2 * Modified for use with MPlayer, for details see the changelog at
3 * http://svn.mplayerhq.hu/mplayer/trunk/
8 * Mpeg Layer-1,2,3 audio decoder
9 * ------------------------------
10 * copyright (c) 1995,1996,1997 by Michael Hipp, All rights reserved.
13 * slighlty optimized for machines without autoincrement/decrement.
14 * The performance is highly compiler dependend. Maybe
15 * the decode.c version for 'normal' processor may be faster
16 * even for Intel processors.
23 /* old WRITE_SAMPLE */
25 #define WRITE_SAMPLE(samples,sum,clip) { \
26 if( (sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
27 else if( (sum) < -32768.0) { *(samples) = -0x8000; (clip)++; }\
28 else { *(samples) = sum; } \
31 /* new WRITE_SAMPLE */
34 * should be the same as the "old WRITE_SAMPLE" macro above, but uses
35 * some tricks to avoid double->int conversions and floating point compares.
37 * Here's how it works:
38 * ((((65536.0 * 65536.0 * 16)+(65536.0 * 0.5))* 65536.0)) is
39 * 0x0010000080000000LL in hex. It computes 0x0010000080000000LL + sum
40 * as a double IEEE fp value and extracts the low-order 32-bits from the
41 * IEEE fp representation stored in memory. The 2^56 bit in the constant
42 * is intended to force the bits of "sum" into the least significant bits
43 * of the double mantissa. After an integer substraction of 0x80000000
44 * we have the original double value "sum" converted to an 32-bit int value.
46 * (Is that really faster than the clean and simple old version of the macro?)
50 * On a SPARC cpu, we fetch the low-order 32-bit from the second 32-bit
51 * word of the double fp value stored in memory. On an x86 cpu, we fetch it
52 * from the first 32-bit word.
53 * I'm not sure if the WORDS_BIGENDIAN feature test covers all possible memory
54 * layouts of double floating point values an all cpu architectures. If
55 * it doesn't work for you, just enable the "old WRITE_SAMPLE" macro.
58 #define MANTISSA_OFFSET 1
60 #define MANTISSA_OFFSET 0
63 /* sizeof(int) == 4 */
64 #define WRITE_SAMPLE(samples,sum,clip) { \
65 union { double dtemp; int itemp[2]; } u; int v; \
66 u.dtemp = ((((65536.0 * 65536.0 * 16)+(65536.0 * 0.5))* 65536.0)) + (sum);\
67 v = u.itemp[MANTISSA_OFFSET] - 0x80000000; \
68 if( v > 32767) { *(samples) = 0x7fff; (clip)++; } \
69 else if( v < -32768) { *(samples) = -0x8000; (clip)++; } \
70 else { *(samples) = v; } \
76 #define WRITE_SAMPLE(samples,sum,clip) { \
77 double dtemp; int v; \
78 dtemp = ((((65536.0 * 65536.0 * 16)+(65536.0 * 0.5))* 65536.0)) + (sum);\
79 v = ((*(int *)&dtemp) - 0x80000000); \
80 if( v > 32767) { *(samples) = 0x7fff; (clip)++; } \
81 else if( v < -32768) { *(samples) = -0x8000; (clip)++; } \
82 else { *(samples) = v; } \
86 static int synth_1to1(real
*bandPtr
,int channel
,unsigned char *out
,int *pnt
);
88 static int synth_1to1_mono2stereo(real
*bandPtr
,unsigned char *samples
,int *pnt
)
92 ret
= synth_1to1(bandPtr
,0,samples
,pnt
);
93 samples
= samples
+ *pnt
- 128;
96 ((short *)samples
)[1] = ((short *)samples
)[0];
103 static synth_func_t synth_func
;
106 #define dct64_base(a,b,c) if(gCpuCaps.hasAltiVec) dct64_altivec(a,b,c); else dct64(a,b,c)
107 #else /* HAVE_ALTIVEC */
108 #define dct64_base(a,b,c) dct64(a,b,c)
109 #endif /* HAVE_ALTIVEC */
111 static int synth_1to1(real
*bandPtr
,int channel
,unsigned char *out
,int *pnt
)
113 static real buffs
[2][2][0x110];
114 static const int step
= 2;
116 short *samples
= (short *) (out
+ *pnt
);
117 real
*b0
,(*buf
)[0x110];
123 /* optimized for x86 */
127 // printf("Calling %p, bandPtr=%p channel=%d samples=%p\n",synth_func,bandPtr,channel,samples);
128 // FIXME: synth_func() may destroy EBP, don't rely on stack contents!!!
129 return (*synth_func
)( bandPtr
,channel
,samples
);
132 if(!channel
) { /* channel=0 */
145 dct64_base(buf
[1]+((bo
+1)&0xf),buf
[0]+bo
,bandPtr
);
150 dct64_base(buf
[0]+bo
,buf
[1]+bo
+1,bandPtr
);
155 real
*window
= mp3lib_decwin
+ 16 - bo1
;
157 for (j
=16;j
;j
--,b0
+=0x10,window
+=0x20,samples
+=step
)
160 sum
= window
[0x0] * b0
[0x0];
161 sum
-= window
[0x1] * b0
[0x1];
162 sum
+= window
[0x2] * b0
[0x2];
163 sum
-= window
[0x3] * b0
[0x3];
164 sum
+= window
[0x4] * b0
[0x4];
165 sum
-= window
[0x5] * b0
[0x5];
166 sum
+= window
[0x6] * b0
[0x6];
167 sum
-= window
[0x7] * b0
[0x7];
168 sum
+= window
[0x8] * b0
[0x8];
169 sum
-= window
[0x9] * b0
[0x9];
170 sum
+= window
[0xA] * b0
[0xA];
171 sum
-= window
[0xB] * b0
[0xB];
172 sum
+= window
[0xC] * b0
[0xC];
173 sum
-= window
[0xD] * b0
[0xD];
174 sum
+= window
[0xE] * b0
[0xE];
175 sum
-= window
[0xF] * b0
[0xF];
177 WRITE_SAMPLE(samples
,sum
,clip
);
182 sum
= window
[0x0] * b0
[0x0];
183 sum
+= window
[0x2] * b0
[0x2];
184 sum
+= window
[0x4] * b0
[0x4];
185 sum
+= window
[0x6] * b0
[0x6];
186 sum
+= window
[0x8] * b0
[0x8];
187 sum
+= window
[0xA] * b0
[0xA];
188 sum
+= window
[0xC] * b0
[0xC];
189 sum
+= window
[0xE] * b0
[0xE];
190 WRITE_SAMPLE(samples
,sum
,clip
);
191 b0
-=0x10,window
-=0x20,samples
+=step
;
195 for (j
=15;j
;j
--,b0
-=0x10,window
-=0x20,samples
+=step
)
198 sum
= -window
[-0x1] * b0
[0x0];
199 sum
-= window
[-0x2] * b0
[0x1];
200 sum
-= window
[-0x3] * b0
[0x2];
201 sum
-= window
[-0x4] * b0
[0x3];
202 sum
-= window
[-0x5] * b0
[0x4];
203 sum
-= window
[-0x6] * b0
[0x5];
204 sum
-= window
[-0x7] * b0
[0x6];
205 sum
-= window
[-0x8] * b0
[0x7];
206 sum
-= window
[-0x9] * b0
[0x8];
207 sum
-= window
[-0xA] * b0
[0x9];
208 sum
-= window
[-0xB] * b0
[0xA];
209 sum
-= window
[-0xC] * b0
[0xB];
210 sum
-= window
[-0xD] * b0
[0xC];
211 sum
-= window
[-0xE] * b0
[0xD];
212 sum
-= window
[-0xF] * b0
[0xE];
213 sum
-= window
[-0x0] * b0
[0xF];
215 WRITE_SAMPLE(samples
,sum
,clip
);
224 static int synth_1to1_l(real
*bandPtr
,int channel
,unsigned char *out
,int *pnt
)
228 ret
= synth_1to1(bandPtr
,channel
,out
,pnt
);
229 out
= out
+ *pnt
- 128;
232 ((short *)out
)[1] = ((short *)out
)[0];
239 static int synth_1to1_r(real
*bandPtr
,int channel
,unsigned char *out
,int *pnt
)
243 ret
= synth_1to1(bandPtr
,channel
,out
,pnt
);
244 out
= out
+ *pnt
- 128;
247 ((short *)out
)[0] = ((short *)out
)[1];