:
1301 av_free(filter);
1302 av_free(filter2);
1303 return ret;
1306 #ifdef COMPILE_MMX2
1307 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1309 uint8_t *fragmentA;
1310 long imm8OfPShufW1A;
1311 long imm8OfPShufW2A;
1312 long fragmentLengthA;
1313 uint8_t *fragmentB;
1314 long imm8OfPShufW1B;
1315 long imm8OfPShufW2B;
1316 long fragmentLengthB;
1317 int fragmentPos;
1319 int xpos, i;
1321 // create an optimized horizontal scaling routine
1323 //code fragment
1325 asm volatile(
1326 "jmp 9f \n\t"
1327 // Begin
1328 "0: \n\t"
1329 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1330 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1331 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
1332 "punpcklbw %%mm7, %%mm1 \n\t"
1333 "punpcklbw %%mm7, %%mm0 \n\t"
1334 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1335 "1: \n\t"
1336 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1337 "2: \n\t"
1338 "psubw %%mm1, %%mm0 \n\t"
1339 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1340 "pmullw %%mm3, %%mm0 \n\t"
1341 "psllw $7, %%mm1 \n\t"
1342 "paddw %%mm1, %%mm0 \n\t"
1344 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1346 "add $8, %%"REG_a" \n\t"
1347 // End
1348 "9: \n\t"
1349 // "int $3 \n\t"
1350 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1351 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1352 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1353 "dec %1 \n\t"
1354 "dec %2 \n\t"
1355 "sub %0, %1 \n\t"
1356 "sub %0, %2 \n\t"
1357 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1358 "sub %0, %3 \n\t"
1361 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1362 "=r" (fragmentLengthA)
1365 asm volatile(
1366 "jmp 9f \n\t"
1367 // Begin
1368 "0: \n\t"
1369 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
1370 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
1371 "punpcklbw %%mm7, %%mm0 \n\t"
1372 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1373 "1: \n\t"
1374 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1375 "2: \n\t"
1376 "psubw %%mm1, %%mm0 \n\t"
1377 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
1378 "pmullw %%mm3, %%mm0 \n\t"
1379 "psllw $7, %%mm1 \n\t"
1380 "paddw %%mm1, %%mm0 \n\t"
1382 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1384 "add $8, %%"REG_a" \n\t"
1385 // End
1386 "9: \n\t"
1387 // "int $3 \n\t"
1388 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
1389 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
1390 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
1391 "dec %1 \n\t"
1392 "dec %2 \n\t"
1393 "sub %0, %1 \n\t"
1394 "sub %0, %2 \n\t"
1395 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
1396 "sub %0, %3 \n\t"
1399 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1400 "=r" (fragmentLengthB)
1403 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1404 fragmentPos=0;
1406 for (i=0; i<dstW/numSplits; i++)
1408 int xx=xpos>>16;
1410 if ((i&3) == 0)
1412 int a=0;
1413 int b=((xpos+xInc)>>16) - xx;
1414 int c=((xpos+xInc*2)>>16) - xx;
1415 int d=((xpos+xInc*3)>>16) - xx;
1417 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1418 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1419 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1420 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1421 filterPos[i/2]= xx;
1423 if (d+1<4)
1425 int maxShift= 3-(d+1);
1426 int shift=0;
1428 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1430 funnyCode[fragmentPos + imm8OfPShufW1B]=
1431 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1432 funnyCode[fragmentPos + imm8OfPShufW2B]=
1433 a | (b<<2) | (c<<4) | (d<<6);
1435 if (i+3>=dstW) shift=maxShift; //avoid overread
1436 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1438 if (shift && i>=shift)
1440 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1441 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1442 filterPos[i/2]-=shift;
1445 fragmentPos+= fragmentLengthB;
1447 else
1449 int maxShift= 3-d;
1450 int shift=0;
1452 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1454 funnyCode[fragmentPos + imm8OfPShufW1A]=
1455 funnyCode[fragmentPos + imm8OfPShufW2A]=
1456 a | (b<<2) | (c<<4) | (d<<6);
1458 if (i+4>=dstW) shift=maxShift; //avoid overread
1459 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1461 if (shift && i>=shift)
1463 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1464 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1465 filterPos[i/2]-=shift;
1468 fragmentPos+= fragmentLengthA;
1471 funnyCode[fragmentPos]= RET;
1473 xpos+=xInc;
1475 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1477 #endif /* COMPILE_MMX2 */
1479 static void globalInit(void){
1480 // generating tables:
1481 int i;
1482 for (i=0; i<768; i++){
1483 int c= av_clip_uint8(i-256);
1484 clip_table[i]=c;
1488 static SwsFunc getSwsFunc(int flags){
1490 #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1491 #if defined(ARCH_X86)
1492 // ordered per speed fastest first
1493 if (flags & SWS_CPU_CAPS_MMX2)
1494 return swScale_MMX2;
1495 else if (flags & SWS_CPU_CAPS_3DNOW)
1496 return swScale_3DNow;
1497 else if (flags & SWS_CPU_CAPS_MMX)
1498 return swScale_MMX;
1499 else
1500 return swScale_C;
1502 #else
1503 #ifdef ARCH_POWERPC
1504 if (flags & SWS_CPU_CAPS_ALTIVEC)
1505 return swScale_altivec;
1506 else
1507 return swScale_C;
1508 #endif
1509 return swScale_C;
1510 #endif /* defined(ARCH_X86) */
1511 #else //RUNTIME_CPUDETECT
1512 #ifdef HAVE_MMX2
1513 return swScale_MMX2;
1514 #elif defined (HAVE_3DNOW)
1515 return swScale_3DNow;
1516 #elif defined (HAVE_MMX)
1517 return swScale_MMX;
1518 #elif defined (HAVE_ALTIVEC)
1519 return swScale_altivec;
1520 #else
1521 return swScale_C;
1522 #endif
1523 #endif //!RUNTIME_CPUDETECT
1526 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1527 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1528 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1529 /* Copy Y plane */
1530 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1531 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1532 else
1534 int i;
1535 uint8_t *srcPtr= src[0];
1536 uint8_t *dstPtr= dst;
1537 for (i=0; i<srcSliceH; i++)
1539 memcpy(dstPtr, srcPtr, c->srcW);
1540 srcPtr+= srcStride[0];
1541 dstPtr+= dstStride[0];
1544 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1545 if (c->dstFormat == PIX_FMT_NV12)
1546 interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
1547 else
1548 interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
1550 return srcSliceH;
1553 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1554 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1555 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1557 yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1559 return srcSliceH;
1562 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1563 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1564 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1566 yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1568 return srcSliceH;
1571 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1572 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1573 int srcSliceH, uint8_t* dst[], int dstStride[]){
1574 const int srcFormat= c->srcFormat;
1575 const int dstFormat= c->dstFormat;
1576 const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1577 const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1578 const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1579 const int dstId= fmt_depth(dstFormat) >> 2;
1580 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1582 /* BGR -> BGR */
1583 if ( (isBGR(srcFormat) && isBGR(dstFormat))
1584 || (isRGB(srcFormat) && isRGB(dstFormat))){
1585 switch(srcId | (dstId<<4)){
1586 case 0x34: conv= rgb16to15; break;
1587 case 0x36: conv= rgb24to15; break;
1588 case 0x38: conv= rgb32to15; break;
1589 case 0x43: conv= rgb15to16; break;
1590 case 0x46: conv= rgb24to16; break;
1591 case 0x48: conv= rgb32to16; break;
1592 case 0x63: conv= rgb15to24; break;
1593 case 0x64: conv= rgb16to24; break;
1594 case 0x68: conv= rgb32to24; break;
1595 case 0x83: conv= rgb15to32; break;
1596 case 0x84: conv= rgb16to32; break;
1597 case 0x86: conv= rgb24to32; break;
1598 default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1599 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1601 }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
1602 || (isRGB(srcFormat) && isBGR(dstFormat))){
1603 switch(srcId | (dstId<<4)){
1604 case 0x33: conv= rgb15tobgr15; break;
1605 case 0x34: conv= rgb16tobgr15; break;
1606 case 0x36: conv= rgb24tobgr15; break;
1607 case 0x38: conv= rgb32tobgr15; break;
1608 case 0x43: conv= rgb15tobgr16; break;
1609 case 0x44: conv= rgb16tobgr16; break;
1610 case 0x46: conv= rgb24tobgr16; break;
1611 case 0x48: conv= rgb32tobgr16; break;
1612 case 0x63: conv= rgb15tobgr24; break;
1613 case 0x64: conv= rgb16tobgr24; break;
1614 case 0x66: conv= rgb24tobgr24; break;
1615 case 0x68: conv= rgb32tobgr24; break;
1616 case 0x83: conv= rgb15tobgr32; break;
1617 case 0x84: conv= rgb16tobgr32; break;
1618 case 0x86: conv= rgb24tobgr32; break;
1619 case 0x88: conv= rgb32tobgr32; break;
1620 default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1621 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1623 }else{
1624 av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1625 sws_format_name(srcFormat), sws_format_name(dstFormat));
1628 if(conv)
1630 if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
1631 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1632 else
1634 int i;
1635 uint8_t *srcPtr= src[0];
1636 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1638 for (i=0; i<srcSliceH; i++)
1640 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1641 srcPtr+= srcStride[0];
1642 dstPtr+= dstStride[0];
1646 return srcSliceH;
1649 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1650 int srcSliceH, uint8_t* dst[], int dstStride[]){
1652 rgb24toyv12(
1653 src[0],
1654 dst[0]+ srcSliceY *dstStride[0],
1655 dst[1]+(srcSliceY>>1)*dstStride[1],
1656 dst[2]+(srcSliceY>>1)*dstStride[2],
1657 c->srcW, srcSliceH,
1658 dstStride[0], dstStride[1], srcStride[0]);
1659 return srcSliceH;
1662 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1663 int srcSliceH, uint8_t* dst[], int dstStride[]){
1664 int i;
1666 /* copy Y */
1667 if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1668 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1669 else{
1670 uint8_t *srcPtr= src[0];
1671 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1673 for (i=0; i<srcSliceH; i++)
1675 memcpy(dstPtr, srcPtr, c->srcW);
1676 srcPtr+= srcStride[0];
1677 dstPtr+= dstStride[0];
1681 if (c->dstFormat==PIX_FMT_YUV420P){
1682 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1683 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1684 }else{
1685 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1686 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1688 return srcSliceH;
1691 /* unscaled copy like stuff (assumes nearly identical formats) */
1692 static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1693 int srcSliceH, uint8_t* dst[], int dstStride[])
1695 if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1696 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1697 else
1699 int i;
1700 uint8_t *srcPtr= src[0];
1701 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1702 int length=0;
1704 /* universal length finder */
1705 while(length+c->srcW <= FFABS(dstStride[0])
1706 && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1707 assert(length!=0);
1709 for (i=0; i<srcSliceH; i++)
1711 memcpy(dstPtr, srcPtr, length);
1712 srcPtr+= srcStride[0];
1713 dstPtr+= dstStride[0];
1716 return srcSliceH;
1719 static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1720 int srcSliceH, uint8_t* dst[], int dstStride[])
1722 int plane;
1723 for (plane=0; plane<3; plane++)
1725 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1726 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1727 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1729 if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1731 if (!isGray(c->dstFormat))
1732 memset(dst[plane], 128, dstStride[plane]*height);
1734 else
1736 if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1737 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1738 else
1740 int i;
1741 uint8_t *srcPtr= src[plane];
1742 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1743 for (i=0; i<height; i++)
1745 memcpy(dstPtr, srcPtr, length);
1746 srcPtr+= srcStride[plane];
1747 dstPtr+= dstStride[plane];
1752 return srcSliceH;
1755 static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1756 int srcSliceH, uint8_t* dst[], int dstStride[]){
1758 int length= c->srcW;
1759 int y= srcSliceY;
1760 int height= srcSliceH;
1761 int i, j;
1762 uint8_t *srcPtr= src[0];
1763 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1765 if (!isGray(c->dstFormat)){
1766 int height= -((-srcSliceH)>>c->chrDstVSubSample);
1767 memset(dst[1], 128, dstStride[1]*height);
1768 memset(dst[2], 128, dstStride[2]*height);
1770 if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1771 for (i=0; i<height; i++)
1773 for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1774 srcPtr+= srcStride[0];
1775 dstPtr+= dstStride[0];
1777 return srcSliceH;
1780 static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1781 int srcSliceH, uint8_t* dst[], int dstStride[]){
1783 int length= c->srcW;
1784 int y= srcSliceY;
1785 int height= srcSliceH;
1786 int i, j;
1787 uint8_t *srcPtr= src[0];
1788 uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1789 for (i=0; i<height; i++)
1791 for (j=0; j<length; j++)
1793 dstPtr[j<<1] = srcPtr[j];
1794 dstPtr[(j<<1)+1] = srcPtr[j];
1796 srcPtr+= srcStride[0];
1797 dstPtr+= dstStride[0];
1799 return srcSliceH;
1802 static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1803 int srcSliceH, uint8_t* dst[], int dstStride[]){
1805 int length= c->srcW;
1806 int y= srcSliceY;
1807 int height= srcSliceH;
1808 int i, j;
1809 uint16_t *srcPtr= (uint16_t*)src[0];
1810 uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
1811 for (i=0; i<height; i++)
1813 for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1814 srcPtr+= srcStride[0]/2;
1815 dstPtr+= dstStride[0]/2;
1817 return srcSliceH;
1821 static void getSubSampleFactors(int *h, int *v, int format){
1822 switch(format){
1823 case PIX_FMT_UYVY422:
1824 case PIX_FMT_YUYV422:
1825 *h=1;
1826 *v=0;
1827 break;
1828 case PIX_FMT_YUV420P:
1829 case PIX_FMT_YUVA420P:
1830 case PIX_FMT_GRAY16BE:
1831 case PIX_FMT_GRAY16LE:
1832 case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1833 case PIX_FMT_NV12:
1834 case PIX_FMT_NV21:
1835 *h=1;
1836 *v=1;
1837 break;
1838 case PIX_FMT_YUV440P:
1839 *h=0;
1840 *v=1;
1841 break;
1842 case PIX_FMT_YUV410P:
1843 *h=2;
1844 *v=2;
1845 break;
1846 case PIX_FMT_YUV444P:
1847 *h=0;
1848 *v=0;
1849 break;
1850 case PIX_FMT_YUV422P:
1851 *h=1;
1852 *v=0;
1853 break;
1854 case PIX_FMT_YUV411P:
1855 *h=2;
1856 *v=0;
1857 break;
1858 default:
1859 *h=0;
1860 *v=0;
1861 break;
1865 static uint16_t roundToInt16(int64_t f){
1866 int r= (f + (1<<15))>>16;
1867 if (r<-0x7FFF) return 0x8000;
1868 else if (r> 0x7FFF) return 0x7FFF;
1869 else return r;
1873 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1874 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
1875 * @return -1 if not supported
1877 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1878 int64_t crv = inv_table[0];
1879 int64_t cbu = inv_table[1];
1880 int64_t cgu = -inv_table[2];
1881 int64_t cgv = -inv_table[3];
1882 int64_t cy = 1<<16;
1883 int64_t oy = 0;
1885 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1886 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1887 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1889 c->brightness= brightness;
1890 c->contrast = contrast;
1891 c->saturation= saturation;
1892 c->srcRange = srcRange;
1893 c->dstRange = dstRange;
1895 c->uOffset= 0x0400040004000400LL;
1896 c->vOffset= 0x0400040004000400LL;
1898 if (!srcRange){
1899 cy= (cy*255) / 219;
1900 oy= 16<<16;
1901 }else{
1902 crv= (crv*224) / 255;
1903 cbu= (cbu*224) / 255;
1904 cgu= (cgu*224) / 255;
1905 cgv= (cgv*224) / 255;
1908 cy = (cy *contrast )>>16;
1909 crv= (crv*contrast * saturation)>>32;
1910 cbu= (cbu*contrast * saturation)>>32;
1911 cgu= (cgu*contrast * saturation)>>32;
1912 cgv= (cgv*contrast * saturation)>>32;
1914 oy -= 256*brightness;
1916 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1917 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1918 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1919 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1920 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1921 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1923 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1924 //FIXME factorize
1926 #ifdef COMPILE_ALTIVEC
1927 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1928 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1929 #endif
1930 return 0;
1934 * @return -1 if not supported
1936 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1937 if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1939 *inv_table = c->srcColorspaceTable;
1940 *table = c->dstColorspaceTable;
1941 *srcRange = c->srcRange;
1942 *dstRange = c->dstRange;
1943 *brightness= c->brightness;
1944 *contrast = c->contrast;
1945 *saturation= c->saturation;
1947 return 0;
1950 static int handle_jpeg(int *format)
1952 switch (*format) {
1953 case PIX_FMT_YUVJ420P:
1954 *format = PIX_FMT_YUV420P;
1955 return 1;
1956 case PIX_FMT_YUVJ422P:
1957 *format = PIX_FMT_YUV422P;
1958 return 1;
1959 case PIX_FMT_YUVJ444P:
1960 *format = PIX_FMT_YUV444P;
1961 return 1;
1962 case PIX_FMT_YUVJ440P:
1963 *format = PIX_FMT_YUV440P;
1964 return 1;
1965 default:
1966 return 0;
1970 SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1971 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1973 SwsContext *c;
1974 int i;
1975 int usesVFilter, usesHFilter;
1976 int unscaled, needsDither;
1977 int srcRange, dstRange;
1978 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1979 #if defined(ARCH_X86)
1980 if (flags & SWS_CPU_CAPS_MMX)
1981 asm volatile("emms\n\t"::: "memory");
1982 #endif
1984 #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1985 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
1986 #ifdef HAVE_MMX2
1987 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1988 #elif defined (HAVE_3DNOW)
1989 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1990 #elif defined (HAVE_MMX)
1991 flags |= SWS_CPU_CAPS_MMX;
1992 #elif defined (HAVE_ALTIVEC)
1993 flags |= SWS_CPU_CAPS_ALTIVEC;
1994 #elif defined (ARCH_BFIN)
1995 flags |= SWS_CPU_CAPS_BFIN;
1996 #endif
1997 #endif /* RUNTIME_CPUDETECT */
1998 if (clip_table[512] != 255) globalInit();
1999 if (!rgb15to16) sws_rgb2rgb_init(flags);
2001 unscaled = (srcW == dstW && srcH == dstH);
2002 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2003 && (fmt_depth(dstFormat))<24
2004 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2006 srcRange = handle_jpeg(&srcFormat);
2007 dstRange = handle_jpeg(&dstFormat);
2009 if (!isSupportedIn(srcFormat))
2011 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
2012 return NULL;
2014 if (!isSupportedOut(dstFormat))
2016 av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
2017 return NULL;
2020 i= flags & ( SWS_POINT
2021 |SWS_AREA
2022 |SWS_BILINEAR
2023 |SWS_FAST_BILINEAR
2024 |SWS_BICUBIC
2025 |SWS_X
2026 |SWS_GAUSS
2027 |SWS_LANCZOS
2028 |SWS_SINC
2029 |SWS_SPLINE
2030 |SWS_BICUBLIN);
2031 if(!i || (i & (i-1)))
2033 av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be choosen\n");
2034 return NULL;
2038 /* sanity check */
2039 if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2041 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2042 srcW, srcH, dstW, dstH);
2043 return NULL;
2045 if(srcW > VOFW || dstW > VOFW){
2046 av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
2047 return NULL;
2050 if (!dstFilter) dstFilter= &dummyFilter;
2051 if (!srcFilter) srcFilter= &dummyFilter;
2053 c= av_mallocz(sizeof(SwsContext));
2055 c->av_class = &sws_context_class;
2056 c->srcW= srcW;
2057 c->srcH= srcH;
2058 c->dstW= dstW;
2059 c->dstH= dstH;
2060 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2061 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2062 c->flags= flags;
2063 c->dstFormat= dstFormat;
2064 c->srcFormat= srcFormat;
2065 c->vRounder= 4* 0x0001000100010001ULL;
2067 usesHFilter= usesVFilter= 0;
2068 if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
2069 if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
2070 if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
2071 if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
2072 if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
2073 if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
2074 if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
2075 if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
2077 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2078 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2080 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2081 if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2083 // drop some chroma lines if the user wants it
2084 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2085 c->chrSrcVSubSample+= c->vChrDrop;
2087 // drop every 2. pixel for chroma calculation unless user wants full chroma
2088 if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2089 && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
2090 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
2091 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
2092 c->chrSrcHSubSample=1;
2094 if (param){
2095 c->param[0] = param[0];
2096 c->param[1] = param[1];
2097 }else{
2098 c->param[0] =
2099 c->param[1] = SWS_PARAM_DEFAULT;
2102 c->chrIntHSubSample= c->chrDstHSubSample;
2103 c->chrIntVSubSample= c->chrSrcVSubSample;
2105 // Note the -((-x)>>y) is so that we always round toward +inf.
2106 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2107 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2108 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2109 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2111 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2113 /* unscaled special Cases */
2114 if (unscaled && !usesHFilter && !usesVFilter)
2116 /* yv12_to_nv12 */
2117 if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2119 c->swScale= PlanarToNV12Wrapper;
2121 #ifdef CONFIG_GPL
2122 /* yuv2bgr */
2123 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2125 c->swScale= yuv2rgb_get_func_ptr(c);
2127 #endif
2129 if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P)
2131 c->swScale= yvu9toyv12Wrapper;
2134 /* bgr24toYV12 */
2135 if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2136 c->swScale= bgr24toyv12Wrapper;
2138 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2139 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2140 && (isBGR(dstFormat) || isRGB(dstFormat))
2141 && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
2142 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
2143 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
2144 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
2145 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2146 && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2147 && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2148 && !needsDither)
2149 c->swScale= rgb2rgbWrapper;
2151 /* LQ converters if -sws 0 or -sws 4*/
2152 if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2153 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2154 if ( (isBGR(srcFormat) || isRGB(srcFormat))
2155 && (isBGR(dstFormat) || isRGB(dstFormat))
2156 && needsDither)
2157 c->swScale= rgb2rgbWrapper;
2159 /* yv12_to_yuy2 */
2160 if (srcFormat == PIX_FMT_YUV420P &&
2161 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2163 if (dstFormat == PIX_FMT_YUYV422)
2164 c->swScale= PlanarToYuy2Wrapper;
2165 else
2166 c->swScale= PlanarToUyvyWrapper;
2170 #ifdef COMPILE_ALTIVEC
2171 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2172 ((srcFormat == PIX_FMT_YUV420P &&
2173 (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2174 // unscaled YV12 -> packed YUV, we want speed
2175 if (dstFormat == PIX_FMT_YUYV422)
2176 c->swScale= yv12toyuy2_unscaled_altivec;
2177 else
2178 c->swScale= yv12touyvy_unscaled_altivec;
2180 #endif
2182 /* simple copy */
2183 if ( srcFormat == dstFormat
2184 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2185 || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
2187 if (isPacked(c->srcFormat))
2188 c->swScale= packedCopy;
2189 else /* Planar YUV or gray */
2190 c->swScale= planarCopy;
2193 /* gray16{le,be} conversions */
2194 if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2196 c->swScale= gray16togray;
2198 if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2200 c->swScale= graytogray16;
2202 if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2204 c->swScale= gray16swap;
2207 #ifdef ARCH_BFIN
2208 if (flags & SWS_CPU_CAPS_BFIN)
2209 ff_bfin_get_unscaled_swscale (c);
2210 #endif
2212 if (c->swScale){
2213 if (flags&SWS_PRINT_INFO)
2214 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
2215 sws_format_name(srcFormat), sws_format_name(dstFormat));
2216 return c;
2220 if (flags & SWS_CPU_CAPS_MMX2)
2222 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2223 if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2225 if (flags&SWS_PRINT_INFO)
2226 av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
2228 if (usesHFilter) c->canMMX2BeUsed=0;
2230 else
2231 c->canMMX2BeUsed=0;
2233 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2234 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2236 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2237 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2238 // n-2 is the last chrominance sample available
2239 // this is not perfect, but no one should notice the difference, the more correct variant
2240 // would be like the vertical one, but that would require some special code for the
2241 // first and last pixel
2242 if (flags&SWS_FAST_BILINEAR)
2244 if (c->canMMX2BeUsed)
2246 c->lumXInc+= 20;
2247 c->chrXInc+= 20;
2249 //we don't use the x86asm scaler if mmx is available
2250 else if (flags & SWS_CPU_CAPS_MMX)
2252 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2253 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2257 /* precalculate horizontal scaler filter coefficients */
2259 const int filterAlign=
2260 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2261 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2264 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2265 srcW , dstW, filterAlign, 1<<14,
2266 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2267 srcFilter->lumH, dstFilter->lumH, c->param);
2268 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2269 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2270 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2271 srcFilter->chrH, dstFilter->chrH, c->param);
2273 #define MAX_FUNNY_CODE_SIZE 10000
2274 #if defined(COMPILE_MMX2)
2275 // can't downscale !!!
2276 if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2278 #ifdef MAP_ANONYMOUS
2279 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2280 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2281 #else
2282 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2283 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2284 #endif
2286 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2287 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2288 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2289 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2291 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2292 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2294 #endif /* defined(COMPILE_MMX2) */
2295 } // Init Horizontal stuff
2299 /* precalculate vertical scaler filter coefficients */
2301 const int filterAlign=
2302 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2303 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2306 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2307 srcH , dstH, filterAlign, (1<<12)-4,
2308 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2309 srcFilter->lumV, dstFilter->lumV, c->param);
2310 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2311 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2312 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2313 srcFilter->chrV, dstFilter->chrV, c->param);
2315 #ifdef HAVE_ALTIVEC
2316 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2317 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2319 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2320 int j;
2321 short *p = (short *)&c->vYCoeffsBank[i];
2322 for (j=0;j<8;j++)
2323 p[j] = c->vLumFilter[i];
2326 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2327 int j;
2328 short *p = (short *)&c->vCCoeffsBank[i];
2329 for (j=0;j<8;j++)
2330 p[j] = c->vChrFilter[i];
2332 #endif
2335 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2336 c->vLumBufSize= c->vLumFilterSize;
2337 c->vChrBufSize= c->vChrFilterSize;
2338 for (i=0; i<dstH; i++)
2340 int chrI= i*c->chrDstH / dstH;
2341 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2342 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2344 nextSlice>>= c->chrSrcVSubSample;
2345 nextSlice<<= c->chrSrcVSubSample;
2346 if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2347 c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
2348 if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2349 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2352 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2353 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2354 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2355 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2356 /* align at 16 bytes for AltiVec */
2357 for (i=0; i<c->vLumBufSize; i++)
2358 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
2359 for (i=0; i<c->vChrBufSize; i++)
2360 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
2362 //try to avoid drawing green stuff between the right end and the stride end
2363 for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
2365 assert(2*VOFW == VOF);
2367 assert(c->chrDstH <= dstH);
2369 if (flags&SWS_PRINT_INFO)
2371 #ifdef DITHER1XBPP
2372 const char *dither= " dithered";
2373 #else
2374 const char *dither= "";
2375 #endif
2376 if (flags&SWS_FAST_BILINEAR)
2377 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
2378 else if (flags&SWS_BILINEAR)
2379 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
2380 else if (flags&SWS_BICUBIC)
2381 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
2382 else if (flags&SWS_X)
2383 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
2384 else if (flags&SWS_POINT)
2385 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
2386 else if (flags&SWS_AREA)
2387 av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
2388 else if (flags&SWS_BICUBLIN)
2389 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
2390 else if (flags&SWS_GAUSS)
2391 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
2392 else if (flags&SWS_SINC)
2393 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
2394 else if (flags&SWS_LANCZOS)
2395 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
2396 else if (flags&SWS_SPLINE)
2397 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
2398 else
2399 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
2401 if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2402 av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2403 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2404 else
2405 av_log(c, AV_LOG_INFO, "from %s to %s ",
2406 sws_format_name(srcFormat), sws_format_name(dstFormat));
2408 if (flags & SWS_CPU_CAPS_MMX2)
2409 av_log(c, AV_LOG_INFO, "using MMX2\n");
2410 else if (flags & SWS_CPU_CAPS_3DNOW)
2411 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2412 else if (flags & SWS_CPU_CAPS_MMX)
2413 av_log(c, AV_LOG_INFO, "using MMX\n");
2414 else if (flags & SWS_CPU_CAPS_ALTIVEC)
2415 av_log(c, AV_LOG_INFO, "using AltiVec\n");
2416 else
2417 av_log(c, AV_LOG_INFO, "using C\n");
2420 if (flags & SWS_PRINT_INFO)
2422 if (flags & SWS_CPU_CAPS_MMX)
2424 if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2425 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2426 else
2428 if (c->hLumFilterSize==4)
2429 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
2430 else if (c->hLumFilterSize==8)
2431 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
2432 else
2433 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
2435 if (c->hChrFilterSize==4)
2436 av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
2437 else if (c->hChrFilterSize==8)
2438 av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
2439 else
2440 av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
2443 else
2445 #if defined(ARCH_X86)
2446 av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
2447 #else
2448 if (flags & SWS_FAST_BILINEAR)
2449 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
2450 else
2451 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
2452 #endif
2454 if (isPlanarYUV(dstFormat))
2456 if (c->vLumFilterSize==1)
2457 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2458 else
2459 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2461 else
2463 if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2464 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2465 " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2466 else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2467 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2468 else
2469 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2472 if (dstFormat==PIX_FMT_BGR24)
2473 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
2474 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2475 else if (dstFormat==PIX_FMT_RGB32)
2476 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2477 else if (dstFormat==PIX_FMT_BGR565)
2478 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2479 else if (dstFormat==PIX_FMT_BGR555)
2480 av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2482 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2484 if (flags & SWS_PRINT_INFO)
2486 av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2487 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2488 av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2489 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2492 c->swScale= getSwsFunc(flags);
2493 return c;
2497 * swscale wrapper, so we don't need to export the SwsContext.
2498 * assumes planar YUV to be in YUV order instead of YVU
2500 int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2501 int srcSliceH, uint8_t* dst[], int dstStride[]){
2502 int i;
2503 uint8_t* src2[4]= {src[0], src[1], src[2]};
2504 uint32_t pal[256];
2505 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2506 av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
2507 return 0;
2509 if (c->sliceDir == 0) {
2510 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2513 if (c->srcFormat == PIX_FMT_PAL8){
2514 for (i=0; i<256; i++){
2515 int p= ((uint32_t*)(src[1]))[i];
2516 int r= (p>>16)&0xFF;
2517 int g= (p>> 8)&0xFF;
2518 int b= p &0xFF;
2519 int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
2520 int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
2521 int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
2522 pal[i]= y + (u<<8) + (v<<16);
2524 src2[1]= (uint8_t*)pal;
2527 // copy strides, so they can safely be modified
2528 if (c->sliceDir == 1) {
2529 // slices go from top to bottom
2530 int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2531 int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2532 return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2533 } else {
2534 // slices go from bottom to top => we flip the image internally
2535 uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2536 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2537 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2538 int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2539 int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2541 src2[0] += (srcSliceH-1)*srcStride[0];
2542 if (c->srcFormat != PIX_FMT_PAL8)
2543 src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2544 src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2546 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2551 * swscale wrapper, so we don't need to export the SwsContext
2553 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2554 int srcSliceH, uint8_t* dst[], int dstStride[]){
2555 return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2558 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2559 float lumaSharpen, float chromaSharpen,
2560 float chromaHShift, float chromaVShift,
2561 int verbose)
2563 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2565 if (lumaGBlur!=0.0){
2566 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2567 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2568 }else{
2569 filter->lumH= sws_getIdentityVec();
2570 filter->lumV= sws_getIdentityVec();
2573 if (chromaGBlur!=0.0){
2574 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2575 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2576 }else{
2577 filter->chrH= sws_getIdentityVec();
2578 filter->chrV= sws_getIdentityVec();
2581 if (chromaSharpen!=0.0){
2582 SwsVector *id= sws_getIdentityVec();
2583 sws_scaleVec(filter->chrH, -chromaSharpen);
2584 sws_scaleVec(filter->chrV, -chromaSharpen);
2585 sws_addVec(filter->chrH, id);
2586 sws_addVec(filter->chrV, id);
2587 sws_freeVec(id);
2590 if (lumaSharpen!=0.0){
2591 SwsVector *id= sws_getIdentityVec();
2592 sws_scaleVec(filter->lumH, -lumaSharpen);
2593 sws_scaleVec(filter->lumV, -lumaSharpen);
2594 sws_addVec(filter->lumH, id);
2595 sws_addVec(filter->lumV, id);
2596 sws_freeVec(id);
2599 if (chromaHShift != 0.0)
2600 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2602 if (chromaVShift != 0.0)
2603 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2605 sws_normalizeVec(filter->chrH, 1.0);
2606 sws_normalizeVec(filter->chrV, 1.0);
2607 sws_normalizeVec(filter->lumH, 1.0);
2608 sws_normalizeVec(filter->lumV, 1.0);
2610 if (verbose) sws_printVec(filter->chrH);
2611 if (verbose) sws_printVec(filter->lumH);
2613 return filter;
2617 * returns a normalized gaussian curve used to filter stuff
2618 * quality=3 is high quality, lowwer is lowwer quality
2620 SwsVector *sws_getGaussianVec(double variance, double quality){
2621 const int length= (int)(variance*quality + 0.5) | 1;
2622 int i;
2623 double *coeff= av_malloc(length*sizeof(double));
2624 double middle= (length-1)*0.5;
2625 SwsVector *vec= av_malloc(sizeof(SwsVector));
2627 vec->coeff= coeff;
2628 vec->length= length;
2630 for (i=0; i<length; i++)
2632 double dist= i-middle;
2633 coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
2636 sws_normalizeVec(vec, 1.0);
2638 return vec;
2641 SwsVector *sws_getConstVec(double c, int length){
2642 int i;
2643 double *coeff= av_malloc(length*sizeof(double));
2644 SwsVector *vec= av_malloc(sizeof(SwsVector));
2646 vec->coeff= coeff;
2647 vec->length= length;
2649 for (i=0; i<length; i++)
2650 coeff[i]= c;
2652 return vec;
2656 SwsVector *sws_getIdentityVec(void){
2657 return sws_getConstVec(1.0, 1);
2660 double sws_dcVec(SwsVector *a){
2661 int i;
2662 double sum=0;
2664 for (i=0; i<a->length; i++)
2665 sum+= a->coeff[i];
2667 return sum;
2670 void sws_scaleVec(SwsVector *a, double scalar){
2671 int i;
2673 for (i=0; i<a->length; i++)
2674 a->coeff[i]*= scalar;
2677 void sws_normalizeVec(SwsVector *a, double height){
2678 sws_scaleVec(a, height/sws_dcVec(a));
2681 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2682 int length= a->length + b->length - 1;
2683 double *coeff= av_malloc(length*sizeof(double));
2684 int i, j;
2685 SwsVector *vec= av_malloc(sizeof(SwsVector));
2687 vec->coeff= coeff;
2688 vec->length= length;
2690 for (i=0; i<length; i++) coeff[i]= 0.0;
2692 for (i=0; i<a->length; i++)
2694 for (j=0; j<b->length; j++)
2696 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2700 return vec;
2703 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2704 int length= FFMAX(a->length, b->length);
2705 double *coeff= av_malloc(length*sizeof(double));
2706 int i;
2707 SwsVector *vec= av_malloc(sizeof(SwsVector));
2709 vec->coeff= coeff;
2710 vec->length= length;
2712 for (i=0; i<length; i++) coeff[i]= 0.0;
2714 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2715 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2717 return vec;
2720 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2721 int length= FFMAX(a->length, b->length);
2722 double *coeff= av_malloc(length*sizeof(double));
2723 int i;
2724 SwsVector *vec= av_malloc(sizeof(SwsVector));
2726 vec->coeff= coeff;
2727 vec->length= length;
2729 for (i=0; i<length; i++) coeff[i]= 0.0;
2731 for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2732 for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2734 return vec;
2737 /* shift left / or right if "shift" is negative */
2738 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2739 int length= a->length + FFABS(shift)*2;
2740 double *coeff= av_malloc(length*sizeof(double));
2741 int i;
2742 SwsVector *vec= av_malloc(sizeof(SwsVector));
2744 vec->coeff= coeff;
2745 vec->length= length;
2747 for (i=0; i<length; i++) coeff[i]= 0.0;
2749 for (i=0; i<a->length; i++)
2751 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2754 return vec;
2757 void sws_shiftVec(SwsVector *a, int shift){
2758 SwsVector *shifted= sws_getShiftedVec(a, shift);
2759 av_free(a->coeff);
2760 a->coeff= shifted->coeff;
2761 a->length= shifted->length;
2762 av_free(shifted);
2765 void sws_addVec(SwsVector *a, SwsVector *b){
2766 SwsVector *sum= sws_sumVec(a, b);
2767 av_free(a->coeff);
2768 a->coeff= sum->coeff;
2769 a->length= sum->length;
2770 av_free(sum);
2773 void sws_subVec(SwsVector *a, SwsVector *b){
2774 SwsVector *diff= sws_diffVec(a, b);
2775 av_free(a->coeff);
2776 a->coeff= diff->coeff;
2777 a->length= diff->length;
2778 av_free(diff);
2781 void sws_convVec(SwsVector *a, SwsVector *b){
2782 SwsVector *conv= sws_getConvVec(a, b);
2783 av_free(a->coeff);
2784 a->coeff= conv->coeff;
2785 a->length= conv->length;
2786 av_free(conv);
2789 SwsVector *sws_cloneVec(SwsVector *a){
2790 double *coeff= av_malloc(a->length*sizeof(double));
2791 int i;
2792 SwsVector *vec= av_malloc(sizeof(SwsVector));
2794 vec->coeff= coeff;
2795 vec->length= a->length;
2797 for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2799 return vec;
2802 void sws_printVec(SwsVector *a){
2803 int i;
2804 double max=0;
2805 double min=0;
2806 double range;
2808 for (i=0; i<a->length; i++)
2809 if (a->coeff[i]>max) max= a->coeff[i];
2811 for (i=0; i<a->length; i++)
2812 if (a->coeff[i]<min) min= a->coeff[i];
2814 range= max - min;
2816 for (i=0; i<a->length; i++)
2818 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2819 av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2820 for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2821 av_log(NULL, AV_LOG_DEBUG, "|\n");
2825 void sws_freeVec(SwsVector *a){
2826 if (!a) return;
2827 av_freep(&a->coeff);
2828 a->length=0;
2829 av_free(a);
2832 void sws_freeFilter(SwsFilter *filter){
2833 if (!filter) return;
2835 if (filter->lumH) sws_freeVec(filter->lumH);
2836 if (filter->lumV) sws_freeVec(filter->lumV);
2837 if (filter->chrH) sws_freeVec(filter->chrH);
2838 if (filter->chrV) sws_freeVec(filter->chrV);
2839 av_free(filter);
2843 void sws_freeContext(SwsContext *c){
2844 int i;
2845 if (!c) return;
2847 if (c->lumPixBuf)
2849 for (i=0; i<c->vLumBufSize; i++)
2850 av_freep(&c->lumPixBuf[i]);
2851 av_freep(&c->lumPixBuf);
2854 if (c->chrPixBuf)
2856 for (i=0; i<c->vChrBufSize; i++)
2857 av_freep(&c->chrPixBuf[i]);
2858 av_freep(&c->chrPixBuf);
2861 av_freep(&c->vLumFilter);
2862 av_freep(&c->vChrFilter);
2863 av_freep(&c->hLumFilter);
2864 av_freep(&c->hChrFilter);
2865 #ifdef HAVE_ALTIVEC
2866 av_freep(&c->vYCoeffsBank);
2867 av_freep(&c->vCCoeffsBank);
2868 #endif
2870 av_freep(&c->vLumFilterPos);
2871 av_freep(&c->vChrFilterPos);
2872 av_freep(&c->hLumFilterPos);
2873 av_freep(&c->hChrFilterPos);
2875 #if defined(ARCH_X86) && defined(CONFIG_GPL)
2876 #ifdef MAP_ANONYMOUS
2877 if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2878 if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2879 #else
2880 av_free(c->funnyYCode);
2881 av_free(c->funnyUVCode);
2882 #endif
2883 c->funnyYCode=NULL;
2884 c->funnyUVCode=NULL;
2885 #endif /* defined(ARCH_X86) */
2887 av_freep(&c->lumMmx2Filter);
2888 av_freep(&c->chrMmx2Filter);
2889 av_freep(&c->lumMmx2FilterPos);
2890 av_freep(&c->chrMmx2FilterPos);
2891 av_freep(&c->yuvTable);
2893 av_free(c);
2897 * Checks if context is valid or reallocs a new one instead.
2898 * If context is NULL, just calls sws_getContext() to get a new one.
2899 * Otherwise, checks if the parameters are the same already saved in context.
2900 * If that is the case, returns the current context.
2901 * Otherwise, frees context and gets a new one.
2903 * Be warned that srcFilter, dstFilter are not checked, they are
2904 * asumed to remain valid.
2906 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2907 int srcW, int srcH, int srcFormat,
2908 int dstW, int dstH, int dstFormat, int flags,
2909 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2911 static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
2913 if (!param)
2914 param = default_param;
2916 if (context) {
2917 if (context->srcW != srcW || context->srcH != srcH ||
2918 context->srcFormat != srcFormat ||
2919 context->dstW != dstW || context->dstH != dstH ||
2920 context->dstFormat != dstFormat || context->flags != flags ||
2921 context->param[0] != param[0] || context->param[1] != param[1])
2923 sws_freeContext(context);
2924 context = NULL;
2927 if (!context) {
2928 return sws_getContext(srcW, srcH, srcFormat,
2929 dstW, dstH, dstFormat, flags,
2930 srcFilter, dstFilter, param);
2932 return context;