4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the inverse-DCT management logic.
9 * This code selects a particular IDCT implementation to be used,
10 * and it performs related housekeeping chores. No code in this file
11 * is executed per IDCT step, only during output pass setup.
13 * Note that the IDCT routines are responsible for performing coefficient
14 * dequantization as well as the IDCT proper. This module sets up the
15 * dequantization multiplier table needed by the IDCT routine.
18 #define JPEG_INTERNALS
21 #include "jdct.h" /* Private declarations for DCT subsystem */
22 #ifdef HAVE_SSE2_INTRINSICS
23 extern int SSE2Available
;
27 * The decompressor input side (jdinput.c) saves away the appropriate
28 * quantization table for each component at the start of the first scan
29 * involving that component. (This is necessary in order to correctly
30 * decode files that reuse Q-table slots.)
31 * When we are ready to make an output pass, the saved Q-table is converted
32 * to a multiplier table that will actually be used by the IDCT routine.
33 * The multiplier table contents are IDCT-method-dependent. To support
34 * application changes in IDCT method between scans, we can remake the
35 * multiplier tables if necessary.
36 * In buffered-image mode, the first output pass may occur before any data
37 * has been seen for some components, and thus before their Q-tables have
38 * been saved away. To handle this case, multiplier tables are preset
39 * to zeroes; the result of the IDCT will be a neutral gray level.
43 /* Private subobject for this module */
46 struct jpeg_inverse_dct pub
; /* public fields */
48 /* This array contains the IDCT method code that each multiplier table
49 * is currently set up for, or -1 if it's not yet set up.
50 * The actual multiplier tables are pointed to by dct_table in the
51 * per-component comp_info structures.
53 int cur_method
[MAX_COMPONENTS
];
56 typedef my_idct_controller
* my_idct_ptr
;
59 /* Allocated multiplier tables: big enough for any supported variant */
62 ISLOW_MULT_TYPE islow_array
[DCTSIZE2
];
63 #ifdef DCT_IFAST_SUPPORTED
64 IFAST_MULT_TYPE ifast_array
[DCTSIZE2
];
66 #ifdef DCT_FLOAT_SUPPORTED
67 FLOAT_MULT_TYPE float_array
[DCTSIZE2
];
72 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
73 * so be sure to compile that code if either ISLOW or SCALING is requested.
75 #ifdef DCT_ISLOW_SUPPORTED
76 #define PROVIDE_ISLOW_TABLES
78 #ifdef IDCT_SCALING_SUPPORTED
79 #define PROVIDE_ISLOW_TABLES
84 jpeg_idct_islow_sse2 (
85 j_decompress_ptr cinfo
,
86 jpeg_component_info
* compptr
,
88 JSAMPARRAY output_buf
,
89 JDIMENSION output_col
);
93 * Prepare for an output pass.
94 * Here we select the proper IDCT routine for each component and build
95 * a matching multiplier table.
99 start_pass (j_decompress_ptr cinfo
)
101 my_idct_ptr idct
= (my_idct_ptr
) cinfo
->idct
;
103 jpeg_component_info
*compptr
;
105 inverse_DCT_method_ptr method_ptr
= NULL
;
108 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
110 /* Select the proper IDCT routine for this component's scaling */
111 switch (compptr
->DCT_scaled_size
) {
112 #ifdef IDCT_SCALING_SUPPORTED
114 method_ptr
= jpeg_idct_1x1
;
115 method
= JDCT_ISLOW
; /* jidctred uses islow-style table */
118 method_ptr
= jpeg_idct_2x2
;
119 method
= JDCT_ISLOW
; /* jidctred uses islow-style table */
122 method_ptr
= jpeg_idct_4x4
;
123 method
= JDCT_ISLOW
; /* jidctred uses islow-style table */
127 switch (cinfo
->dct_method
) {
128 #ifdef DCT_ISLOW_SUPPORTED
130 #ifdef HAVE_SSE2_INTEL_MNEMONICS
131 if(SSE2Available
== 1)
133 method_ptr
= jpeg_idct_islow_sse2
;
138 method_ptr
= jpeg_idct_islow
;
142 method_ptr
= jpeg_idct_islow
;
145 #endif /* HAVE_SSE2_INTEL_MNEMONICS */
148 #ifdef DCT_IFAST_SUPPORTED
150 #ifdef HAVE_SSE2_INTEL_MNEMONICS
151 if (SSE2Available
==1)
153 method_ptr
= jpeg_idct_islow_sse2
;
158 method_ptr
= jpeg_idct_ifast
;
162 method_ptr
= jpeg_idct_ifast
;
164 #endif /* HAVE_SSE2_INTEL_MNEMONICS */
168 #ifdef DCT_FLOAT_SUPPORTED
170 method_ptr
= jpeg_idct_float
;
175 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
180 ERREXIT1(cinfo
, JERR_BAD_DCTSIZE
, compptr
->DCT_scaled_size
);
183 idct
->pub
.inverse_DCT
[ci
] = method_ptr
;
184 /* Create multiplier table from quant table.
185 * However, we can skip this if the component is uninteresting
186 * or if we already built the table. Also, if no quant table
187 * has yet been saved for the component, we leave the
188 * multiplier table all-zero; we'll be reading zeroes from the
189 * coefficient controller's buffer anyway.
191 if (! compptr
->component_needed
|| idct
->cur_method
[ci
] == method
)
193 qtbl
= compptr
->quant_table
;
194 if (qtbl
== NULL
) /* happens if no data yet for component */
196 idct
->cur_method
[ci
] = method
;
198 #ifdef PROVIDE_ISLOW_TABLES
201 /* For LL&M IDCT method, multipliers are equal to raw quantization
202 * coefficients, but are stored as ints to ensure access efficiency.
204 ISLOW_MULT_TYPE
* ismtbl
= (ISLOW_MULT_TYPE
*) compptr
->dct_table
;
205 for (i
= 0; i
< DCTSIZE2
; i
++) {
206 ismtbl
[i
] = (ISLOW_MULT_TYPE
) qtbl
->quantval
[i
];
211 #ifdef DCT_IFAST_SUPPORTED
214 /* For AA&N IDCT method, multipliers are equal to quantization
215 * coefficients scaled by scalefactor[row]*scalefactor[col], where
217 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
218 * For integer operation, the multiplier table is to be scaled by
221 IFAST_MULT_TYPE
* ifmtbl
= (IFAST_MULT_TYPE
*) compptr
->dct_table
;
222 #define CONST_BITS 14
223 static const INT16 aanscales
[DCTSIZE2
] = {
224 /* precomputed values scaled up by 14 bits */
225 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
226 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
227 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
228 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
229 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
230 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
231 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
232 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
236 for (i
= 0; i
< DCTSIZE2
; i
++) {
237 ifmtbl
[i
] = (IFAST_MULT_TYPE
)
238 DESCALE(MULTIPLY16V16((INT32
) qtbl
->quantval
[i
],
239 (INT32
) aanscales
[i
]),
240 CONST_BITS
-IFAST_SCALE_BITS
);
245 #ifdef DCT_FLOAT_SUPPORTED
248 /* For float AA&N IDCT method, multipliers are equal to quantization
249 * coefficients scaled by scalefactor[row]*scalefactor[col], where
251 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
253 FLOAT_MULT_TYPE
* fmtbl
= (FLOAT_MULT_TYPE
*) compptr
->dct_table
;
255 static const double aanscalefactor
[DCTSIZE
] = {
256 1.0, 1.387039845, 1.306562965, 1.175875602,
257 1.0, 0.785694958, 0.541196100, 0.275899379
261 for (row
= 0; row
< DCTSIZE
; row
++) {
262 for (col
= 0; col
< DCTSIZE
; col
++) {
263 fmtbl
[i
] = (FLOAT_MULT_TYPE
)
264 ((double) qtbl
->quantval
[i
] *
265 aanscalefactor
[row
] * aanscalefactor
[col
]);
273 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
281 * Initialize IDCT manager.
285 jinit_inverse_dct (j_decompress_ptr cinfo
)
289 jpeg_component_info
*compptr
;
292 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
293 SIZEOF(my_idct_controller
));
294 cinfo
->idct
= (struct jpeg_inverse_dct
*) idct
;
295 idct
->pub
.start_pass
= start_pass
;
297 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
299 /* Allocate and pre-zero a multiplier table for each component */
301 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
302 SIZEOF(multiplier_table
));
303 MEMZERO(compptr
->dct_table
, SIZEOF(multiplier_table
));
304 /* Mark multiplier table not yet set up for any method */
305 idct
->cur_method
[ci
] = -1;