demux_ts: avoid using unitialized data
[mplayer.git] / libdvdcss / css.c
blob886a803efd4116586ef5f73628d45b0fb5216c17
1 /*****************************************************************************
2 * css.c: Functions for DVD authentication and descrambling
3 *****************************************************************************
4 * Copyright (C) 1999-2008 VideoLAN
5 * $Id$
7 * Authors: Stéphane Borel <stef@via.ecp.fr>
8 * Håkan Hjort <d95hjort@dtek.chalmers.se>
10 * based on:
11 * - css-auth by Derek Fawcus <derek@spider.com>
12 * - DVD CSS ioctls example program by Andrew T. Veliath <andrewtv@usa.net>
13 * - The Divide and conquer attack by Frank A. Stevenson <frank@funcom.com>
14 * (see http://www-2.cs.cmu.edu/~dst/DeCSS/FrankStevenson/index.html)
15 * - DeCSSPlus by Ethan Hawke
16 * - DecVOB
17 * see http://www.lemuria.org/DeCSS/ by Tom Vogt for more information.
19 * This library is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License along
30 * with this library; if not, write to the Free Software Foundation, Inc.,
31 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
32 *****************************************************************************/
34 /*****************************************************************************
35 * Preamble
36 *****************************************************************************/
37 #include "config.h"
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <sys/types.h>
43 #include <sys/stat.h>
44 #ifdef HAVE_SYS_PARAM_H
45 # include <sys/param.h>
46 #endif
47 #ifdef HAVE_UNISTD_H
48 # include <unistd.h>
49 #endif
50 #include <fcntl.h>
52 #ifdef HAVE_LIMITS_H
53 # include <limits.h>
54 #endif
56 #include "dvdcss/dvdcss.h"
58 #include "common.h"
59 #include "css.h"
60 #include "libdvdcss.h"
61 #include "csstables.h"
62 #include "ioctl.h"
63 #include "device.h"
65 /*****************************************************************************
66 * Local prototypes
67 *****************************************************************************/
68 static void PrintKey ( dvdcss_t, char *, uint8_t const * );
70 static int GetBusKey ( dvdcss_t );
71 static int GetASF ( dvdcss_t );
73 static void CryptKey ( int, int, uint8_t const *, uint8_t * );
74 static void DecryptKey ( uint8_t,
75 uint8_t const *, uint8_t const *, uint8_t * );
77 static int DecryptDiscKey ( dvdcss_t, uint8_t const *, dvd_key_t );
78 static int CrackDiscKey ( dvdcss_t, uint8_t * );
80 static void DecryptTitleKey ( dvd_key_t, dvd_key_t );
81 static int RecoverTitleKey ( int, uint8_t const *,
82 uint8_t const *, uint8_t const *, uint8_t * );
83 static int CrackTitleKey ( dvdcss_t, int, int, dvd_key_t );
85 static int AttackPattern ( uint8_t const[], int, uint8_t * );
86 #if 0
87 static int AttackPadding ( uint8_t const[], int, uint8_t * );
88 #endif
90 /*****************************************************************************
91 * _dvdcss_test: check if the disc is encrypted or not
92 *****************************************************************************
93 * Sets b_scrambled, b_ioctls
94 *****************************************************************************/
95 void _dvdcss_test( dvdcss_t dvdcss )
97 char const *psz_type, *psz_rpc;
98 int i_ret, i_copyright, i_type, i_mask, i_rpc;
100 i_ret = ioctl_ReadCopyright( dvdcss->i_fd, 0 /* i_layer */, &i_copyright );
102 if( i_ret < 0 )
104 /* Maybe we didn't have enough privileges to read the copyright
105 * (see ioctl_ReadCopyright comments).
106 * Apparently, on unencrypted DVDs _dvdcss_disckey() always fails, so
107 * we can check this as a workaround. */
108 #ifdef WIN32
109 i_ret = 0;
110 #else
111 /* Since it's the first ioctl we try to issue, we add a notice */
112 print_error( dvdcss, "css error: could not get \"copyright\""
113 " information, make sure there is a DVD in the drive,"
114 " and that you have used the correct device node." );
115 /* Try without ioctls */
116 dvdcss->b_ioctls = 0;
117 #endif
118 i_copyright = 1;
119 if( _dvdcss_disckey( dvdcss ) < 0 )
121 i_copyright = 0;
125 print_debug( dvdcss, "disc reports copyright information 0x%x",
126 i_copyright );
127 dvdcss->b_scrambled = i_copyright;
129 i_ret = ioctl_ReportRPC( dvdcss->i_fd, &i_type, &i_mask, &i_rpc);
131 if( i_ret < 0 )
133 print_error( dvdcss, "css error: could not get RPC status, region-free drive?" );
134 return;
137 switch( i_rpc )
139 case 0: psz_rpc = "RPC-I"; break;
140 case 1: psz_rpc = "RPC-II"; break;
141 default: psz_rpc = "unknown RPC scheme"; break;
144 switch( i_type )
146 case 0: psz_type = "no region code set"; break;
147 case 1: psz_type = "region code set"; break;
148 case 2: psz_type = "one region change remaining"; break;
149 case 3: psz_type = "region code set permanently"; break;
150 default: psz_type = "unknown status"; break;
153 print_debug( dvdcss, "drive region mask 0x%x, %s, %s",
154 i_mask, psz_rpc, psz_type );
156 if( i_copyright && i_rpc == 1 && i_type == 0 )
158 print_error( dvdcss, "css error: drive will prevent access to "
159 "scrambled data" );
163 /*****************************************************************************
164 * _dvdcss_title: crack or decrypt the current title key if needed
165 *****************************************************************************
166 * This function should only be called by dvdcss->pf_seek and should eventually
167 * not be external if possible.
168 *****************************************************************************/
169 int _dvdcss_title ( dvdcss_t dvdcss, int i_block )
171 dvd_title_t *p_title;
172 dvd_title_t *p_newtitle;
173 dvd_key_t p_title_key;
174 int i_fd, i_ret = -1, b_cache = 0;
176 if( ! dvdcss->b_scrambled )
178 return 0;
181 /* Check if we've already cracked this key */
182 p_title = dvdcss->p_titles;
183 while( p_title != NULL
184 && p_title->p_next != NULL
185 && p_title->p_next->i_startlb <= i_block )
187 p_title = p_title->p_next;
190 if( p_title != NULL
191 && p_title->i_startlb == i_block )
193 /* We've already cracked this key, nothing to do */
194 memcpy( dvdcss->css.p_title_key, p_title->p_key, sizeof(dvd_key_t) );
195 return 0;
198 /* Check whether the key is in our disk cache */
199 if( dvdcss->psz_cachefile[0] )
201 /* XXX: be careful, we use sprintf and not snprintf */
202 sprintf( dvdcss->psz_block, "%.10x", i_block );
203 i_fd = open( dvdcss->psz_cachefile, O_RDONLY );
204 b_cache = 1;
206 if( i_fd >= 0 )
208 char psz_key[KEY_SIZE * 3];
209 unsigned int k0, k1, k2, k3, k4;
211 psz_key[KEY_SIZE * 3 - 1] = '\0';
213 if( read( i_fd, psz_key, KEY_SIZE * 3 - 1 ) == KEY_SIZE * 3 - 1
214 && sscanf( psz_key, "%x:%x:%x:%x:%x",
215 &k0, &k1, &k2, &k3, &k4 ) == 5 )
217 p_title_key[0] = k0;
218 p_title_key[1] = k1;
219 p_title_key[2] = k2;
220 p_title_key[3] = k3;
221 p_title_key[4] = k4;
222 PrintKey( dvdcss, "title key found in cache ", p_title_key );
224 /* Don't try to save it again */
225 b_cache = 0;
226 i_ret = 1;
229 close( i_fd );
233 /* Crack or decrypt CSS title key for current VTS */
234 if( i_ret < 0 )
236 i_ret = _dvdcss_titlekey( dvdcss, i_block, p_title_key );
238 if( i_ret < 0 )
240 print_error( dvdcss, "fatal error in vts css key" );
241 return i_ret;
244 if( i_ret == 0 )
246 print_debug( dvdcss, "unencrypted title" );
247 /* We cache this anyway, so we don't need to check again. */
251 /* Key is valid, we store it on disk. */
252 if( dvdcss->psz_cachefile[0] && b_cache )
254 i_fd = open( dvdcss->psz_cachefile, O_RDWR|O_CREAT, 0644 );
255 if( i_fd >= 0 )
257 char psz_key[KEY_SIZE * 3 + 2];
259 sprintf( psz_key, "%02x:%02x:%02x:%02x:%02x\r\n",
260 p_title_key[0], p_title_key[1], p_title_key[2],
261 p_title_key[3], p_title_key[4] );
263 write( i_fd, psz_key, KEY_SIZE * 3 + 1 );
264 close( i_fd );
268 /* Find our spot in the list */
269 p_newtitle = NULL;
270 p_title = dvdcss->p_titles;
271 while( ( p_title != NULL ) && ( p_title->i_startlb < i_block ) )
273 p_newtitle = p_title;
274 p_title = p_title->p_next;
277 /* Save the found title */
278 p_title = p_newtitle;
280 /* Write in the new title and its key */
281 p_newtitle = malloc( sizeof( dvd_title_t ) );
282 p_newtitle->i_startlb = i_block;
283 memcpy( p_newtitle->p_key, p_title_key, KEY_SIZE );
285 /* Link it at the head of the (possibly empty) list */
286 if( p_title == NULL )
288 p_newtitle->p_next = dvdcss->p_titles;
289 dvdcss->p_titles = p_newtitle;
291 /* Link the new title inside the list */
292 else
294 p_newtitle->p_next = p_title->p_next;
295 p_title->p_next = p_newtitle;
298 memcpy( dvdcss->css.p_title_key, p_title_key, KEY_SIZE );
299 return 0;
302 /*****************************************************************************
303 * _dvdcss_disckey: get disc key.
304 *****************************************************************************
305 * This function should only be called if DVD ioctls are present.
306 * It will set dvdcss->i_method = DVDCSS_METHOD_TITLE if it fails to find
307 * a valid disc key.
308 * Two decryption methods are offered:
309 * -disc key hash crack,
310 * -decryption with player keys if they are available.
311 *****************************************************************************/
312 int _dvdcss_disckey( dvdcss_t dvdcss )
314 unsigned char p_buffer[ DVD_DISCKEY_SIZE ];
315 dvd_key_t p_disc_key;
316 int i;
318 if( GetBusKey( dvdcss ) < 0 )
320 return -1;
323 /* Get encrypted disc key */
324 if( ioctl_ReadDiscKey( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 )
326 print_error( dvdcss, "ioctl ReadDiscKey failed" );
327 return -1;
330 /* This should have invaidated the AGID and got us ASF=1. */
331 if( GetASF( dvdcss ) != 1 )
333 /* Region mismatch (or region not set) is the most likely source. */
334 print_error( dvdcss,
335 "ASF not 1 after reading disc key (region mismatch?)" );
336 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
337 return -1;
340 /* Shuffle disc key using bus key */
341 for( i = 0 ; i < DVD_DISCKEY_SIZE ; i++ )
343 p_buffer[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ];
346 /* Decrypt disc key */
347 switch( dvdcss->i_method )
349 case DVDCSS_METHOD_KEY:
351 /* Decrypt disc key with player key. */
352 PrintKey( dvdcss, "decrypting disc key ", p_buffer );
353 if( ! DecryptDiscKey( dvdcss, p_buffer, p_disc_key ) )
355 PrintKey( dvdcss, "decrypted disc key is ", p_disc_key );
356 break;
358 print_debug( dvdcss, "failed to decrypt the disc key, "
359 "faulty drive/kernel? "
360 "cracking title keys instead" );
362 /* Fallback, but not to DISC as the disc key might be faulty */
363 memset( p_disc_key, 0, KEY_SIZE );
364 dvdcss->i_method = DVDCSS_METHOD_TITLE;
365 break;
367 case DVDCSS_METHOD_DISC:
369 /* Crack Disc key to be able to use it */
370 memcpy( p_disc_key, p_buffer, KEY_SIZE );
371 PrintKey( dvdcss, "cracking disc key ", p_disc_key );
372 if( ! CrackDiscKey( dvdcss, p_disc_key ) )
374 PrintKey( dvdcss, "cracked disc key is ", p_disc_key );
375 break;
377 print_debug( dvdcss, "failed to crack the disc key" );
378 memset( p_disc_key, 0, KEY_SIZE );
379 dvdcss->i_method = DVDCSS_METHOD_TITLE;
380 break;
382 default:
384 print_debug( dvdcss, "disc key needs not be decrypted" );
385 memset( p_disc_key, 0, KEY_SIZE );
386 break;
389 memcpy( dvdcss->css.p_disc_key, p_disc_key, KEY_SIZE );
391 return 0;
395 /*****************************************************************************
396 * _dvdcss_titlekey: get title key.
397 *****************************************************************************/
398 int _dvdcss_titlekey( dvdcss_t dvdcss, int i_pos, dvd_key_t p_title_key )
400 static uint8_t p_garbage[ DVDCSS_BLOCK_SIZE ]; /* we never read it back */
401 uint8_t p_key[ KEY_SIZE ];
402 int i, i_ret = 0;
404 if( dvdcss->b_ioctls && ( dvdcss->i_method == DVDCSS_METHOD_KEY ||
405 dvdcss->i_method == DVDCSS_METHOD_DISC ) )
407 /* We have a decrypted Disc key and the ioctls are available,
408 * read the title key and decrypt it.
411 print_debug( dvdcss, "getting title key at block %i the classic way",
412 i_pos );
414 /* We need to authenticate again every time to get a new session key */
415 if( GetBusKey( dvdcss ) < 0 )
417 i_ret = -1;
420 /* Get encrypted title key */
421 if( ioctl_ReadTitleKey( dvdcss->i_fd, &dvdcss->css.i_agid,
422 i_pos, p_key ) < 0 )
424 print_debug( dvdcss,
425 "ioctl ReadTitleKey failed (region mismatch?)" );
426 i_ret = -1;
429 /* Test ASF, it will be reset to 0 if we got a Region error */
430 switch( GetASF( dvdcss ) )
432 case -1:
433 /* An error getting the ASF status, something must be wrong. */
434 print_debug( dvdcss, "lost ASF requesting title key" );
435 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
436 i_ret = -1;
437 break;
439 case 0:
440 /* This might either be a title that has no key,
441 * or we encountered a region error. */
442 print_debug( dvdcss, "lost ASF requesting title key" );
443 break;
445 case 1:
446 /* Drive status is ok. */
447 /* If the title key request failed, but we did not loose ASF,
448 * we might stil have the AGID. Other code assume that we
449 * will not after this so invalidate it(?). */
450 if( i_ret < 0 )
452 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
454 break;
457 if( !( i_ret < 0 ) )
459 /* Decrypt title key using the bus key */
460 for( i = 0 ; i < KEY_SIZE ; i++ )
462 p_key[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ];
465 /* If p_key is all zero then there really wasn't any key present
466 * even though we got to read it without an error. */
467 if( !( p_key[0] | p_key[1] | p_key[2] | p_key[3] | p_key[4] ) )
469 i_ret = 0;
471 else
473 PrintKey( dvdcss, "initial disc key ", dvdcss->css.p_disc_key );
474 DecryptTitleKey( dvdcss->css.p_disc_key, p_key );
475 PrintKey( dvdcss, "decrypted title key ", p_key );
476 i_ret = 1;
479 /* All went well either there wasn't a key or we have it now. */
480 memcpy( p_title_key, p_key, KEY_SIZE );
481 PrintKey( dvdcss, "title key is ", p_title_key );
483 return i_ret;
486 /* The title key request failed */
487 print_debug( dvdcss, "resetting drive and cracking title key" );
489 /* Read an unscrambled sector and reset the drive */
490 dvdcss->pf_seek( dvdcss, 0 );
491 dvdcss->pf_read( dvdcss, p_garbage, 1 );
492 dvdcss->pf_seek( dvdcss, 0 );
493 _dvdcss_disckey( dvdcss );
495 /* Fallback */
498 /* METHOD is TITLE, we can't use the ioctls or requesting the title key
499 * failed above. For these cases we try to crack the key instead. */
501 /* For now, the read limit is 9Gb / 2048 = 4718592 sectors. */
502 i_ret = CrackTitleKey( dvdcss, i_pos, 4718592, p_key );
504 memcpy( p_title_key, p_key, KEY_SIZE );
505 PrintKey( dvdcss, "title key is ", p_title_key );
507 return i_ret;
510 /*****************************************************************************
511 * _dvdcss_unscramble: does the actual descrambling of data
512 *****************************************************************************
513 * sec : sector to unscramble
514 * key : title key for this sector
515 *****************************************************************************/
516 int _dvdcss_unscramble( dvd_key_t p_key, uint8_t *p_sec )
518 unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6;
519 uint8_t *p_end = p_sec + DVDCSS_BLOCK_SIZE;
521 /* PES_scrambling_control */
522 if( !(p_sec[0x14] & 0x30) )
524 return 0;
527 i_t1 = (p_key[0] ^ p_sec[0x54]) | 0x100;
528 i_t2 = p_key[1] ^ p_sec[0x55];
529 i_t3 = (p_key[2] | (p_key[3] << 8) |
530 (p_key[4] << 16)) ^ (p_sec[0x56] |
531 (p_sec[0x57] << 8) | (p_sec[0x58] << 16));
532 i_t4 = i_t3 & 7;
533 i_t3 = i_t3 * 2 + 8 - i_t4;
534 p_sec += 0x80;
535 i_t5 = 0;
537 while( p_sec != p_end )
539 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
540 i_t2 = i_t1>>1;
541 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
542 i_t4 = p_css_tab5[i_t4];
543 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
544 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
545 i_t3 = (i_t3 << 8 ) | i_t6;
546 i_t6 = p_css_tab4[i_t6];
547 i_t5 += i_t6 + i_t4;
548 *p_sec = p_css_tab1[*p_sec] ^ ( i_t5 & 0xff );
549 p_sec++;
550 i_t5 >>= 8;
553 return 0;
556 /* Following functions are local */
558 /*****************************************************************************
559 * GetBusKey : Go through the CSS Authentication process
560 *****************************************************************************
561 * It simulates the mutual authentication between logical unit and host,
562 * and stops when a session key (called bus key) has been established.
563 * Always do the full auth sequence. Some drives seem to lie and always
564 * respond with ASF=1. For instance the old DVD roms on Compaq Armada says
565 * that ASF=1 from the start and then later fail with a 'read of scrambled
566 * block without authentication' error.
567 *****************************************************************************/
568 static int GetBusKey( dvdcss_t dvdcss )
570 uint8_t p_buffer[10];
571 uint8_t p_challenge[2*KEY_SIZE];
572 dvd_key_t p_key1;
573 dvd_key_t p_key2;
574 dvd_key_t p_key_check;
575 uint8_t i_variant = 0;
576 int i_ret = -1;
577 int i;
579 print_debug( dvdcss, "requesting AGID" );
580 i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
582 /* We might have to reset hung authentication processes in the drive
583 * by invalidating the corresponding AGID'. As long as we haven't got
584 * an AGID, invalidate one (in sequence) and try again. */
585 for( i = 0; i_ret == -1 && i < 4 ; ++i )
587 print_debug( dvdcss, "ioctl ReportAgid failed, "
588 "invalidating AGID %d", i );
590 /* This is really _not good_, should be handled by the OS.
591 * Invalidating an AGID could make another process fail somewhere
592 * in its authentication process. */
593 dvdcss->css.i_agid = i;
594 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
596 print_debug( dvdcss, "requesting AGID" );
597 i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
600 /* Unable to authenticate without AGID */
601 if( i_ret == -1 )
603 print_error( dvdcss, "ioctl ReportAgid failed, fatal" );
604 return -1;
607 /* Setup a challenge, any values should work */
608 for( i = 0 ; i < 10; ++i )
610 p_challenge[i] = i;
613 /* Get challenge from host */
614 for( i = 0 ; i < 10 ; ++i )
616 p_buffer[9-i] = p_challenge[i];
619 /* Send challenge to LU */
620 if( ioctl_SendChallenge( dvdcss->i_fd,
621 &dvdcss->css.i_agid, p_buffer ) < 0 )
623 print_error( dvdcss, "ioctl SendChallenge failed" );
624 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
625 return -1;
628 /* Get key1 from LU */
629 if( ioctl_ReportKey1( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0)
631 print_error( dvdcss, "ioctl ReportKey1 failed" );
632 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
633 return -1;
636 /* Send key1 to host */
637 for( i = 0 ; i < KEY_SIZE ; i++ )
639 p_key1[i] = p_buffer[4-i];
642 for( i = 0 ; i < 32 ; ++i )
644 CryptKey( 0, i, p_challenge, p_key_check );
646 if( memcmp( p_key_check, p_key1, KEY_SIZE ) == 0 )
648 print_debug( dvdcss, "drive authenticated, using variant %d", i );
649 i_variant = i;
650 break;
654 if( i == 32 )
656 print_error( dvdcss, "drive would not authenticate" );
657 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
658 return -1;
661 /* Get challenge from LU */
662 if( ioctl_ReportChallenge( dvdcss->i_fd,
663 &dvdcss->css.i_agid, p_buffer ) < 0 )
665 print_error( dvdcss, "ioctl ReportKeyChallenge failed" );
666 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
667 return -1;
670 /* Send challenge to host */
671 for( i = 0 ; i < 10 ; ++i )
673 p_challenge[i] = p_buffer[9-i];
676 CryptKey( 1, i_variant, p_challenge, p_key2 );
678 /* Get key2 from host */
679 for( i = 0 ; i < KEY_SIZE ; ++i )
681 p_buffer[4-i] = p_key2[i];
684 /* Send key2 to LU */
685 if( ioctl_SendKey2( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 )
687 print_error( dvdcss, "ioctl SendKey2 failed" );
688 ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid );
689 return -1;
692 /* The drive has accepted us as authentic. */
693 print_debug( dvdcss, "authentication established" );
695 memcpy( p_challenge, p_key1, KEY_SIZE );
696 memcpy( p_challenge + KEY_SIZE, p_key2, KEY_SIZE );
698 CryptKey( 2, i_variant, p_challenge, dvdcss->css.p_bus_key );
700 return 0;
703 /*****************************************************************************
704 * PrintKey : debug function that dumps a key value
705 *****************************************************************************/
706 static void PrintKey( dvdcss_t dvdcss, char *prefix, uint8_t const *data )
708 print_debug( dvdcss, "%s%02x:%02x:%02x:%02x:%02x", prefix,
709 data[0], data[1], data[2], data[3], data[4] );
712 /*****************************************************************************
713 * GetASF : Get Authentication success flag
714 *****************************************************************************
715 * Returns :
716 * -1 on ioctl error,
717 * 0 if the device needs to be authenticated,
718 * 1 either.
719 *****************************************************************************/
720 static int GetASF( dvdcss_t dvdcss )
722 int i_asf = 0;
724 if( ioctl_ReportASF( dvdcss->i_fd, NULL, &i_asf ) != 0 )
726 /* The ioctl process has failed */
727 print_error( dvdcss, "GetASF fatal error" );
728 return -1;
731 if( i_asf )
733 print_debug( dvdcss, "GetASF authenticated, ASF=1" );
735 else
737 print_debug( dvdcss, "GetASF not authenticated, ASF=0" );
740 return i_asf;
743 /*****************************************************************************
744 * CryptKey : shuffles bits and unencrypt keys.
745 *****************************************************************************
746 * Used during authentication and disc key negociation in GetBusKey.
747 * i_key_type : 0->key1, 1->key2, 2->buskey.
748 * i_variant : between 0 and 31.
749 *****************************************************************************/
750 static void CryptKey( int i_key_type, int i_variant,
751 uint8_t const *p_challenge, uint8_t *p_key )
753 /* Permutation table for challenge */
754 uint8_t pp_perm_challenge[3][10] =
755 { { 1, 3, 0, 7, 5, 2, 9, 6, 4, 8 },
756 { 6, 1, 9, 3, 8, 5, 7, 4, 0, 2 },
757 { 4, 0, 3, 5, 7, 2, 8, 6, 1, 9 } };
759 /* Permutation table for variant table for key2 and buskey */
760 uint8_t pp_perm_variant[2][32] =
761 { { 0x0a, 0x08, 0x0e, 0x0c, 0x0b, 0x09, 0x0f, 0x0d,
762 0x1a, 0x18, 0x1e, 0x1c, 0x1b, 0x19, 0x1f, 0x1d,
763 0x02, 0x00, 0x06, 0x04, 0x03, 0x01, 0x07, 0x05,
764 0x12, 0x10, 0x16, 0x14, 0x13, 0x11, 0x17, 0x15 },
765 { 0x12, 0x1a, 0x16, 0x1e, 0x02, 0x0a, 0x06, 0x0e,
766 0x10, 0x18, 0x14, 0x1c, 0x00, 0x08, 0x04, 0x0c,
767 0x13, 0x1b, 0x17, 0x1f, 0x03, 0x0b, 0x07, 0x0f,
768 0x11, 0x19, 0x15, 0x1d, 0x01, 0x09, 0x05, 0x0d } };
770 uint8_t p_variants[32] =
771 { 0xB7, 0x74, 0x85, 0xD0, 0xCC, 0xDB, 0xCA, 0x73,
772 0x03, 0xFE, 0x31, 0x03, 0x52, 0xE0, 0xB7, 0x42,
773 0x63, 0x16, 0xF2, 0x2A, 0x79, 0x52, 0xFF, 0x1B,
774 0x7A, 0x11, 0xCA, 0x1A, 0x9B, 0x40, 0xAD, 0x01 };
776 /* The "secret" key */
777 uint8_t p_secret[5] = { 0x55, 0xD6, 0xC4, 0xC5, 0x28 };
779 uint8_t p_bits[30], p_scratch[10], p_tmp1[5], p_tmp2[5];
780 uint8_t i_lfsr0_o; /* 1 bit used */
781 uint8_t i_lfsr1_o; /* 1 bit used */
782 uint8_t i_css_variant, i_cse, i_index, i_combined, i_carry;
783 uint8_t i_val = 0;
784 uint32_t i_lfsr0, i_lfsr1;
785 int i_term = 0;
786 int i_bit;
787 int i;
789 for (i = 9; i >= 0; --i)
790 p_scratch[i] = p_challenge[pp_perm_challenge[i_key_type][i]];
792 i_css_variant = ( i_key_type == 0 ) ? i_variant :
793 pp_perm_variant[i_key_type-1][i_variant];
796 * This encryption engine implements one of 32 variations
797 * one the same theme depending upon the choice in the
798 * variant parameter (0 - 31).
800 * The algorithm itself manipulates a 40 bit input into
801 * a 40 bit output.
802 * The parameter 'input' is 80 bits. It consists of
803 * the 40 bit input value that is to be encrypted followed
804 * by a 40 bit seed value for the pseudo random number
805 * generators.
808 /* Feed the secret into the input values such that
809 * we alter the seed to the LFSR's used above, then
810 * generate the bits to play with.
812 for( i = 5 ; --i >= 0 ; )
814 p_tmp1[i] = p_scratch[5 + i] ^ p_secret[i] ^ p_crypt_tab2[i];
818 * We use two LFSR's (seeded from some of the input data bytes) to
819 * generate two streams of pseudo-random bits. These two bit streams
820 * are then combined by simply adding with carry to generate a final
821 * sequence of pseudo-random bits which is stored in the buffer that
822 * 'output' points to the end of - len is the size of this buffer.
824 * The first LFSR is of degree 25, and has a polynomial of:
825 * x^13 + x^5 + x^4 + x^1 + 1
827 * The second LSFR is of degree 17, and has a (primitive) polynomial of:
828 * x^15 + x^1 + 1
830 * I don't know if these polynomials are primitive modulo 2, and thus
831 * represent maximal-period LFSR's.
834 * Note that we take the output of each LFSR from the new shifted in
835 * bit, not the old shifted out bit. Thus for ease of use the LFSR's
836 * are implemented in bit reversed order.
840 /* In order to ensure that the LFSR works we need to ensure that the
841 * initial values are non-zero. Thus when we initialise them from
842 * the seed, we ensure that a bit is set.
844 i_lfsr0 = ( p_tmp1[0] << 17 ) | ( p_tmp1[1] << 9 ) |
845 (( p_tmp1[2] & ~7 ) << 1 ) | 8 | ( p_tmp1[2] & 7 );
846 i_lfsr1 = ( p_tmp1[3] << 9 ) | 0x100 | p_tmp1[4];
848 i_index = sizeof(p_bits);
849 i_carry = 0;
853 for( i_bit = 0, i_val = 0 ; i_bit < 8 ; ++i_bit )
856 i_lfsr0_o = ( ( i_lfsr0 >> 24 ) ^ ( i_lfsr0 >> 21 ) ^
857 ( i_lfsr0 >> 20 ) ^ ( i_lfsr0 >> 12 ) ) & 1;
858 i_lfsr0 = ( i_lfsr0 << 1 ) | i_lfsr0_o;
860 i_lfsr1_o = ( ( i_lfsr1 >> 16 ) ^ ( i_lfsr1 >> 2 ) ) & 1;
861 i_lfsr1 = ( i_lfsr1 << 1 ) | i_lfsr1_o;
863 i_combined = !i_lfsr1_o + i_carry + !i_lfsr0_o;
864 /* taking bit 1 */
865 i_carry = ( i_combined >> 1 ) & 1;
866 i_val |= ( i_combined & 1 ) << i_bit;
869 p_bits[--i_index] = i_val;
870 } while( i_index > 0 );
872 /* This term is used throughout the following to
873 * select one of 32 different variations on the
874 * algorithm.
876 i_cse = p_variants[i_css_variant] ^ p_crypt_tab2[i_css_variant];
878 /* Now the actual blocks doing the encryption. Each
879 * of these works on 40 bits at a time and are quite
880 * similar.
882 i_index = 0;
883 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_scratch[i] )
885 i_index = p_bits[25 + i] ^ p_scratch[i];
886 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
888 p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
890 p_tmp1[4] ^= p_tmp1[0];
892 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
894 i_index = p_bits[20 + i] ^ p_tmp1[i];
895 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
897 p_tmp2[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
899 p_tmp2[4] ^= p_tmp2[0];
901 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] )
903 i_index = p_bits[15 + i] ^ p_tmp2[i];
904 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
905 i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
907 p_tmp1[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index];
909 p_tmp1[4] ^= p_tmp1[0];
911 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
913 i_index = p_bits[10 + i] ^ p_tmp1[i];
914 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
916 i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
918 p_tmp2[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index];
920 p_tmp2[4] ^= p_tmp2[0];
922 for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] )
924 i_index = p_bits[5 + i] ^ p_tmp2[i];
925 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
927 p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
929 p_tmp1[4] ^= p_tmp1[0];
931 for(i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] )
933 i_index = p_bits[i] ^ p_tmp1[i];
934 i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse;
936 p_key[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term;
939 return;
942 /*****************************************************************************
943 * DecryptKey: decrypt p_crypted with p_key.
944 *****************************************************************************
945 * Used to decrypt the disc key, with a player key, after requesting it
946 * in _dvdcss_disckey and to decrypt title keys, with a disc key, requested
947 * in _dvdcss_titlekey.
948 * The player keys and the resulting disc key are only used as KEKs
949 * (key encryption keys).
950 * Decryption is slightly dependant on the type of key:
951 * -for disc key, invert is 0x00,
952 * -for title key, invert if 0xff.
953 *****************************************************************************/
954 static void DecryptKey( uint8_t invert, uint8_t const *p_key,
955 uint8_t const *p_crypted, uint8_t *p_result )
957 unsigned int i_lfsr1_lo;
958 unsigned int i_lfsr1_hi;
959 unsigned int i_lfsr0;
960 unsigned int i_combined;
961 uint8_t o_lfsr0;
962 uint8_t o_lfsr1;
963 uint8_t k[5];
964 int i;
966 i_lfsr1_lo = p_key[0] | 0x100;
967 i_lfsr1_hi = p_key[1];
969 i_lfsr0 = ( ( p_key[4] << 17 )
970 | ( p_key[3] << 9 )
971 | ( p_key[2] << 1 ) )
972 + 8 - ( p_key[2] & 7 );
973 i_lfsr0 = ( p_css_tab4[i_lfsr0 & 0xff] << 24 ) |
974 ( p_css_tab4[( i_lfsr0 >> 8 ) & 0xff] << 16 ) |
975 ( p_css_tab4[( i_lfsr0 >> 16 ) & 0xff] << 8 ) |
976 p_css_tab4[( i_lfsr0 >> 24 ) & 0xff];
978 i_combined = 0;
979 for( i = 0 ; i < KEY_SIZE ; ++i )
981 o_lfsr1 = p_css_tab2[i_lfsr1_hi] ^ p_css_tab3[i_lfsr1_lo];
982 i_lfsr1_hi = i_lfsr1_lo >> 1;
983 i_lfsr1_lo = ( ( i_lfsr1_lo & 1 ) << 8 ) ^ o_lfsr1;
984 o_lfsr1 = p_css_tab4[o_lfsr1];
986 o_lfsr0 = ((((((( i_lfsr0 >> 8 ) ^ i_lfsr0 ) >> 1 )
987 ^ i_lfsr0 ) >> 3 ) ^ i_lfsr0 ) >> 7 );
988 i_lfsr0 = ( i_lfsr0 >> 8 ) | ( o_lfsr0 << 24 );
990 i_combined += ( o_lfsr0 ^ invert ) + o_lfsr1;
991 k[i] = i_combined & 0xff;
992 i_combined >>= 8;
995 p_result[4] = k[4] ^ p_css_tab1[p_crypted[4]] ^ p_crypted[3];
996 p_result[3] = k[3] ^ p_css_tab1[p_crypted[3]] ^ p_crypted[2];
997 p_result[2] = k[2] ^ p_css_tab1[p_crypted[2]] ^ p_crypted[1];
998 p_result[1] = k[1] ^ p_css_tab1[p_crypted[1]] ^ p_crypted[0];
999 p_result[0] = k[0] ^ p_css_tab1[p_crypted[0]] ^ p_result[4];
1001 p_result[4] = k[4] ^ p_css_tab1[p_result[4]] ^ p_result[3];
1002 p_result[3] = k[3] ^ p_css_tab1[p_result[3]] ^ p_result[2];
1003 p_result[2] = k[2] ^ p_css_tab1[p_result[2]] ^ p_result[1];
1004 p_result[1] = k[1] ^ p_css_tab1[p_result[1]] ^ p_result[0];
1005 p_result[0] = k[0] ^ p_css_tab1[p_result[0]];
1007 return;
1010 /*****************************************************************************
1011 * player_keys: alternate DVD player keys
1012 *****************************************************************************
1013 * These player keys were generated using Frank A. Stevenson's PlayerKey
1014 * cracker. A copy of his article can be found here:
1015 * http://www-2.cs.cmu.edu/~dst/DeCSS/FrankStevenson/mail2.txt
1016 *****************************************************************************/
1017 static const dvd_key_t player_keys[] =
1019 { 0x01, 0xaf, 0xe3, 0x12, 0x80 },
1020 { 0x12, 0x11, 0xca, 0x04, 0x3b },
1021 { 0x14, 0x0c, 0x9e, 0xd0, 0x09 },
1022 { 0x14, 0x71, 0x35, 0xba, 0xe2 },
1023 { 0x1a, 0xa4, 0x33, 0x21, 0xa6 },
1024 { 0x26, 0xec, 0xc4, 0xa7, 0x4e },
1025 { 0x2c, 0xb2, 0xc1, 0x09, 0xee },
1026 { 0x2f, 0x25, 0x9e, 0x96, 0xdd },
1027 { 0x33, 0x2f, 0x49, 0x6c, 0xe0 },
1028 { 0x35, 0x5b, 0xc1, 0x31, 0x0f },
1029 { 0x36, 0x67, 0xb2, 0xe3, 0x85 },
1030 { 0x39, 0x3d, 0xf1, 0xf1, 0xbd },
1031 { 0x3b, 0x31, 0x34, 0x0d, 0x91 },
1032 { 0x45, 0xed, 0x28, 0xeb, 0xd3 },
1033 { 0x48, 0xb7, 0x6c, 0xce, 0x69 },
1034 { 0x4b, 0x65, 0x0d, 0xc1, 0xee },
1035 { 0x4c, 0xbb, 0xf5, 0x5b, 0x23 },
1036 { 0x51, 0x67, 0x67, 0xc5, 0xe0 },
1037 { 0x53, 0x94, 0xe1, 0x75, 0xbf },
1038 { 0x57, 0x2c, 0x8b, 0x31, 0xae },
1039 { 0x63, 0xdb, 0x4c, 0x5b, 0x4a },
1040 { 0x7b, 0x1e, 0x5e, 0x2b, 0x57 },
1041 { 0x85, 0xf3, 0x85, 0xa0, 0xe0 },
1042 { 0xab, 0x1e, 0xe7, 0x7b, 0x72 },
1043 { 0xab, 0x36, 0xe3, 0xeb, 0x76 },
1044 { 0xb1, 0xb8, 0xf9, 0x38, 0x03 },
1045 { 0xb8, 0x5d, 0xd8, 0x53, 0xbd },
1046 { 0xbf, 0x92, 0xc3, 0xb0, 0xe2 },
1047 { 0xcf, 0x1a, 0xb2, 0xf8, 0x0a },
1048 { 0xec, 0xa0, 0xcf, 0xb3, 0xff },
1049 { 0xfc, 0x95, 0xa9, 0x87, 0x35 }
1052 /*****************************************************************************
1053 * DecryptDiscKey
1054 *****************************************************************************
1055 * Decryption of the disc key with player keys: try to decrypt the disc key
1056 * from every position with every player key.
1057 * p_struct_disckey: the 2048 byte DVD_STRUCT_DISCKEY data
1058 * p_disc_key: result, the 5 byte disc key
1059 *****************************************************************************/
1060 static int DecryptDiscKey( dvdcss_t dvdcss, uint8_t const *p_struct_disckey,
1061 dvd_key_t p_disc_key )
1063 uint8_t p_verify[KEY_SIZE];
1064 unsigned int i, n = 0;
1066 /* Decrypt disc key with the above player keys */
1067 for( n = 0; n < sizeof(player_keys) / sizeof(dvd_key_t); n++ )
1069 PrintKey( dvdcss, "trying player key ", player_keys[n] );
1071 for( i = 1; i < 409; i++ )
1073 /* Check if player key n is the right key for position i. */
1074 DecryptKey( 0, player_keys[n], p_struct_disckey + 5 * i,
1075 p_disc_key );
1077 /* The first part in the struct_disckey block is the
1078 * 'disc key' encrypted with itself. Using this we
1079 * can check if we decrypted the correct key. */
1080 DecryptKey( 0, p_disc_key, p_struct_disckey, p_verify );
1082 /* If the position / player key pair worked then return. */
1083 if( memcmp( p_disc_key, p_verify, KEY_SIZE ) == 0 )
1085 return 0;
1090 /* Have tried all combinations of positions and keys,
1091 * and we still didn't succeed. */
1092 memset( p_disc_key, 0, KEY_SIZE );
1093 return -1;
1096 /*****************************************************************************
1097 * DecryptTitleKey
1098 *****************************************************************************
1099 * Decrypt the title key using the disc key.
1100 * p_disc_key: result, the 5 byte disc key
1101 * p_titlekey: the encrypted title key, gets overwritten by the decrypted key
1102 *****************************************************************************/
1103 static void DecryptTitleKey( dvd_key_t p_disc_key, dvd_key_t p_titlekey )
1105 DecryptKey( 0xff, p_disc_key, p_titlekey, p_titlekey );
1108 /*****************************************************************************
1109 * CrackDiscKey: brute force disc key
1110 * CSS hash reversal function designed by Frank Stevenson
1111 *****************************************************************************
1112 * This function uses a big amount of memory to crack the disc key from the
1113 * disc key hash, if player keys are not available.
1114 *****************************************************************************/
1115 #define K1TABLEWIDTH 10
1118 * Simple function to test if a candidate key produces the given hash
1120 static int investigate( unsigned char *hash, unsigned char *ckey )
1122 unsigned char key[KEY_SIZE];
1124 DecryptKey( 0, ckey, hash, key );
1126 return memcmp( key, ckey, KEY_SIZE );
1129 static int CrackDiscKey( dvdcss_t dvdcss, uint8_t *p_disc_key )
1131 unsigned char B[5] = { 0,0,0,0,0 }; /* Second Stage of mangle cipher */
1132 unsigned char C[5] = { 0,0,0,0,0 }; /* Output Stage of mangle cipher
1133 * IntermediateKey */
1134 unsigned char k[5] = { 0,0,0,0,0 }; /* Mangling cipher key
1135 * Also output from CSS( C ) */
1136 unsigned char out1[5]; /* five first output bytes of LFSR1 */
1137 unsigned char out2[5]; /* five first output bytes of LFSR2 */
1138 unsigned int lfsr1a; /* upper 9 bits of LFSR1 */
1139 unsigned int lfsr1b; /* lower 8 bits of LFSR1 */
1140 unsigned int tmp, tmp2, tmp3, tmp4,tmp5;
1141 int i,j;
1142 unsigned int nStepA; /* iterator for LFSR1 start state */
1143 unsigned int nStepB; /* iterator for possible B[0] */
1144 unsigned int nTry; /* iterator for K[1] possibilities */
1145 unsigned int nPossibleK1; /* #of possible K[1] values */
1146 unsigned char* K1table; /* Lookup table for possible K[1] */
1147 unsigned int* BigTable; /* LFSR2 startstate indexed by
1148 * 1,2,5 output byte */
1151 * Prepare tables for hash reversal
1154 /* initialize lookup tables for k[1] */
1155 K1table = malloc( 65536 * K1TABLEWIDTH );
1156 memset( K1table, 0 , 65536 * K1TABLEWIDTH );
1157 if( K1table == NULL )
1159 return -1;
1162 tmp = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ];
1163 for( i = 0 ; i < 256 ; i++ ) /* k[1] */
1165 tmp2 = p_css_tab1[ tmp ^ i ]; /* p_css_tab1[ B[1] ]*/
1167 for( j = 0 ; j < 256 ; j++ ) /* B[0] */
1169 tmp3 = j ^ tmp2 ^ i; /* C[1] */
1170 tmp4 = K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ]; /* count of entries here */
1171 tmp4++;
1173 if( tmp4 == K1TABLEWIDTH )
1175 print_debug( dvdcss, "Table disaster %d", tmp4 );
1178 if( tmp4 < K1TABLEWIDTH )
1180 K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) + tmp4 ] = i;
1182 K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ] = tmp4;
1186 /* Initing our Really big table */
1187 BigTable = malloc( 16777216 * sizeof(int) );
1188 memset( BigTable, 0 , 16777216 * sizeof(int) );
1189 if( BigTable == NULL )
1191 return -1;
1194 tmp3 = 0;
1196 print_debug( dvdcss, "initializing the big table" );
1198 for( i = 0 ; i < 16777216 ; i++ )
1200 tmp = (( i + i ) & 0x1fffff0 ) | 0x8 | ( i & 0x7 );
1202 for( j = 0 ; j < 5 ; j++ )
1204 tmp2=((((((( tmp >> 3 ) ^ tmp ) >> 1 ) ^ tmp ) >> 8 )
1205 ^ tmp ) >> 5 ) & 0xff;
1206 tmp = ( tmp << 8) | tmp2;
1207 out2[j] = p_css_tab4[ tmp2 ];
1210 j = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1211 BigTable[j] = i;
1215 * We are done initing, now reverse hash
1217 tmp5 = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ];
1219 for( nStepA = 0 ; nStepA < 65536 ; nStepA ++ )
1221 lfsr1a = 0x100 | ( nStepA >> 8 );
1222 lfsr1b = nStepA & 0xff;
1224 /* Generate 5 first output bytes from lfsr1 */
1225 for( i = 0 ; i < 5 ; i++ )
1227 tmp = p_css_tab2[ lfsr1b ] ^ p_css_tab3[ lfsr1a ];
1228 lfsr1b = lfsr1a >> 1;
1229 lfsr1a = ((lfsr1a&1)<<8) ^ tmp;
1230 out1[ i ] = p_css_tab4[ tmp ];
1233 /* cumpute and cache some variables */
1234 C[0] = nStepA >> 8;
1235 C[1] = nStepA & 0xff;
1236 tmp = p_disc_key[3] ^ p_css_tab1[ p_disc_key[4] ];
1237 tmp2 = p_css_tab1[ p_disc_key[0] ];
1239 /* Search through all possible B[0] */
1240 for( nStepB = 0 ; nStepB < 256 ; nStepB++ )
1242 /* reverse parts of the mangling cipher */
1243 B[0] = nStepB;
1244 k[0] = p_css_tab1[ B[0] ] ^ C[0];
1245 B[4] = B[0] ^ k[0] ^ tmp2;
1246 k[4] = B[4] ^ tmp;
1247 nPossibleK1 = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) ];
1249 /* Try out all possible values for k[1] */
1250 for( nTry = 0 ; nTry < nPossibleK1 ; nTry++ )
1252 k[1] = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) + nTry + 1 ];
1253 B[1] = tmp5 ^ k[1];
1255 /* reconstruct output from LFSR2 */
1256 tmp3 = ( 0x100 + k[0] - out1[0] );
1257 out2[0] = tmp3 & 0xff;
1258 tmp3 = tmp3 & 0x100 ? 0x100 : 0xff;
1259 tmp3 = ( tmp3 + k[1] - out1[1] );
1260 out2[1] = tmp3 & 0xff;
1261 tmp3 = ( 0x100 + k[4] - out1[4] );
1262 out2[4] = tmp3 & 0xff; /* Can be 1 off */
1264 /* test first possible out2[4] */
1265 tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1266 tmp4 = BigTable[ tmp4 ];
1267 C[2] = tmp4 & 0xff;
1268 C[3] = ( tmp4 >> 8 ) & 0xff;
1269 C[4] = ( tmp4 >> 16 ) & 0xff;
1270 B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4];
1271 k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3];
1272 B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3];
1273 k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2];
1275 if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] )
1277 if( ! investigate( &p_disc_key[0] , &C[0] ) )
1279 goto end;
1283 /* Test second possible out2[4] */
1284 out2[4] = ( out2[4] + 0xff ) & 0xff;
1285 tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4];
1286 tmp4 = BigTable[ tmp4 ];
1287 C[2] = tmp4 & 0xff;
1288 C[3] = ( tmp4 >> 8 ) & 0xff;
1289 C[4] = ( tmp4 >> 16 ) & 0xff;
1290 B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4];
1291 k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3];
1292 B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3];
1293 k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2];
1295 if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] )
1297 if( ! investigate( &p_disc_key[0] , &C[0] ) )
1299 goto end;
1306 end:
1308 memcpy( p_disc_key, &C[0], KEY_SIZE );
1310 free( K1table );
1311 free( BigTable );
1313 return 0;
1316 /*****************************************************************************
1317 * RecoverTitleKey: (title) key recovery from cipher and plain text
1318 * Function designed by Frank Stevenson
1319 *****************************************************************************
1320 * Called from Attack* which are in turn called by CrackTitleKey. Given
1321 * a guessed(?) plain text and the cipher text. Returns -1 on failure.
1322 *****************************************************************************/
1323 static int RecoverTitleKey( int i_start, uint8_t const *p_crypted,
1324 uint8_t const *p_decrypted,
1325 uint8_t const *p_sector_seed, uint8_t *p_key )
1327 uint8_t p_buffer[10];
1328 unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6;
1329 unsigned int i_try;
1330 unsigned int i_candidate;
1331 unsigned int i, j;
1332 int i_exit = -1;
1334 for( i = 0 ; i < 10 ; i++ )
1336 p_buffer[i] = p_css_tab1[p_crypted[i]] ^ p_decrypted[i];
1339 for( i_try = i_start ; i_try < 0x10000 ; i_try++ )
1341 i_t1 = i_try >> 8 | 0x100;
1342 i_t2 = i_try & 0xff;
1343 i_t3 = 0; /* not needed */
1344 i_t5 = 0;
1346 /* iterate cipher 4 times to reconstruct LFSR2 */
1347 for( i = 0 ; i < 4 ; i++ )
1349 /* advance LFSR1 normaly */
1350 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
1351 i_t2 = i_t1 >> 1;
1352 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
1353 i_t4 = p_css_tab5[i_t4];
1354 /* deduce i_t6 & i_t5 */
1355 i_t6 = p_buffer[i];
1356 if( i_t5 )
1358 i_t6 = ( i_t6 + 0xff ) & 0x0ff;
1360 if( i_t6 < i_t4 )
1362 i_t6 += 0x100;
1364 i_t6 -= i_t4;
1365 i_t5 += i_t6 + i_t4;
1366 i_t6 = p_css_tab4[ i_t6 ];
1367 /* feed / advance i_t3 / i_t5 */
1368 i_t3 = ( i_t3 << 8 ) | i_t6;
1369 i_t5 >>= 8;
1372 i_candidate = i_t3;
1374 /* iterate 6 more times to validate candidate key */
1375 for( ; i < 10 ; i++ )
1377 i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1];
1378 i_t2 = i_t1 >> 1;
1379 i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4;
1380 i_t4 = p_css_tab5[i_t4];
1381 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
1382 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
1383 i_t3 = ( i_t3 << 8 ) | i_t6;
1384 i_t6 = p_css_tab4[i_t6];
1385 i_t5 += i_t6 + i_t4;
1386 if( ( i_t5 & 0xff ) != p_buffer[i] )
1388 break;
1391 i_t5 >>= 8;
1394 if( i == 10 )
1396 /* Do 4 backwards steps of iterating t3 to deduce initial state */
1397 i_t3 = i_candidate;
1398 for( i = 0 ; i < 4 ; i++ )
1400 i_t1 = i_t3 & 0xff;
1401 i_t3 = ( i_t3 >> 8 );
1402 /* easy to code, and fast enough bruteforce
1403 * search for byte shifted in */
1404 for( j = 0 ; j < 256 ; j++ )
1406 i_t3 = ( i_t3 & 0x1ffff ) | ( j << 17 );
1407 i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^
1408 i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff;
1409 if( i_t6 == i_t1 )
1411 break;
1416 i_t4 = ( i_t3 >> 1 ) - 4;
1417 for( i_t5 = 0 ; i_t5 < 8; i_t5++ )
1419 if( ( ( i_t4 + i_t5 ) * 2 + 8 - ( (i_t4 + i_t5 ) & 7 ) )
1420 == i_t3 )
1422 p_key[0] = i_try>>8;
1423 p_key[1] = i_try & 0xFF;
1424 p_key[2] = ( ( i_t4 + i_t5 ) >> 0 ) & 0xFF;
1425 p_key[3] = ( ( i_t4 + i_t5 ) >> 8 ) & 0xFF;
1426 p_key[4] = ( ( i_t4 + i_t5 ) >> 16 ) & 0xFF;
1427 i_exit = i_try + 1;
1433 if( i_exit >= 0 )
1435 p_key[0] ^= p_sector_seed[0];
1436 p_key[1] ^= p_sector_seed[1];
1437 p_key[2] ^= p_sector_seed[2];
1438 p_key[3] ^= p_sector_seed[3];
1439 p_key[4] ^= p_sector_seed[4];
1442 return i_exit;
1446 /******************************************************************************
1447 * Various pieces for the title crack engine.
1448 ******************************************************************************
1449 * The length of the PES packet is located at 0x12-0x13.
1450 * The the copyrigth protection bits are located at 0x14 (bits 0x20 and 0x10).
1451 * The data of the PES packet begins at 0x15 (if there isn't any PTS/DTS)
1452 * or at 0x?? if there are both PTS and DTS's.
1453 * The seed value used with the unscrambling key is the 5 bytes at 0x54-0x58.
1454 * The scrabled part of a sector begins at 0x80.
1455 *****************************************************************************/
1457 /* Statistics */
1458 static int i_tries = 0, i_success = 0;
1460 /*****************************************************************************
1461 * CrackTitleKey: try to crack title key from the contents of a VOB.
1462 *****************************************************************************
1463 * This function is called by _dvdcss_titlekey to find a title key, if we've
1464 * chosen to crack title key instead of decrypting it with the disc key.
1465 * The DVD should have been opened and be in an authenticated state.
1466 * i_pos is the starting sector, i_len is the maximum number of sectors to read
1467 *****************************************************************************/
1468 static int CrackTitleKey( dvdcss_t dvdcss, int i_pos, int i_len,
1469 dvd_key_t p_titlekey )
1471 uint8_t p_buf[ DVDCSS_BLOCK_SIZE ];
1472 const uint8_t p_packstart[4] = { 0x00, 0x00, 0x01, 0xba };
1473 int i_reads = 0;
1474 int i_encrypted = 0;
1475 int b_stop_scanning = 0;
1476 int b_read_error = 0;
1477 int i_ret;
1479 print_debug( dvdcss, "cracking title key at block %i", i_pos );
1481 i_tries = 0;
1482 i_success = 0;
1486 i_ret = dvdcss->pf_seek( dvdcss, i_pos );
1488 if( i_ret != i_pos )
1490 print_error( dvdcss, "seek failed" );
1493 i_ret = dvdcss_read( dvdcss, p_buf, 1, DVDCSS_NOFLAGS );
1495 /* Either we are at the end of the physical device or the auth
1496 * have failed / were not done and we got a read error. */
1497 if( i_ret <= 0 )
1499 if( i_ret == 0 )
1501 print_debug( dvdcss, "read returned 0 (end of device?)" );
1503 else if( !b_read_error )
1505 print_debug( dvdcss, "read error at block %i, resorting to "
1506 "secret arcanes to recover", i_pos );
1508 /* Reset the drive before trying to continue */
1509 _dvdcss_close( dvdcss );
1510 _dvdcss_open( dvdcss );
1512 b_read_error = 1;
1513 continue;
1515 break;
1518 /* Stop when we find a non MPEG stream block.
1519 * (We must have reached the end of the stream).
1520 * For now, allow all blocks that begin with a start code. */
1521 if( memcmp( p_buf, p_packstart, 3 ) )
1523 print_debug( dvdcss, "non MPEG block found at block %i "
1524 "(end of title)", i_pos );
1525 break;
1528 if( p_buf[0x0d] & 0x07 )
1529 print_debug( dvdcss, "stuffing in pack header" );
1531 /* PES_scrambling_control does not exist in a system_header,
1532 * a padding_stream or a private_stream2 (and others?). */
1533 if( p_buf[0x14] & 0x30 && ! ( p_buf[0x11] == 0xbb
1534 || p_buf[0x11] == 0xbe
1535 || p_buf[0x11] == 0xbf ) )
1537 i_encrypted++;
1539 if( AttackPattern(p_buf, i_reads, p_titlekey) > 0 )
1541 b_stop_scanning = 1;
1543 #if 0
1544 if( AttackPadding(p_buf, i_reads, p_titlekey) > 0 )
1546 b_stop_scanning = 1;
1548 #endif
1551 i_pos++;
1552 i_len--;
1553 i_reads++;
1555 /* Emit a progress indication now and then. */
1556 if( !( i_reads & 0xfff ) )
1558 print_debug( dvdcss, "at block %i, still cracking...", i_pos );
1561 /* Stop after 2000 blocks if we haven't seen any encrypted blocks. */
1562 if( i_reads >= 2000 && i_encrypted == 0 ) break;
1564 } while( !b_stop_scanning && i_len > 0);
1566 if( !b_stop_scanning )
1568 print_debug( dvdcss, "end of title reached" );
1571 /* Print some statistics. */
1572 print_debug( dvdcss, "successful attempts %d/%d, scrambled blocks %d/%d",
1573 i_success, i_tries, i_encrypted, i_reads );
1575 if( i_success > 0 /* b_stop_scanning */ )
1577 print_debug( dvdcss, "vts key initialized" );
1578 return 1;
1581 if( i_encrypted == 0 && i_reads > 0 )
1583 memset( p_titlekey, 0, KEY_SIZE );
1584 print_debug( dvdcss, "no scrambled sectors found" );
1585 return 0;
1588 memset( p_titlekey, 0, KEY_SIZE );
1589 return -1;
1593 /******************************************************************************
1594 * The original Ethan Hawke (DeCSSPlus) attack (modified).
1595 ******************************************************************************
1596 * Tries to find a repeating pattern just before the encrypted part starts.
1597 * Then it guesses that the plain text for first encrypted bytes are
1598 * a contiuation of that pattern.
1599 *****************************************************************************/
1600 static int AttackPattern( uint8_t const p_sec[ DVDCSS_BLOCK_SIZE ],
1601 int i_pos, uint8_t *p_key )
1603 unsigned int i_best_plen = 0;
1604 unsigned int i_best_p = 0;
1605 unsigned int i, j;
1607 /* For all cycle length from 2 to 48 */
1608 for( i = 2 ; i < 0x30 ; i++ )
1610 /* Find the number of bytes that repeats in cycles. */
1611 for( j = i + 1;
1612 j < 0x80 && ( p_sec[0x7F - (j%i)] == p_sec[0x7F - j] );
1613 j++ )
1615 /* We have found j repeating bytes with a cycle length i. */
1616 if( j > i_best_plen )
1618 i_best_plen = j;
1619 i_best_p = i;
1624 /* We need at most 10 plain text bytes?, so a make sure that we
1625 * have at least 20 repeated bytes and that they have cycled at
1626 * least one time. */
1627 if( ( i_best_plen > 3 ) && ( i_best_plen / i_best_p >= 2) )
1629 int res;
1631 i_tries++;
1632 memset( p_key, 0, KEY_SIZE );
1633 res = RecoverTitleKey( 0, &p_sec[0x80],
1634 &p_sec[ 0x80 - (i_best_plen / i_best_p) * i_best_p ],
1635 &p_sec[0x54] /* key_seed */, p_key );
1636 i_success += ( res >= 0 );
1637 #if 0
1638 if( res >= 0 )
1640 fprintf( stderr, "key is %02x:%02x:%02x:%02x:%02x ",
1641 p_key[0], p_key[1], p_key[2], p_key[3], p_key[4] );
1642 fprintf( stderr, "at block %5d pattern len %3d period %3d %s\n",
1643 i_pos, i_best_plen, i_best_p, (res>=0?"y":"n") );
1645 #endif
1646 return ( res >= 0 );
1649 return 0;
1653 #if 0
1654 /******************************************************************************
1655 * Encrypted Padding_stream attack.
1656 ******************************************************************************
1657 * DVD specifies that there must only be one type of data in every sector.
1658 * Every sector is one pack and so must obviously be 2048 bytes long.
1659 * For the last pice of video data before a VOBU boundary there might not
1660 * be exactly the right amount of data to fill a sector. Then one has to
1661 * pad the pack to 2048 bytes. For just a few bytes this is done in the
1662 * header but for any large amount you insert a PES packet from the
1663 * Padding stream. This looks like 0x00 00 01 be xx xx ff ff ...
1664 * where xx xx is the length of the padding stream.
1665 *****************************************************************************/
1666 static int AttackPadding( uint8_t const p_sec[ DVDCSS_BLOCK_SIZE ],
1667 int i_pos, uint8_t *p_key )
1669 unsigned int i_pes_length;
1670 /*static int i_tries = 0, i_success = 0;*/
1672 i_pes_length = (p_sec[0x12]<<8) | p_sec[0x13];
1674 /* Coverd by the test below but usfull for debuging. */
1675 if( i_pes_length == DVDCSS_BLOCK_SIZE - 0x14 ) return 0;
1677 /* There must be room for at least 4? bytes of padding stream,
1678 * and it must be encrypted.
1679 * sector size - pack/pes header - padding startcode - padding length */
1680 if( ( DVDCSS_BLOCK_SIZE - 0x14 - 4 - 2 - i_pes_length < 4 ) ||
1681 ( p_sec[0x14 + i_pes_length + 0] == 0x00 &&
1682 p_sec[0x14 + i_pes_length + 1] == 0x00 &&
1683 p_sec[0x14 + i_pes_length + 2] == 0x01 ) )
1685 fprintf( stderr, "plain %d %02x:%02x:%02x:%02x (type %02x sub %02x)\n",
1686 DVDCSS_BLOCK_SIZE - 0x14 - 4 - 2 - i_pes_length,
1687 p_sec[0x14 + i_pes_length + 0],
1688 p_sec[0x14 + i_pes_length + 1],
1689 p_sec[0x14 + i_pes_length + 2],
1690 p_sec[0x14 + i_pes_length + 3],
1691 p_sec[0x11], p_sec[0x17 + p_sec[0x16]]);
1692 return 0;
1695 /* If we are here we know that there is a where in the pack a
1696 encrypted PES header is (startcode + length). It's never more
1697 than two packets in the pack, so we 'know' the length. The
1698 plaintext at offset (0x14 + i_pes_length) will then be
1699 00 00 01 e0/bd/be xx xx, in the case of be the following bytes
1700 are also known. */
1702 /* An encrypted SPU PES packet with another encrypted PES packet following.
1703 Normaly if the following was a padding stream that would be in plain
1704 text. So it will be another SPU PES packet. */
1705 if( p_sec[0x11] == 0xbd &&
1706 p_sec[0x17 + p_sec[0x16]] >= 0x20 &&
1707 p_sec[0x17 + p_sec[0x16]] <= 0x3f )
1709 i_tries++;
1712 /* A Video PES packet with another encrypted PES packet following.
1713 * No reason execpt for time stamps to break the data into two packets.
1714 * So it's likely that the following PES packet is a padding stream. */
1715 if( p_sec[0x11] == 0xe0 )
1717 i_tries++;
1720 if( 1 )
1722 /*fprintf( stderr, "key is %02x:%02x:%02x:%02x:%02x ",
1723 p_key[0], p_key[1], p_key[2], p_key[3], p_key[4] );*/
1724 fprintf( stderr, "at block %5d padding len %4d "
1725 "type %02x sub %02x\n", i_pos, i_pes_length,
1726 p_sec[0x11], p_sec[0x17 + p_sec[0x16]]);
1729 return 0;
1731 #endif