Bug 506786 - JSScope::trace method. r=brendan.
[mozilla-central.git] / js / src / jsmath.cpp
blobdd6fd51665c10cf5c4a97e87757a5171c9a38810
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
3 * ***** BEGIN LICENSE BLOCK *****
4 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
6 * The contents of this file are subject to the Mozilla Public License Version
7 * 1.1 (the "License"); you may not use this file except in compliance with
8 * the License. You may obtain a copy of the License at
9 * http://www.mozilla.org/MPL/
11 * Software distributed under the License is distributed on an "AS IS" basis,
12 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 * for the specific language governing rights and limitations under the
14 * License.
16 * The Original Code is Mozilla Communicator client code, released
17 * March 31, 1998.
19 * The Initial Developer of the Original Code is
20 * Netscape Communications Corporation.
21 * Portions created by the Initial Developer are Copyright (C) 1998
22 * the Initial Developer. All Rights Reserved.
24 * Contributor(s):
26 * Alternatively, the contents of this file may be used under the terms of
27 * either of the GNU General Public License Version 2 or later (the "GPL"),
28 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
38 * ***** END LICENSE BLOCK ***** */
41 * JS math package.
43 #include <stdlib.h>
44 #include "jstypes.h"
45 #include "jsstdint.h"
46 #include "jslong.h"
47 #include "prmjtime.h"
48 #include "jsapi.h"
49 #include "jsatom.h"
50 #include "jsbuiltins.h"
51 #include "jscntxt.h"
52 #include "jsversion.h"
53 #include "jslock.h"
54 #include "jsmath.h"
55 #include "jsnum.h"
56 #include "jslibmath.h"
57 #include "jsobj.h"
59 extern jsdouble js_NaN;
61 #ifndef M_E
62 #define M_E 2.7182818284590452354
63 #endif
64 #ifndef M_LOG2E
65 #define M_LOG2E 1.4426950408889634074
66 #endif
67 #ifndef M_LOG10E
68 #define M_LOG10E 0.43429448190325182765
69 #endif
70 #ifndef M_LN2
71 #define M_LN2 0.69314718055994530942
72 #endif
73 #ifndef M_LN10
74 #define M_LN10 2.30258509299404568402
75 #endif
76 #ifndef M_PI
77 #define M_PI 3.14159265358979323846
78 #endif
79 #ifndef M_SQRT2
80 #define M_SQRT2 1.41421356237309504880
81 #endif
82 #ifndef M_SQRT1_2
83 #define M_SQRT1_2 0.70710678118654752440
84 #endif
86 static JSConstDoubleSpec math_constants[] = {
87 {M_E, "E", 0, {0,0,0}},
88 {M_LOG2E, "LOG2E", 0, {0,0,0}},
89 {M_LOG10E, "LOG10E", 0, {0,0,0}},
90 {M_LN2, "LN2", 0, {0,0,0}},
91 {M_LN10, "LN10", 0, {0,0,0}},
92 {M_PI, "PI", 0, {0,0,0}},
93 {M_SQRT2, "SQRT2", 0, {0,0,0}},
94 {M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
95 {0,0,0,{0,0,0}}
98 JSClass js_MathClass = {
99 js_Math_str,
100 JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
101 JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
102 JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, NULL,
103 JSCLASS_NO_OPTIONAL_MEMBERS
106 static JSBool
107 math_abs(JSContext *cx, uintN argc, jsval *vp)
109 jsdouble x, z;
111 if (argc == 0) {
112 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
113 return JS_TRUE;
115 x = js_ValueToNumber(cx, &vp[2]);
116 if (JSVAL_IS_NULL(vp[2]))
117 return JS_FALSE;
118 z = fabs(x);
119 return js_NewNumberInRootedValue(cx, z, vp);
122 static JSBool
123 math_acos(JSContext *cx, uintN argc, jsval *vp)
125 jsdouble x, z;
127 if (argc == 0) {
128 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
129 return JS_TRUE;
131 x = js_ValueToNumber(cx, &vp[2]);
132 if (JSVAL_IS_NULL(vp[2]))
133 return JS_FALSE;
134 #if defined(SOLARIS) && defined(__GNUC__)
135 if (x < -1 || 1 < x) {
136 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
137 return JS_TRUE;
139 #endif
140 z = acos(x);
141 return js_NewNumberInRootedValue(cx, z, vp);
144 static JSBool
145 math_asin(JSContext *cx, uintN argc, jsval *vp)
147 jsdouble x, z;
149 if (argc == 0) {
150 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
151 return JS_TRUE;
153 x = js_ValueToNumber(cx, &vp[2]);
154 if (JSVAL_IS_NULL(vp[2]))
155 return JS_FALSE;
156 #if defined(SOLARIS) && defined(__GNUC__)
157 if (x < -1 || 1 < x) {
158 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
159 return JS_TRUE;
161 #endif
162 z = asin(x);
163 return js_NewNumberInRootedValue(cx, z, vp);
166 static JSBool
167 math_atan(JSContext *cx, uintN argc, jsval *vp)
169 jsdouble x, z;
171 if (argc == 0) {
172 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
173 return JS_TRUE;
175 x = js_ValueToNumber(cx, &vp[2]);
176 if (JSVAL_IS_NULL(vp[2]))
177 return JS_FALSE;
178 z = atan(x);
179 return js_NewNumberInRootedValue(cx, z, vp);
182 static inline jsdouble JS_FASTCALL
183 math_atan2_kernel(jsdouble x, jsdouble y)
185 #if defined(_MSC_VER)
187 * MSVC's atan2 does not yield the result demanded by ECMA when both x
188 * and y are infinite.
189 * - The result is a multiple of pi/4.
190 * - The sign of x determines the sign of the result.
191 * - The sign of y determines the multiplicator, 1 or 3.
193 if (JSDOUBLE_IS_INFINITE(x) && JSDOUBLE_IS_INFINITE(y)) {
194 jsdouble z = js_copysign(M_PI / 4, x);
195 if (y < 0)
196 z *= 3;
197 return z;
199 #endif
201 #if defined(SOLARIS) && defined(__GNUC__)
202 if (x == 0) {
203 if (JSDOUBLE_IS_NEGZERO(y))
204 return js_copysign(M_PI, x);
205 if (y == 0)
206 return x;
208 #endif
209 return atan2(x, y);
212 static JSBool
213 math_atan2(JSContext *cx, uintN argc, jsval *vp)
215 jsdouble x, y;
217 if (argc <= 1) {
218 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
219 return JS_TRUE;
221 x = js_ValueToNumber(cx, &vp[2]);
222 if (JSVAL_IS_NULL(vp[2]))
223 return JS_FALSE;
224 y = js_ValueToNumber(cx, &vp[3]);
225 if (JSVAL_IS_NULL(vp[3]))
226 return JS_FALSE;
227 return js_NewNumberInRootedValue(cx, math_atan2_kernel (x, y), vp);
230 static inline jsdouble JS_FASTCALL
231 math_ceil_kernel(jsdouble x)
233 #ifdef __APPLE__
234 if (x < 0 && x > -1.0)
235 return js_copysign(0, -1);
236 #endif
237 return ceil(x);
240 static JSBool
241 math_ceil(JSContext *cx, uintN argc, jsval *vp)
243 jsdouble x, z;
245 if (argc == 0) {
246 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
247 return JS_TRUE;
249 x = js_ValueToNumber(cx, &vp[2]);
250 if (JSVAL_IS_NULL(vp[2]))
251 return JS_FALSE;
252 z = math_ceil_kernel(x);
253 return js_NewNumberInRootedValue(cx, z, vp);
256 static JSBool
257 math_cos(JSContext *cx, uintN argc, jsval *vp)
259 jsdouble x, z;
261 if (argc == 0) {
262 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
263 return JS_TRUE;
265 x = js_ValueToNumber(cx, &vp[2]);
266 if (JSVAL_IS_NULL(vp[2]))
267 return JS_FALSE;
268 z = cos(x);
269 return js_NewNumberInRootedValue(cx, z, vp);
272 static JSBool
273 math_exp(JSContext *cx, uintN argc, jsval *vp)
275 jsdouble x, z;
277 if (argc == 0) {
278 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
279 return JS_TRUE;
281 x = js_ValueToNumber(cx, &vp[2]);
282 if (JSVAL_IS_NULL(vp[2]))
283 return JS_FALSE;
284 #ifdef _WIN32
285 if (!JSDOUBLE_IS_NaN(x)) {
286 if (x == *cx->runtime->jsPositiveInfinity) {
287 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
288 return JS_TRUE;
290 if (x == *cx->runtime->jsNegativeInfinity) {
291 *vp = JSVAL_ZERO;
292 return JS_TRUE;
295 #endif
296 z = exp(x);
297 return js_NewNumberInRootedValue(cx, z, vp);
300 static JSBool
301 math_floor(JSContext *cx, uintN argc, jsval *vp)
303 jsdouble x, z;
305 if (argc == 0) {
306 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
307 return JS_TRUE;
309 x = js_ValueToNumber(cx, &vp[2]);
310 if (JSVAL_IS_NULL(vp[2]))
311 return JS_FALSE;
312 z = floor(x);
313 return js_NewNumberInRootedValue(cx, z, vp);
316 static JSBool
317 math_log(JSContext *cx, uintN argc, jsval *vp)
319 jsdouble x, z;
321 if (argc == 0) {
322 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
323 return JS_TRUE;
325 x = js_ValueToNumber(cx, &vp[2]);
326 if (JSVAL_IS_NULL(vp[2]))
327 return JS_FALSE;
328 #if defined(SOLARIS) && defined(__GNUC__)
329 if (x < 0) {
330 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
331 return JS_TRUE;
333 #endif
334 z = log(x);
335 return js_NewNumberInRootedValue(cx, z, vp);
338 static JSBool
339 math_max(JSContext *cx, uintN argc, jsval *vp)
341 jsdouble x, z = *cx->runtime->jsNegativeInfinity;
342 jsval *argv;
343 uintN i;
345 if (argc == 0) {
346 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNegativeInfinity);
347 return JS_TRUE;
349 argv = vp + 2;
350 for (i = 0; i < argc; i++) {
351 x = js_ValueToNumber(cx, &argv[i]);
352 if (JSVAL_IS_NULL(argv[i]))
353 return JS_FALSE;
354 if (JSDOUBLE_IS_NaN(x)) {
355 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
356 return JS_TRUE;
358 if (x == 0 && x == z) {
359 if (js_copysign(1.0, z) == -1)
360 z = x;
361 } else {
362 z = (x > z) ? x : z;
365 return js_NewNumberInRootedValue(cx, z, vp);
368 static JSBool
369 math_min(JSContext *cx, uintN argc, jsval *vp)
371 jsdouble x, z = *cx->runtime->jsPositiveInfinity;
372 jsval *argv;
373 uintN i;
375 if (argc == 0) {
376 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsPositiveInfinity);
377 return JS_TRUE;
379 argv = vp + 2;
380 for (i = 0; i < argc; i++) {
381 x = js_ValueToNumber(cx, &argv[i]);
382 if (JSVAL_IS_NULL(argv[i]))
383 return JS_FALSE;
384 if (JSDOUBLE_IS_NaN(x)) {
385 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
386 return JS_TRUE;
388 if (x == 0 && x == z) {
389 if (js_copysign(1.0, x) == -1)
390 z = x;
391 } else {
392 z = (x < z) ? x : z;
395 return js_NewNumberInRootedValue(cx, z, vp);
398 static JSBool
399 math_pow(JSContext *cx, uintN argc, jsval *vp)
401 jsdouble x, y, z;
403 if (argc <= 1) {
404 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
405 return JS_TRUE;
407 x = js_ValueToNumber(cx, &vp[2]);
408 if (JSVAL_IS_NULL(vp[2]))
409 return JS_FALSE;
410 y = js_ValueToNumber(cx, &vp[3]);
411 if (JSVAL_IS_NULL(vp[3]))
412 return JS_FALSE;
414 * Because C99 and ECMA specify different behavior for pow(),
415 * we need to wrap the libm call to make it ECMA compliant.
417 if (!JSDOUBLE_IS_FINITE(y) && (x == 1.0 || x == -1.0)) {
418 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
419 return JS_TRUE;
421 /* pow(x, +-0) is always 1, even for x = NaN. */
422 if (y == 0) {
423 *vp = JSVAL_ONE;
424 return JS_TRUE;
426 z = pow(x, y);
427 return js_NewNumberInRootedValue(cx, z, vp);
431 * Math.random() support, lifted from java.util.Random.java.
433 static void
434 random_setSeed(JSRuntime *rt, int64 seed)
436 int64 tmp;
438 JSLL_I2L(tmp, 1000);
439 JSLL_DIV(seed, seed, tmp);
440 JSLL_XOR(tmp, seed, rt->rngMultiplier);
441 JSLL_AND(rt->rngSeed, tmp, rt->rngMask);
444 void
445 js_random_init(JSRuntime *rt)
447 int64 tmp, tmp2;
449 /* Do at most once. */
450 if (rt->rngInitialized)
451 return;
452 rt->rngInitialized = JS_TRUE;
454 /* rt->rngMultiplier = 0x5DEECE66DL */
455 JSLL_ISHL(tmp, 0x5, 32);
456 JSLL_UI2L(tmp2, 0xDEECE66DL);
457 JSLL_OR(rt->rngMultiplier, tmp, tmp2);
459 /* rt->rngAddend = 0xBL */
460 JSLL_I2L(rt->rngAddend, 0xBL);
462 /* rt->rngMask = (1L << 48) - 1 */
463 JSLL_I2L(tmp, 1);
464 JSLL_SHL(tmp2, tmp, 48);
465 JSLL_SUB(rt->rngMask, tmp2, tmp);
467 /* rt->rngDscale = (jsdouble)(1L << 53) */
468 JSLL_SHL(tmp2, tmp, 53);
469 JSLL_L2D(rt->rngDscale, tmp2);
471 /* Finally, set the seed from current time. */
472 random_setSeed(rt, PRMJ_Now());
475 static uint32
476 random_next(JSRuntime *rt, int bits)
478 int64 nextseed, tmp;
479 uint32 retval;
481 JSLL_MUL(nextseed, rt->rngSeed, rt->rngMultiplier);
482 JSLL_ADD(nextseed, nextseed, rt->rngAddend);
483 JSLL_AND(nextseed, nextseed, rt->rngMask);
484 rt->rngSeed = nextseed;
485 JSLL_USHR(tmp, nextseed, 48 - bits);
486 JSLL_L2I(retval, tmp);
487 return retval;
490 jsdouble
491 js_random_nextDouble(JSRuntime *rt)
493 int64 tmp, tmp2;
494 jsdouble d;
496 JSLL_ISHL(tmp, random_next(rt, 26), 27);
497 JSLL_UI2L(tmp2, random_next(rt, 27));
498 JSLL_ADD(tmp, tmp, tmp2);
499 JSLL_L2D(d, tmp);
500 return d / rt->rngDscale;
503 static JSBool
504 math_random(JSContext *cx, uintN argc, jsval *vp)
506 JSRuntime *rt;
507 jsdouble z;
509 rt = cx->runtime;
510 JS_LOCK_RUNTIME(rt);
511 js_random_init(rt);
512 z = js_random_nextDouble(rt);
513 JS_UNLOCK_RUNTIME(rt);
514 return js_NewNumberInRootedValue(cx, z, vp);
517 #if defined _WIN32 && !defined WINCE && _MSC_VER < 1400
518 /* Try to work around apparent _copysign bustage in VC6 and VC7. */
519 double
520 js_copysign(double x, double y)
522 jsdpun xu, yu;
524 xu.d = x;
525 yu.d = y;
526 xu.s.hi &= ~JSDOUBLE_HI32_SIGNBIT;
527 xu.s.hi |= yu.s.hi & JSDOUBLE_HI32_SIGNBIT;
528 return xu.d;
530 #endif
532 static JSBool
533 math_round(JSContext *cx, uintN argc, jsval *vp)
535 jsdouble x, z;
537 if (argc == 0) {
538 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
539 return JS_TRUE;
541 x = js_ValueToNumber(cx, &vp[2]);
542 if (JSVAL_IS_NULL(vp[2]))
543 return JS_FALSE;
544 z = js_copysign(floor(x + 0.5), x);
545 return js_NewNumberInRootedValue(cx, z, vp);
548 static JSBool
549 math_sin(JSContext *cx, uintN argc, jsval *vp)
551 jsdouble x, z;
553 if (argc == 0) {
554 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
555 return JS_TRUE;
557 x = js_ValueToNumber(cx, &vp[2]);
558 if (JSVAL_IS_NULL(vp[2]))
559 return JS_FALSE;
560 z = sin(x);
561 return js_NewNumberInRootedValue(cx, z, vp);
564 static JSBool
565 math_sqrt(JSContext *cx, uintN argc, jsval *vp)
567 jsdouble x, z;
569 if (argc == 0) {
570 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
571 return JS_TRUE;
573 x = js_ValueToNumber(cx, &vp[2]);
574 if (JSVAL_IS_NULL(vp[2]))
575 return JS_FALSE;
576 z = sqrt(x);
577 return js_NewNumberInRootedValue(cx, z, vp);
580 static JSBool
581 math_tan(JSContext *cx, uintN argc, jsval *vp)
583 jsdouble x, z;
585 if (argc == 0) {
586 *vp = DOUBLE_TO_JSVAL(cx->runtime->jsNaN);
587 return JS_TRUE;
589 x = js_ValueToNumber(cx, &vp[2]);
590 if (JSVAL_IS_NULL(vp[2]))
591 return JS_FALSE;
592 z = tan(x);
593 return js_NewNumberInRootedValue(cx, z, vp);
596 #if JS_HAS_TOSOURCE
597 static JSBool
598 math_toSource(JSContext *cx, uintN argc, jsval *vp)
600 *vp = ATOM_KEY(CLASS_ATOM(cx, Math));
601 return JS_TRUE;
603 #endif
605 #ifdef JS_TRACER
607 #define MATH_BUILTIN_1(name) MATH_BUILTIN_CFUN_1(name, name)
608 #define MATH_BUILTIN_CFUN_1(name, cfun) \
609 static jsdouble FASTCALL math_##name##_tn(jsdouble d) { return cfun(d); } \
610 JS_DEFINE_TRCINFO_1(math_##name, \
611 (1, (static, DOUBLE, math_##name##_tn, DOUBLE, 1, 1)))
613 MATH_BUILTIN_CFUN_1(abs, fabs)
614 MATH_BUILTIN_1(atan)
615 MATH_BUILTIN_1(sin)
616 MATH_BUILTIN_1(cos)
617 MATH_BUILTIN_1(sqrt)
618 MATH_BUILTIN_1(floor)
619 MATH_BUILTIN_1(tan)
621 static jsdouble FASTCALL
622 math_acos_tn(jsdouble d)
624 #if defined(SOLARIS) && defined(__GNUC__)
625 if (d < -1 || 1 < d) {
626 return js_NaN;
628 #endif
629 return acos(d);
632 static jsdouble FASTCALL
633 math_asin_tn(jsdouble d)
635 #if defined(SOLARIS) && defined(__GNUC__)
636 if (d < -1 || 1 < d) {
637 return js_NaN;
639 #endif
640 return asin(d);
643 #ifdef _WIN32
645 static jsdouble FASTCALL
646 math_exp_tn(JSContext *cx, jsdouble d)
648 if (!JSDOUBLE_IS_NaN(d)) {
649 if (d == *cx->runtime->jsPositiveInfinity) {
650 return *cx->runtime->jsPositiveInfinity;
652 if (d == *cx->runtime->jsNegativeInfinity) {
653 return 0.0;
656 return exp(d);
659 JS_DEFINE_TRCINFO_1(math_exp,
660 (2, (static, DOUBLE, math_exp_tn, CONTEXT, DOUBLE, 1, 1)))
662 #else
664 MATH_BUILTIN_1(exp)
666 #endif
668 static jsdouble FASTCALL
669 math_log_tn(jsdouble d)
671 #if defined(SOLARIS) && defined(__GNUC__)
672 if (d < 0)
673 return js_NaN;
674 #endif
675 return log(d);
678 static jsdouble FASTCALL
679 math_max_tn(jsdouble d, jsdouble p)
681 if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
682 return js_NaN;
684 if (p == 0 && p == d) {
685 // Max prefers 0.0 to -0.0.
686 if (js_copysign(1.0, d) == -1)
687 return p;
688 return d;
690 return (p > d) ? p : d;
693 static jsdouble FASTCALL
694 math_min_tn(jsdouble d, jsdouble p)
696 if (JSDOUBLE_IS_NaN(d) || JSDOUBLE_IS_NaN(p))
697 return js_NaN;
699 if (p == 0 && p == d) {
700 // Min prefers -0.0 to 0.0.
701 if (js_copysign (1.0, p) == -1)
702 return p;
703 return d;
705 return (p < d) ? p : d;
708 static jsdouble FASTCALL
709 math_pow_tn(jsdouble d, jsdouble p)
711 if (!JSDOUBLE_IS_FINITE(p) && (d == 1.0 || d == -1.0))
712 return js_NaN;
713 if (p == 0)
714 return 1.0;
715 return pow(d, p);
718 static jsdouble FASTCALL
719 math_random_tn(JSRuntime* rt)
721 JS_LOCK_RUNTIME(rt);
722 js_random_init(rt);
723 jsdouble z = js_random_nextDouble(rt);
724 JS_UNLOCK_RUNTIME(rt);
725 return z;
728 static jsdouble FASTCALL
729 math_round_tn(jsdouble x)
731 return js_copysign(floor(x + 0.5), x);
734 static jsdouble FASTCALL
735 math_ceil_tn(jsdouble x)
737 return math_ceil_kernel(x);
740 JS_DEFINE_TRCINFO_1(math_acos,
741 (1, (static, DOUBLE, math_acos_tn, DOUBLE, 1, 1)))
742 JS_DEFINE_TRCINFO_1(math_asin,
743 (1, (static, DOUBLE, math_asin_tn, DOUBLE, 1, 1)))
744 JS_DEFINE_TRCINFO_1(math_atan2,
745 (2, (static, DOUBLE, math_atan2_kernel, DOUBLE, DOUBLE, 1, 1)))
746 JS_DEFINE_TRCINFO_1(math_log,
747 (1, (static, DOUBLE, math_log_tn, DOUBLE, 1, 1)))
748 JS_DEFINE_TRCINFO_1(math_max,
749 (2, (static, DOUBLE, math_max_tn, DOUBLE, DOUBLE, 1, 1)))
750 JS_DEFINE_TRCINFO_1(math_min,
751 (2, (static, DOUBLE, math_min_tn, DOUBLE, DOUBLE, 1, 1)))
752 JS_DEFINE_TRCINFO_1(math_pow,
753 (2, (static, DOUBLE, math_pow_tn, DOUBLE, DOUBLE, 1, 1)))
754 JS_DEFINE_TRCINFO_1(math_random,
755 (1, (static, DOUBLE, math_random_tn, RUNTIME, 0, 0)))
756 JS_DEFINE_TRCINFO_1(math_round,
757 (1, (static, DOUBLE, math_round_tn, DOUBLE, 1, 1)))
758 JS_DEFINE_TRCINFO_1(math_ceil,
759 (1, (static, DOUBLE, math_ceil_tn, DOUBLE, 1, 1)))
761 #endif /* JS_TRACER */
763 static JSFunctionSpec math_static_methods[] = {
764 #if JS_HAS_TOSOURCE
765 JS_FN(js_toSource_str, math_toSource, 0, 0),
766 #endif
767 JS_TN("abs", math_abs, 1, 0, math_abs_trcinfo),
768 JS_TN("acos", math_acos, 1, 0, math_acos_trcinfo),
769 JS_TN("asin", math_asin, 1, 0, math_asin_trcinfo),
770 JS_TN("atan", math_atan, 1, 0, math_atan_trcinfo),
771 JS_TN("atan2", math_atan2, 2, 0, math_atan2_trcinfo),
772 JS_TN("ceil", math_ceil, 1, 0, math_ceil_trcinfo),
773 JS_TN("cos", math_cos, 1, 0, math_cos_trcinfo),
774 JS_TN("exp", math_exp, 1, 0, math_exp_trcinfo),
775 JS_TN("floor", math_floor, 1, 0, math_floor_trcinfo),
776 JS_TN("log", math_log, 1, 0, math_log_trcinfo),
777 JS_TN("max", math_max, 2, 0, math_max_trcinfo),
778 JS_TN("min", math_min, 2, 0, math_min_trcinfo),
779 JS_TN("pow", math_pow, 2, 0, math_pow_trcinfo),
780 JS_TN("random", math_random, 0, 0, math_random_trcinfo),
781 JS_TN("round", math_round, 1, 0, math_round_trcinfo),
782 JS_TN("sin", math_sin, 1, 0, math_sin_trcinfo),
783 JS_TN("sqrt", math_sqrt, 1, 0, math_sqrt_trcinfo),
784 JS_TN("tan", math_tan, 1, 0, math_tan_trcinfo),
785 JS_FS_END
788 JSObject *
789 js_InitMathClass(JSContext *cx, JSObject *obj)
791 JSObject *Math;
793 Math = JS_NewObject(cx, &js_MathClass, NULL, obj);
794 if (!Math)
795 return NULL;
796 if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
797 JS_PropertyStub, JS_PropertyStub, 0)) {
798 return NULL;
801 if (!JS_DefineFunctions(cx, Math, math_static_methods))
802 return NULL;
803 if (!JS_DefineConstDoubles(cx, Math, math_constants))
804 return NULL;
805 return Math;