4 * \brief Does mjpeg encoding as required by the zrmjpeg filter as well
5 * as by the zr video driver.
8 * Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>, license GPL v2 or later
9 * - based on vd_lavc.c by A'rpi (C) 2002-2003
10 * - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
12 * This files includes a straightforward (to be) optimized JPEG encoder for
13 * the YUV422 format, based on mjpeg code from ffmpeg.
15 * For an excellent introduction to the JPEG format, see:
16 * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
26 #include "img_format.h"
30 /* We need this #define because we need ../libavcodec/common.h to #define
31 * be2me_32, otherwise the linker will complain that it doesn't exist */
32 #define HAVE_AV_CONFIG_H
33 #include "libavcodec/avcodec.h"
34 #include "libavcodec/dsputil.h"
35 #include "libavcodec/mpegvideo.h"
36 //#include "jpeg_enc.h" /* this file is not present yet */
42 extern int avcodec_initialized
;
44 /* some convenient #define's, is this portable enough? */
45 /// Printout with vf_zrmjpeg: prefix at VERBOSE level
46 #define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
47 /// Printout with vf_zrmjpeg: prefix at ERROR level
48 #define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
49 /// Printout with vf_zrmjpeg: prefix at WARNING level
50 #define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
51 "vf_zrmjpeg: " __VA_ARGS__)
53 // "local" flag in vd_ffmpeg.c. If not set, avcodec_init() et. al. need to be called
54 // set when init is done, so that initialization is not done twice.
55 extern int avcodec_initialized
;
57 /// structure copied from mjpeg.c
58 /* zrmjpeg_encode_mb needs access to these tables for the black & white
60 typedef struct MJpegContext
{
61 uint8_t huff_size_dc_luminance
[12];
62 uint16_t huff_code_dc_luminance
[12];
63 uint8_t huff_size_dc_chrominance
[12];
64 uint16_t huff_code_dc_chrominance
[12];
66 uint8_t huff_size_ac_luminance
[256];
67 uint16_t huff_code_ac_luminance
[256];
68 uint8_t huff_size_ac_chrominance
[256];
69 uint16_t huff_code_ac_chrominance
[256];
72 /// The get_pixels() routine to use. The real routine comes from dsputil
73 static void (*get_pixels
)(DCTELEM
*restrict block
, const uint8_t *pixels
, int line_size
);
75 /* Begin excessive code duplication ************************************/
76 /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
78 /// copy of the table in mpegvideo.c
79 static const unsigned short aanscales
[64] = {
80 /**< precomputed values scaled up by 14 bits */
81 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
82 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
83 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
84 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
85 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
86 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
87 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
88 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
91 /// Precompute DCT quantizing matrix
93 * This routine will precompute the combined DCT matrix with qscale
94 * and DCT renorm needed by the MPEG encoder here. It is basically the
95 * same as the routine with the same name in mpegvideo.c, except for
96 * some coefficient changes. The matrix will be computed in two variations,
97 * depending on the DCT version used. The second used by the MMX version of DCT.
99 * \param s MpegEncContext pointer
100 * \param qmat[OUT] pointer to where the matrix is stored
101 * \param qmat16[OUT] pointer to where matrix for MMX is stored.
102 * This matrix is not permutated
103 * and second 64 entries are bias
104 * \param quant_matrix[IN] the quantizion matrix to use
105 * \param bias bias for the quantizer
106 * \param qmin minimum qscale value to set up for
107 * \param qmax maximum qscale value to set up for
109 * Only rows between qmin and qmax will be populated in the matrix.
110 * In this MJPEG encoder, only the value 8 for qscale is used.
112 static void convert_matrix(MpegEncContext
*s
, int (*qmat
)[64],
113 uint16_t (*qmat16
)[2][64], const uint16_t *quant_matrix
,
114 int bias
, int qmin
, int qmax
) {
117 for(qscale
= qmin
; qscale
<= qmax
; qscale
++) {
119 if (s
->dsp
.fdct
== ff_jpeg_fdct_islow
) {
120 for (i
= 0; i
< 64; i
++) {
121 const int j
= s
->dsp
.idct_permutation
[i
];
122 /* 16 <= qscale * quant_matrix[i] <= 7905
123 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
124 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
125 * >= (1<<36)/249205026
126 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
127 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
129 (qscale
*quant_matrix
[j
]));
131 } else if (s
->dsp
.fdct
== fdct_ifast
) {
132 for (i
= 0; i
< 64; i
++) {
133 const int j
= s
->dsp
.idct_permutation
[i
];
134 /* 16 <= qscale * quant_matrix[i] <= 7905
135 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
136 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
137 * >= (1<<36)/249205026
138 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
139 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
140 (QMAT_SHIFT
+ 11))/(aanscales
[i
]
141 *qscale
* quant_matrix
[j
]));
144 for (i
= 0; i
< 64; i
++) {
145 const int j
= s
->dsp
.idct_permutation
[i
];
146 /* We can safely assume that 16 <= quant_matrix[i] <= 255
147 * So 16 <= qscale * quant_matrix[i] <= 7905
148 * so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
149 * so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
150 qmat
[qscale
][i
] = (int)((UINT64_C(1) <<
151 QMAT_SHIFT_MMX
) / (qscale
153 qmat16
[qscale
][0][i
] = (1 << QMAT_SHIFT_MMX
)
154 /(qscale
* quant_matrix
[j
]);
156 if (qmat16
[qscale
][0][i
] == 0 ||
157 qmat16
[qscale
][0][i
] == 128*256)
158 qmat16
[qscale
][0][i
]=128*256-1;
159 qmat16
[qscale
][1][i
]=ROUNDED_DIV(bias
160 <<(16-QUANT_BIAS_SHIFT
),
161 qmat16
[qscale
][0][i
]);
167 /// Emit the DC value into a MJPEG code sream
169 * This routine is only intended to be used from encode_block
171 * \param s pointer to MpegEncContext structure
172 * \param val the DC value to emit
173 * \param huff_size pointer to huffman code size array
174 * \param huff_code pointer to the code array corresponding to \a huff_size
176 * This routine is a clone of mjpeg_encode_dc
178 static inline void encode_dc(MpegEncContext
*s
, int val
,
179 uint8_t *huff_size
, uint16_t *huff_code
) {
183 put_bits(&s
->pb
, huff_size
[0], huff_code
[0]);
190 nbits
= av_log2_16bit(val
) + 1;
191 put_bits(&s
->pb
, huff_size
[nbits
], huff_code
[nbits
]);
192 put_bits(&s
->pb
, nbits
, mant
& ((1 << nbits
) - 1));
196 /// Huffman encode and emit one DCT block into the MJPEG code stream
198 * \param s pointer to MpegEncContext structure
199 * \param block pointer to the DCT block to emit
202 * This routine is a duplicate of encode_block in mjpeg.c
204 static void encode_block(MpegEncContext
*s
, DCTELEM
*block
, int n
) {
205 int mant
, nbits
, code
, i
, j
;
206 int component
, dc
, run
, last_index
, val
;
207 MJpegContext
*m
= s
->mjpeg_ctx
;
208 uint8_t *huff_size_ac
;
209 uint16_t *huff_code_ac
;
212 component
= (n
<= 3 ? 0 : n
- 4 + 1);
213 dc
= block
[0]; /* overflow is impossible */
214 val
= dc
- s
->last_dc
[component
];
216 encode_dc(s
, val
, m
->huff_size_dc_luminance
,
217 m
->huff_code_dc_luminance
);
218 huff_size_ac
= m
->huff_size_ac_luminance
;
219 huff_code_ac
= m
->huff_code_ac_luminance
;
221 encode_dc(s
, val
, m
->huff_size_dc_chrominance
,
222 m
->huff_code_dc_chrominance
);
223 huff_size_ac
= m
->huff_size_ac_chrominance
;
224 huff_code_ac
= m
->huff_code_ac_chrominance
;
226 s
->last_dc
[component
] = dc
;
231 last_index
= s
->block_last_index
[n
];
232 for (i
= 1; i
<= last_index
; i
++) {
233 j
= s
->intra_scantable
.permutated
[i
];
238 put_bits(&s
->pb
, huff_size_ac
[0xf0],
248 nbits
= av_log2_16bit(val
) + 1;
249 code
= (run
<< 4) | nbits
;
251 put_bits(&s
->pb
, huff_size_ac
[code
],
253 put_bits(&s
->pb
, nbits
, mant
& ((1 << nbits
) - 1));
258 /* output EOB only if not already 64 values */
259 if (last_index
< 63 || run
!= 0)
260 put_bits(&s
->pb
, huff_size_ac
[0], huff_code_ac
[0]);
263 /// clip overflowing DCT coefficients
265 * If the computed DCT coefficients in a block overflow, this routine
266 * will go through them and clip them to be in the valid range.
268 * \param s pointer to MpegEncContext
269 * \param block pointer to DCT block to process
270 * \param last_index index of the last non-zero coefficient in block
272 * The max and min level, which are clipped to, are stored in
273 * s->min_qcoeff and s->max_qcoeff respectively.
275 static inline void clip_coeffs(MpegEncContext
*s
, DCTELEM
*block
,
278 const int maxlevel
= s
->max_qcoeff
;
279 const int minlevel
= s
->min_qcoeff
;
281 for (i
= 0; i
<= last_index
; i
++) {
282 const int j
= s
->intra_scantable
.permutated
[i
];
283 int level
= block
[j
];
285 if (level
> maxlevel
) level
=maxlevel
;
286 else if(level
< minlevel
) level
=minlevel
;
291 /* End excessive code duplication **************************************/
294 struct MpegEncContext
*s
;
302 // Huffman encode and emit one MCU of MJPEG code
304 * \param j pointer to jpeg_enc_t structure
306 * This function huffman encodes one MCU, and emits the
307 * resulting bitstream into the MJPEG code that is currently worked on.
309 * this function is a reproduction of the one in mjpeg, it includes two
310 * changes, it allows for black&white encoding (it skips the U and V
311 * macroblocks and it outputs the huffman code for 'no change' (dc) and
312 * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
314 static av_always_inline
void zr_mjpeg_encode_mb(jpeg_enc_t
*j
) {
316 MJpegContext
*m
= j
->s
->mjpeg_ctx
;
318 encode_block(j
->s
, j
->s
->block
[0], 0);
319 encode_block(j
->s
, j
->s
->block
[1], 1);
322 put_bits(&j
->s
->pb
, m
->huff_size_dc_chrominance
[0],
323 m
->huff_code_dc_chrominance
[0]);
324 put_bits(&j
->s
->pb
, m
->huff_size_ac_chrominance
[0],
325 m
->huff_code_ac_chrominance
[0]);
327 put_bits(&j
->s
->pb
, m
->huff_size_dc_chrominance
[0],
328 m
->huff_code_dc_chrominance
[0]);
329 put_bits(&j
->s
->pb
, m
->huff_size_ac_chrominance
[0],
330 m
->huff_code_ac_chrominance
[0]);
332 /* we trick encode_block here so that it uses
333 * chrominance huffman tables instead of luminance ones
334 * (see the effect of second argument of encode_block) */
335 encode_block(j
->s
, j
->s
->block
[2], 4);
336 encode_block(j
->s
, j
->s
->block
[3], 5);
340 /// Fill one DCT MCU from planar storage
342 * This routine will convert one MCU from YUYV planar storage into 4
343 * DCT macro blocks, converting from 8-bit format in the planar
344 * storage to 16-bit format used in the DCT.
346 * \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
347 * \param x pixel x-coordinate for the first pixel
348 * \param y pixel y-coordinate for the first pixel
349 * \param y_data pointer to the Y plane
350 * \param u_data pointer to the U plane
351 * \param v_data pointer to the V plane
353 static av_always_inline
void fill_block(jpeg_enc_t
*j
, int x
, int y
,
354 unsigned char *y_data
, unsigned char *u_data
,
355 unsigned char *v_data
)
359 unsigned char *source
;
362 get_pixels(j
->s
->block
[0], y
*8*j
->y_rs
+ 16*x
+ y_data
, j
->y_rs
);
364 get_pixels(j
->s
->block
[1], y
*8*j
->y_rs
+ 16*x
+ 8 + y_data
, j
->y_rs
);
366 if (!j
->bw
&& j
->cheap_upsample
) {
367 source
= y
* 4 * j
->u_rs
+ 8*x
+ u_data
;
368 dest
= j
->s
->block
[2];
369 for (i
= 0; i
< 4; i
++) {
370 for (k
= 0; k
< 8; k
++) {
371 dest
[k
] = source
[k
]; // First row
372 dest
[k
+8] = source
[k
]; // Duplicate to next row
378 source
= y
* 4 * j
->v_rs
+ 8*x
+ v_data
;
379 dest
= j
->s
->block
[3];
380 for (i
= 0; i
< 4; i
++) {
381 for (k
= 0; k
< 8; k
++) {
383 dest
[k
+8] = source
[k
];
388 } else if (!j
->bw
&& !j
->cheap_upsample
) {
390 get_pixels(j
->s
->block
[2], y
*8*j
->u_rs
+ 8*x
+ u_data
, j
->u_rs
);
392 get_pixels(j
->s
->block
[3], y
*8*j
->v_rs
+ 8*x
+ v_data
, j
->v_rs
);
397 * \brief initialize mjpeg encoder
399 * This routine is to set up the parameters and initialize the mjpeg encoder.
400 * It does all the initializations needed of lower level routines.
401 * The formats accepted by this encoder is YUV422P and YUV420
403 * \param w width in pixels of the image to encode, must be a multiple of 16
404 * \param h height in pixels of the image to encode, must be a multiple of 8
405 * \param y_rsize size of each plane row Y component
406 * \param y_rsize size of each plane row U component
407 * \param v_rsize size of each plane row V component
408 * \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
409 * when set to 1, the encoder will assume that there is only half th
410 * number of rows of chroma information, and every chroma row is
412 * \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
413 * is best quality and 20 is the worst quality.
414 * \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
415 * In that case, the colour information is omitted, and actually the
416 * colour planes are not touched.
418 * \returns an appropriately set up jpeg_enc_t structure
420 * The actual plane buffer addreses are passed by jpeg_enc_frame().
422 * The encoder doesn't know anything about interlacing, the halve height
423 * needs to be passed and the double rowstride. Which field gets encoded
424 * is decided by what buffers are passed to mjpeg_encode_frame()
426 static jpeg_enc_t
*jpeg_enc_init(int w
, int h
, int y_rsize
,
427 int u_rsize
, int v_rsize
,
428 int cu
, int q
, int b
) {
431 VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
432 w
, h
, y_rsize
, u_rsize
, v_rsize
, cu
, q
, b
);
434 j
= av_mallocz(sizeof(jpeg_enc_t
));
435 if (j
== NULL
) return NULL
;
437 j
->s
= av_mallocz(sizeof(MpegEncContext
));
443 /* info on how to access the pixels */
448 j
->s
->width
= w
; // image width and height
450 j
->s
->qscale
= q
; // Encoding quality
452 j
->s
->out_format
= FMT_MJPEG
;
453 j
->s
->intra_only
= 1; // Generate only intra pictures for jpeg
454 j
->s
->encoding
= 1; // Set mode to encode
455 j
->s
->pict_type
= FF_I_TYPE
;
456 j
->s
->y_dc_scale
= 8;
457 j
->s
->c_dc_scale
= 8;
460 * This sets up the MCU (Minimal Code Unit) number
461 * of appearances of the various component
462 * for the SOF0 table in the generated MJPEG.
463 * The values are not used for anything else.
464 * The current setup is simply YUV422, with two horizontal Y components
465 * for every UV component.
467 //FIXME j->s->mjpeg_write_tables = 1; // setup to write tables
468 j
->s
->mjpeg_vsample
[0] = 1; // 1 appearance of Y vertically
469 j
->s
->mjpeg_vsample
[1] = 1; // 1 appearance of U vertically
470 j
->s
->mjpeg_vsample
[2] = 1; // 1 appearance of V vertically
471 j
->s
->mjpeg_hsample
[0] = 2; // 2 appearances of Y horizontally
472 j
->s
->mjpeg_hsample
[1] = 1; // 1 appearance of U horizontally
473 j
->s
->mjpeg_hsample
[2] = 1; // 1 appearance of V horizontally
475 j
->cheap_upsample
= cu
;
479 /* if libavcodec is used by the decoder then we must not
480 * initialize again, but if it is not initialized then we must
481 * initialize it here. */
482 if (!avcodec_initialized
) {
484 avcodec_register_all();
485 avcodec_initialized
=1;
488 // Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
489 if (ff_mjpeg_encode_init(j
->s
) < 0) {
495 /* alloc bogus avctx to keep MPV_common_init from segfaulting */
496 j
->s
->avctx
= avcodec_alloc_context();
497 if (j
->s
->avctx
== NULL
) {
503 // Set some a minimum amount of default values that are needed
504 // Indicates that we should generated normal MJPEG
505 j
->s
->avctx
->codec_id
= CODEC_ID_MJPEG
;
506 // Which DCT method to use. AUTO will select the fastest one
507 j
->s
->avctx
->dct_algo
= FF_DCT_AUTO
;
508 j
->s
->intra_quant_bias
= 1<<(QUANT_BIAS_SHIFT
-1); //(a + x/2)/x
510 j
->s
->avctx
->thread_count
= 1;
512 /* make MPV_common_init allocate important buffers, like s->block
513 * Also initializes dsputil */
514 if (MPV_common_init(j
->s
) < 0) {
520 /* correct the value for sc->mb_height. MPV_common_init put other
522 j
->s
->mb_height
= j
->s
->height
/8;
526 j
->s
->intra_matrix
[0] = ff_mpeg1_default_intra_matrix
[0];
527 for (i
= 1; i
< 64; i
++)
528 j
->s
->intra_matrix
[i
] = av_clip_uint8(
529 (ff_mpeg1_default_intra_matrix
[i
]*j
->s
->qscale
) >> 3);
532 convert_matrix(j
->s
, j
->s
->q_intra_matrix
, j
->s
->q_intra_matrix16
,
533 j
->s
->intra_matrix
, j
->s
->intra_quant_bias
, 8, 8);
535 /* Pick up the selection of the optimal get_pixels() routine
536 * to use, which was done in MPV_common_init() */
537 get_pixels
= j
->s
->dsp
.get_pixels
;
543 * \brief mjpeg encode an image
545 * This routine will take a 3-plane YUV422 image and encoded it with MJPEG
546 * base line format, as suitable as input for the Zoran hardare MJPEG chips.
548 * It requires that the \a j parameter points the structure set up by the
549 * jpeg_enc_init() routine.
551 * \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
552 * \param y_data pointer to Y component plane, packed one byte/pixel
553 * \param u_data pointer to U component plane, packed one byte per every
555 * \param v_data pointer to V component plane, packed one byte per every
557 * \param bufr pointer to the buffer where the mjpeg encoded code is stored
559 * \returns the number of bytes stored into \a bufr
561 * If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
562 * otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
563 * variable will be reset to 0 by the routine.
565 static int jpeg_enc_frame(jpeg_enc_t
*j
, uint8_t *y_data
,
566 uint8_t *u_data
, uint8_t *v_data
, uint8_t *bufr
) {
567 int mb_x
, mb_y
, overflow
;
568 /* initialize the buffer */
570 init_put_bits(&j
->s
->pb
, bufr
, 1024*256);
572 // Emit the mjpeg header blocks
573 ff_mjpeg_encode_picture_header(j
->s
);
575 j
->s
->header_bits
= put_bits_count(&j
->s
->pb
);
577 j
->s
->last_dc
[0] = 128;
578 j
->s
->last_dc
[1] = 128;
579 j
->s
->last_dc
[2] = 128;
581 for (mb_y
= 0; mb_y
< j
->s
->mb_height
; mb_y
++) {
582 for (mb_x
= 0; mb_x
< j
->s
->mb_width
; mb_x
++) {
584 * Fill one DCT block (8x8 pixels) from
585 * 2 Y macroblocks and one U and one V
587 fill_block(j
, mb_x
, mb_y
, y_data
, u_data
, v_data
);
588 emms_c(); /* is this really needed? */
590 j
->s
->block_last_index
[0] =
591 j
->s
->dct_quantize(j
->s
, j
->s
->block
[0],
593 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[0],
594 j
->s
->block_last_index
[0]);
595 j
->s
->block_last_index
[1] =
596 j
->s
->dct_quantize(j
->s
, j
->s
->block
[1],
598 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[1],
599 j
->s
->block_last_index
[1]);
602 j
->s
->block_last_index
[4] =
603 j
->s
->dct_quantize(j
->s
, j
->s
->block
[2],
605 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[2],
606 j
->s
->block_last_index
[2]);
607 j
->s
->block_last_index
[5] =
608 j
->s
->dct_quantize(j
->s
, j
->s
->block
[3],
610 if (overflow
) clip_coeffs(j
->s
, j
->s
->block
[3],
611 j
->s
->block_last_index
[3]);
613 zr_mjpeg_encode_mb(j
);
617 ff_mjpeg_encode_picture_trailer(j
->s
);
618 flush_put_bits(&j
->s
->pb
);
621 //if (j->s->mjpeg_write_tables == 1)
622 // j->s->mjpeg_write_tables = 0;
624 return pbBufPtr(&(j
->s
->pb
)) - j
->s
->pb
.buf
;
627 /// the real uninit routine
629 * This is the real routine that does the uninit of the ZRMJPEG filter
631 * \param j pointer to jpeg_enc structure
633 static void jpeg_enc_uninit(jpeg_enc_t
*j
) {
634 ff_mjpeg_encode_close(j
->s
);
639 /// Private structure for ZRMJPEG filter
642 unsigned char buf
[256*1024];
643 int bw
, fd
, hdec
, vdec
;
652 /// vf CONFIGURE entry point for the ZRMJPEG filter
654 * \param vf video filter instance pointer
655 * \param width image source width in pixels
656 * \param height image source height in pixels
657 * \param d_width width of requested window, just a hint
658 * \param d_height height of requested window, just a hint
659 * \param flags vf filter flags
662 * \returns returns 0 on error
664 * This routine will make the necessary hardware-related decisions for
665 * the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
666 * then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
667 * arrange to dispatch to the config() entry pointer for the one
670 static int config(struct vf_instance
* vf
, int width
, int height
, int d_width
,
671 int d_height
, unsigned int flags
, unsigned int outfmt
){
672 struct vf_priv_s
*priv
= vf
->priv
;
673 float aspect_decision
;
674 int stretchx
, stretchy
, err
= 0, maxstretchx
= 4;
677 VERBOSE("config() called\n");
680 VERBOSE("re-configuring, resetting JPEG encoder\n");
681 jpeg_enc_uninit(priv
->j
);
685 aspect_decision
= ((float)d_width
/(float)d_height
)/
686 ((float)width
/(float)height
);
688 if (aspect_decision
> 1.8 && aspect_decision
< 2.2) {
689 VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width
, priv
->maxwidth
);
690 if (2*width
<= priv
->maxwidth
) {
695 WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
699 /* prestretch movie */
701 /* uncorrecting output for now */
705 /* make the scaling decision
706 * we are capable of stretching the image in the horizontal
707 * direction by factors 1, 2 and 4
708 * we can stretch the image in the vertical direction by a
709 * factor of 1 and 2 AND we must decide about interlacing */
710 if (d_width
> priv
->maxwidth
/2 || height
> priv
->maxheight
/2
711 || maxstretchx
== 1) {
715 if (priv
->vdec
== 2) {
717 } else if (priv
->vdec
== 4) {
721 if (priv
->hdec
> maxstretchx
) {
723 WARNING("horizontal decimation too high, "
724 "changing to %d (use fd to keep"
726 maxstretchx
, priv
->hdec
);
727 priv
->hdec
= maxstretchx
;
730 stretchx
= priv
->hdec
;
731 } else if (d_width
> priv
->maxwidth
/4 ||
732 height
> priv
->maxheight
/4 ||
737 if (priv
->vdec
== 2) {
739 } else if (priv
->vdec
== 4) {
741 WARNING("vertical decimation too high, "
742 "changing to 2 (use fd to keep "
748 if (priv
->hdec
== 2) {
750 } else if (priv
->hdec
== 4) {
752 WARNING("horizontal decimation too high, "
753 "changing to 2 (use fd to keep "
760 /* output image is maximally stretched */
764 if (priv
->vdec
!= 1 && !priv
->fd
) {
765 WARNING("vertical decimation too high, changing to 1 "
766 "(use fd to keep vdec=%d)\n",
770 if (priv
->hdec
!= 1 && !priv
->fd
) {
771 WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv
->hdec
);
776 VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
777 width
/priv
->hdec
, (priv
->fields
== 2) ? "(" : "",
778 height
/(priv
->vdec
*priv
->fields
),
779 (priv
->fields
== 2) ? "x2)" : "",
780 (width
/priv
->hdec
)*stretchx
,
781 (height
/(priv
->vdec
*priv
->fields
))*
782 stretchy
*priv
->fields
);
785 if ((width
/priv
->hdec
)*stretchx
> priv
->maxwidth
||
786 (height
/(priv
->vdec
*priv
->fields
))*
787 stretchy
*priv
->fields
> priv
->maxheight
) {
788 ERROR("output dimensions too large (%dx%d), max (%dx%d) "
789 "insert crop to fix\n",
790 (width
/priv
->hdec
)*stretchx
,
791 (height
/(priv
->vdec
*priv
->fields
))*
792 stretchy
*priv
->fields
,
793 priv
->maxwidth
, priv
->maxheight
);
797 if (width
%(16*priv
->hdec
) != 0) {
798 ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
803 if (height
%(8*priv
->fields
*priv
->vdec
) != 0) {
804 ERROR("height must be a multiple of 8*fields*vdec (%d),"
805 " use expand\n", priv
->vdec
*priv
->fields
*8);
811 priv
->y_stride
= width
;
812 priv
->c_stride
= width
/2;
813 priv
->j
= jpeg_enc_init(width
, height
/priv
->fields
,
814 priv
->fields
*priv
->y_stride
,
815 priv
->fields
*priv
->c_stride
,
816 priv
->fields
*priv
->c_stride
,
817 1, priv
->quality
, priv
->bw
);
819 if (!priv
->j
) return 0;
820 return vf_next_config(vf
, width
, height
, d_width
, d_height
, flags
,
821 (priv
->fields
== 2) ? IMGFMT_ZRMJPEGIT
: IMGFMT_ZRMJPEGNI
);
824 /// put_image entrypoint for the ZRMJPEG vf filter
826 * \param vf pointer to vf_instance
827 * \param mpi pointer to mp_image_t structure
830 static int put_image(struct vf_instance
* vf
, mp_image_t
*mpi
, double pts
){
831 struct vf_priv_s
*priv
= vf
->priv
;
835 for (i
= 0; i
< priv
->fields
; i
++)
836 size
+= jpeg_enc_frame(priv
->j
,
837 mpi
->planes
[0] + i
*priv
->y_stride
,
838 mpi
->planes
[1] + i
*priv
->c_stride
,
839 mpi
->planes
[2] + i
*priv
->c_stride
,
842 dmpi
= vf_get_image(vf
->next
, IMGFMT_ZRMJPEGNI
,
843 MP_IMGTYPE_EXPORT
, 0, mpi
->w
, mpi
->h
);
844 dmpi
->planes
[0] = (uint8_t*)priv
->buf
;
845 dmpi
->planes
[1] = (uint8_t*)size
;
846 return vf_next_put_image(vf
,dmpi
, pts
);
849 /// query_format entrypoint for the ZRMJPEG vf filter
851 * \param vf pointer to vf_instance
852 * \param fmt image format to query for
854 * \returns 0 if image format in fmt is not supported
856 * Given the image format specified by \a fmt, this routine is called
857 * to ask if the format is supported or not.
859 static int query_format(struct vf_instance
* vf
, unsigned int fmt
){
860 VERBOSE("query_format() called\n");
865 /* strictly speaking the output format of
866 * this filter will be known after config(),
867 * but everything that supports IMGFMT_ZRMJPEGNI
868 * should also support all other IMGFMT_ZRMJPEG* */
869 return vf_next_query_format(vf
, IMGFMT_ZRMJPEGNI
);
875 /// vf UNINIT entry point for the ZRMJPEG filter
877 * \param vf pointer to the vf instance structure
879 static void uninit(vf_instance_t
*vf
) {
880 struct vf_priv_s
*priv
= vf
->priv
;
881 VERBOSE("uninit() called\n");
882 if (priv
->j
) jpeg_enc_uninit(priv
->j
);
886 /// vf OPEN entry point for the ZRMJPEG filter
888 * \param vf pointer to the vf instance structure
889 * \param args the argument list string for the -vf zrmjpeg command
891 * \returns 0 for error, 1 for success
893 * This routine will do some basic initialization of local structures etc.,
894 * and then parse the command line arguments specific for the ZRMJPEG filter.
896 static int open(vf_instance_t
*vf
, char* args
){
897 struct vf_priv_s
*priv
;
898 VERBOSE("open() called: args=\"%s\"\n", args
);
901 vf
->put_image
= put_image
;
902 vf
->query_format
= query_format
;
905 priv
= vf
->priv
= calloc(sizeof(*priv
), 1);
907 ERROR("out of memory error\n");
911 /* maximum displayable size by zoran card, these defaults
912 * are for my own zoran card in PAL mode, these can be changed
913 * by filter options. But... in an ideal world these values would
914 * be queried from the vo device itself... */
915 priv
->maxwidth
= 768;
916 priv
->maxheight
= 576;
922 /* if libavcodec is already initialized, we must not initialize it
923 * again, but if it is not initialized then we mustinitialize it now. */
924 if (!avcodec_initialized
) {
925 /* we need to initialize libavcodec */
927 avcodec_register_all();
928 avcodec_initialized
=1;
932 char *arg
, *tmp
, *ptr
, junk
;
935 /* save arguments, to be able to safely modify them */
938 ERROR("out of memory, this is bad\n");
944 while (*tmp
!= ':' && *tmp
) tmp
++;
945 if (*tmp
== ':') *tmp
++ = '\0';
947 VERBOSE("processing filter option \"%s\"\n", ptr
);
948 /* These options deal with the maximum output
949 * resolution of the zoran card. These should
950 * be queried from the vo device, but it is currently
951 * too difficult, so the user should tell the filter */
952 if (!strncmp("maxheight=", ptr
, 10)) {
953 if (sscanf(ptr
+10, "%d%c", &input
, &junk
) != 1)
955 "error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
958 priv
->maxheight
= input
;
959 VERBOSE("setting maxheight to %d\n",
962 } else if (!strncmp("quality=", ptr
, 8)) {
963 if (sscanf(ptr
+8, "%d%c", &input
, &junk
) != 1)
965 "error parsing parameter to \"quality=\", \"%s\", ignoring\n"
967 else if (input
< 1 || input
> 20)
969 "parameter to \"quality=\" out of range (1..20), %d\n", input
);
971 priv
->quality
= input
;
972 VERBOSE("setting JPEG quality to %d\n",
975 } else if (!strncmp("maxwidth=", ptr
, 9)) {
976 if (sscanf(ptr
+9, "%d%c", &input
, &junk
) != 1)
978 "error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
981 priv
->maxwidth
= input
;
982 VERBOSE("setting maxwidth to %d\n",
985 } else if (!strncmp("hdec=", ptr
, 5)) {
986 if (sscanf(ptr
+5, "%d%c", &input
, &junk
) != 1)
988 "error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
990 else if (input
!= 1 && input
!= 2 && input
!= 4)
992 "illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
997 "setting horizontal decimation to %d\n", priv
->maxwidth
);
999 } else if (!strncmp("vdec=", ptr
, 5)) {
1000 if (sscanf(ptr
+5, "%d%c", &input
, &junk
) != 1)
1002 "error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
1004 else if (input
!= 1 && input
!= 2 && input
!= 4)
1006 "illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
1011 "setting vertical decimation to %d\n", priv
->maxwidth
);
1013 } else if (!strcasecmp("dc10+-PAL", ptr
) ||
1014 !strcasecmp("dc10-PAL", ptr
)) {
1015 priv
->maxwidth
= 768;
1016 priv
->maxheight
= 576;
1017 VERBOSE("setting DC10(+) PAL profile\n");
1018 } else if (!strcasecmp("fd", ptr
)) {
1020 VERBOSE("forcing decimation\n");
1021 } else if (!strcasecmp("nofd", ptr
)) {
1023 VERBOSE("decimate only if beautiful\n");
1024 } else if (!strcasecmp("bw", ptr
)) {
1026 VERBOSE("setting black and white encoding\n");
1027 } else if (!strcasecmp("color", ptr
)) {
1029 VERBOSE("setting color encoding\n");
1030 } else if (!strcasecmp("dc10+-NTSC", ptr
) ||
1031 !strcasecmp("dc10-NTSC", ptr
)) {
1032 priv
->maxwidth
= 640;
1033 priv
->maxheight
= 480;
1034 VERBOSE("setting DC10(+) NTSC profile\n");
1035 } else if (!strcasecmp("buz-PAL", ptr
) ||
1036 !strcasecmp("lml33-PAL", ptr
)) {
1037 priv
->maxwidth
= 720;
1038 priv
->maxheight
= 576;
1039 VERBOSE("setting buz/lml33 PAL profile\n");
1040 } else if (!strcasecmp("buz-NTSC", ptr
) ||
1041 !strcasecmp("lml33-NTSC", ptr
)) {
1042 priv
->maxwidth
= 720;
1043 priv
->maxheight
= 480;
1044 VERBOSE("setting buz/lml33 NTSC profile\n");
1046 WARNING("ignoring unknown filter option "
1047 "\"%s\", or missing argument\n",
1060 const vf_info_t vf_info_zrmjpeg
= {
1061 "realtime zoran MJPEG encoding",