4 * Copyright (C) 1991-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains a slow-but-accurate integer implementation of the
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
10 * must also perform dequantization of the input coefficients.
12 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
13 * on each row (or vice versa, but it's more convenient to emit a row at
14 * a time). Direct algorithms are also available, but they are much more
15 * complex and seem not to be any faster when reduced to code.
17 * This implementation is based on an algorithm described in
18 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
19 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
20 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
21 * The primary algorithm described there uses 11 multiplies and 29 adds.
22 * We use their alternate method with 12 multiplies and 32 adds.
23 * The advantage of this method is that no data path contains more than one
24 * multiplication; this allows a very simple and accurate implementation in
25 * scaled fixed-point arithmetic, with a minimal number of shifts.
28 #define JPEG_INTERNALS
31 #include "jdct.h" /* Private declarations for DCT subsystem */
33 #ifdef DCT_ISLOW_SUPPORTED
37 * This module is specialized to the case DCTSIZE = 8.
41 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
46 * The poop on this scaling stuff is as follows:
48 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
49 * larger than the true IDCT outputs. The final outputs are therefore
50 * a factor of N larger than desired; since N=8 this can be cured by
51 * a simple right shift at the end of the algorithm. The advantage of
52 * this arrangement is that we save two multiplications per 1-D IDCT,
53 * because the y0 and y4 inputs need not be divided by sqrt(N).
55 * We have to do addition and subtraction of the integer inputs, which
56 * is no problem, and multiplication by fractional constants, which is
57 * a problem to do in integer arithmetic. We multiply all the constants
58 * by CONST_SCALE and convert them to integer constants (thus retaining
59 * CONST_BITS bits of precision in the constants). After doing a
60 * multiplication we have to divide the product by CONST_SCALE, with proper
61 * rounding, to produce the correct output. This division can be done
62 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
63 * as long as possible so that partial sums can be added together with
64 * full fractional precision.
66 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67 * they are represented to better-than-integral precision. These outputs
68 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69 * with the recommended scaling. (To scale up 12-bit sample data further, an
70 * intermediate INT32 array would be needed.)
72 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
74 * shows that the values given below are the most effective.
77 #if BITS_IN_JSAMPLE == 8
82 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86 * causing a lot of useless floating-point operations at run time.
87 * To get around this we use the following pre-calculated constants.
88 * If you change CONST_BITS you may want to add appropriate values.
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
93 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
94 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
95 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
96 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
97 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
98 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
99 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
100 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
101 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
102 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
103 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
104 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
106 #define FIX_0_298631336 FIX(0.298631336)
107 #define FIX_0_390180644 FIX(0.390180644)
108 #define FIX_0_541196100 FIX(0.541196100)
109 #define FIX_0_765366865 FIX(0.765366865)
110 #define FIX_0_899976223 FIX(0.899976223)
111 #define FIX_1_175875602 FIX(1.175875602)
112 #define FIX_1_501321110 FIX(1.501321110)
113 #define FIX_1_847759065 FIX(1.847759065)
114 #define FIX_1_961570560 FIX(1.961570560)
115 #define FIX_2_053119869 FIX(2.053119869)
116 #define FIX_2_562915447 FIX(2.562915447)
117 #define FIX_3_072711026 FIX(3.072711026)
121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125 * For 12-bit samples, a full 32-bit multiplication will be needed.
128 #if BITS_IN_JSAMPLE == 8
129 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
131 #define MULTIPLY(var,const) ((var) * (const))
135 /* Dequantize a coefficient by multiplying it by the multiplier-table
136 * entry; produce an int result. In this module, both inputs and result
137 * are 16 bits or less, so either int or short multiply will work.
140 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
144 * Perform dequantization and inverse DCT on one block of coefficients.
148 jpeg_idct_islow (j_decompress_ptr cinfo
, jpeg_component_info
* compptr
,
150 JSAMPARRAY output_buf
, JDIMENSION output_col
)
152 INT32 tmp0
, tmp1
, tmp2
, tmp3
;
153 INT32 tmp10
, tmp11
, tmp12
, tmp13
;
154 INT32 z1
, z2
, z3
, z4
, z5
;
156 ISLOW_MULT_TYPE
* quantptr
;
159 JSAMPLE
*range_limit
= IDCT_range_limit(cinfo
);
161 int workspace
[DCTSIZE2
]; /* buffers data between passes */
164 /* Pass 1: process columns from input, store into work array. */
165 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
166 /* furthermore, we scale the results by 2**PASS1_BITS. */
169 quantptr
= (ISLOW_MULT_TYPE
*) compptr
->dct_table
;
171 for (ctr
= DCTSIZE
; ctr
> 0; ctr
--) {
172 /* Due to quantization, we will usually find that many of the input
173 * coefficients are zero, especially the AC terms. We can exploit this
174 * by short-circuiting the IDCT calculation for any column in which all
175 * the AC terms are zero. In that case each output is equal to the
176 * DC coefficient (with scale factor as needed).
177 * With typical images and quantization tables, half or more of the
178 * column DCT calculations can be simplified this way.
181 if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*2] == 0 &&
182 inptr
[DCTSIZE
*3] == 0 && inptr
[DCTSIZE
*4] == 0 &&
183 inptr
[DCTSIZE
*5] == 0 && inptr
[DCTSIZE
*6] == 0 &&
184 inptr
[DCTSIZE
*7] == 0) {
185 /* AC terms all zero */
186 int dcval
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]) << PASS1_BITS
;
188 wsptr
[DCTSIZE
*0] = dcval
;
189 wsptr
[DCTSIZE
*1] = dcval
;
190 wsptr
[DCTSIZE
*2] = dcval
;
191 wsptr
[DCTSIZE
*3] = dcval
;
192 wsptr
[DCTSIZE
*4] = dcval
;
193 wsptr
[DCTSIZE
*5] = dcval
;
194 wsptr
[DCTSIZE
*6] = dcval
;
195 wsptr
[DCTSIZE
*7] = dcval
;
197 inptr
++; /* advance pointers to next column */
203 /* Even part: reverse the even part of the forward DCT. */
204 /* The rotator is sqrt(2)*c(-6). */
206 z2
= DEQUANTIZE(inptr
[DCTSIZE
*2], quantptr
[DCTSIZE
*2]);
207 z3
= DEQUANTIZE(inptr
[DCTSIZE
*6], quantptr
[DCTSIZE
*6]);
209 z1
= MULTIPLY(z2
+ z3
, FIX_0_541196100
);
210 tmp2
= z1
+ MULTIPLY(z3
, - FIX_1_847759065
);
211 tmp3
= z1
+ MULTIPLY(z2
, FIX_0_765366865
);
213 z2
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]);
214 z3
= DEQUANTIZE(inptr
[DCTSIZE
*4], quantptr
[DCTSIZE
*4]);
216 tmp0
= (z2
+ z3
) << CONST_BITS
;
217 tmp1
= (z2
- z3
) << CONST_BITS
;
224 /* Odd part per figure 8; the matrix is unitary and hence its
225 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
228 tmp0
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]);
229 tmp1
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]);
230 tmp2
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]);
231 tmp3
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]);
237 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
239 tmp0
= MULTIPLY(tmp0
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
240 tmp1
= MULTIPLY(tmp1
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
241 tmp2
= MULTIPLY(tmp2
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
242 tmp3
= MULTIPLY(tmp3
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
243 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
244 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
245 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
246 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
256 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
258 wsptr
[DCTSIZE
*0] = (int) DESCALE(tmp10
+ tmp3
, CONST_BITS
-PASS1_BITS
);
259 wsptr
[DCTSIZE
*7] = (int) DESCALE(tmp10
- tmp3
, CONST_BITS
-PASS1_BITS
);
260 wsptr
[DCTSIZE
*1] = (int) DESCALE(tmp11
+ tmp2
, CONST_BITS
-PASS1_BITS
);
261 wsptr
[DCTSIZE
*6] = (int) DESCALE(tmp11
- tmp2
, CONST_BITS
-PASS1_BITS
);
262 wsptr
[DCTSIZE
*2] = (int) DESCALE(tmp12
+ tmp1
, CONST_BITS
-PASS1_BITS
);
263 wsptr
[DCTSIZE
*5] = (int) DESCALE(tmp12
- tmp1
, CONST_BITS
-PASS1_BITS
);
264 wsptr
[DCTSIZE
*3] = (int) DESCALE(tmp13
+ tmp0
, CONST_BITS
-PASS1_BITS
);
265 wsptr
[DCTSIZE
*4] = (int) DESCALE(tmp13
- tmp0
, CONST_BITS
-PASS1_BITS
);
267 inptr
++; /* advance pointers to next column */
272 /* Pass 2: process rows from work array, store into output array. */
273 /* Note that we must descale the results by a factor of 8 == 2**3, */
274 /* and also undo the PASS1_BITS scaling. */
277 for (ctr
= 0; ctr
< DCTSIZE
; ctr
++) {
278 outptr
= output_buf
[ctr
] + output_col
;
279 /* Rows of zeroes can be exploited in the same way as we did with columns.
280 * However, the column calculation has created many nonzero AC terms, so
281 * the simplification applies less often (typically 5% to 10% of the time).
282 * On machines with very fast multiplication, it's possible that the
283 * test takes more time than it's worth. In that case this section
284 * may be commented out.
287 #ifndef NO_ZERO_ROW_TEST
288 if (wsptr
[1] == 0 && wsptr
[2] == 0 && wsptr
[3] == 0 && wsptr
[4] == 0 &&
289 wsptr
[5] == 0 && wsptr
[6] == 0 && wsptr
[7] == 0) {
290 /* AC terms all zero */
291 JSAMPLE dcval
= range_limit
[(int) DESCALE((INT32
) wsptr
[0], PASS1_BITS
+3)
303 wsptr
+= DCTSIZE
; /* advance pointer to next row */
308 /* Even part: reverse the even part of the forward DCT. */
309 /* The rotator is sqrt(2)*c(-6). */
311 z2
= (INT32
) wsptr
[2];
312 z3
= (INT32
) wsptr
[6];
314 z1
= MULTIPLY(z2
+ z3
, FIX_0_541196100
);
315 tmp2
= z1
+ MULTIPLY(z3
, - FIX_1_847759065
);
316 tmp3
= z1
+ MULTIPLY(z2
, FIX_0_765366865
);
318 tmp0
= ((INT32
) wsptr
[0] + (INT32
) wsptr
[4]) << CONST_BITS
;
319 tmp1
= ((INT32
) wsptr
[0] - (INT32
) wsptr
[4]) << CONST_BITS
;
326 /* Odd part per figure 8; the matrix is unitary and hence its
327 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
330 tmp0
= (INT32
) wsptr
[7];
331 tmp1
= (INT32
) wsptr
[5];
332 tmp2
= (INT32
) wsptr
[3];
333 tmp3
= (INT32
) wsptr
[1];
339 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
341 tmp0
= MULTIPLY(tmp0
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
342 tmp1
= MULTIPLY(tmp1
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
343 tmp2
= MULTIPLY(tmp2
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
344 tmp3
= MULTIPLY(tmp3
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
345 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
346 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
347 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
348 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
358 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
360 outptr
[0] = range_limit
[(int) DESCALE(tmp10
+ tmp3
,
361 CONST_BITS
+PASS1_BITS
+3)
363 outptr
[7] = range_limit
[(int) DESCALE(tmp10
- tmp3
,
364 CONST_BITS
+PASS1_BITS
+3)
366 outptr
[1] = range_limit
[(int) DESCALE(tmp11
+ tmp2
,
367 CONST_BITS
+PASS1_BITS
+3)
369 outptr
[6] = range_limit
[(int) DESCALE(tmp11
- tmp2
,
370 CONST_BITS
+PASS1_BITS
+3)
372 outptr
[2] = range_limit
[(int) DESCALE(tmp12
+ tmp1
,
373 CONST_BITS
+PASS1_BITS
+3)
375 outptr
[5] = range_limit
[(int) DESCALE(tmp12
- tmp1
,
376 CONST_BITS
+PASS1_BITS
+3)
378 outptr
[3] = range_limit
[(int) DESCALE(tmp13
+ tmp0
,
379 CONST_BITS
+PASS1_BITS
+3)
381 outptr
[4] = range_limit
[(int) DESCALE(tmp13
- tmp0
,
382 CONST_BITS
+PASS1_BITS
+3)
385 wsptr
+= DCTSIZE
; /* advance pointer to next row */
390 #ifdef HAVE_SSE2_INTEL_MNEMONICS
393 * Intel SSE2 optimized Inverse Discrete Cosine Transform
396 * Copyright (c) 2001-2002 Intel Corporation
397 * All Rights Reserved
404 *-----------------------------------------------------------------------------
407 * K.R. Rao and P. Yip
408 * Discrete Cosine Transform.
409 * Algorithms, Advantages, Applications.
410 * Academic Press, Inc, London, 1990.
411 * JPEG Group's software.
412 * This implementation is based on Appendix A.2 of the book (R&Y) ...
414 *-----------------------------------------------------------------------------
417 typedef unsigned char Ipp8u
;
418 typedef unsigned short Ipp16u
;
419 typedef unsigned int Ipp32u
;
421 typedef signed char Ipp8s
;
422 typedef signed short Ipp16s
;
423 typedef signed int Ipp32s
;
425 #define BITS_INV_ACC 4
426 #define SHIFT_INV_ROW 16 - BITS_INV_ACC
427 #define SHIFT_INV_COL 1 + BITS_INV_ACC
429 #define RND_INV_ROW 1024 * (6 - BITS_INV_ACC) /* 1 << (SHIFT_INV_ROW-1) */
430 #define RND_INV_COL = 16 * (BITS_INV_ACC - 3) /* 1 << (SHIFT_INV_COL-1) */
431 #define RND_INV_CORR = RND_INV_COL - 1 /* correction -1.0 and round */
433 #define c_inv_corr_0 -1024 * (6 - BITS_INV_ACC) + 65536 /* -0.5 + (16.0 or 32.0) */
434 #define c_inv_corr_1 1877 * (6 - BITS_INV_ACC) /* 0.9167 */
435 #define c_inv_corr_2 1236 * (6 - BITS_INV_ACC) /* 0.6035 */
436 #define c_inv_corr_3 680 * (6 - BITS_INV_ACC) /* 0.3322 */
437 #define c_inv_corr_4 0 * (6 - BITS_INV_ACC) /* 0.0 */
438 #define c_inv_corr_5 -569 * (6 - BITS_INV_ACC) /* -0.278 */
439 #define c_inv_corr_6 -512 * (6 - BITS_INV_ACC) /* -0.25 */
440 #define c_inv_corr_7 -651 * (6 - BITS_INV_ACC) /* -0.3176 */
442 #define RND_INV_ROW_0 RND_INV_ROW + c_inv_corr_0
443 #define RND_INV_ROW_1 RND_INV_ROW + c_inv_corr_1
444 #define RND_INV_ROW_2 RND_INV_ROW + c_inv_corr_2
445 #define RND_INV_ROW_3 RND_INV_ROW + c_inv_corr_3
446 #define RND_INV_ROW_4 RND_INV_ROW + c_inv_corr_4
447 #define RND_INV_ROW_5 RND_INV_ROW + c_inv_corr_5
448 #define RND_INV_ROW_6 RND_INV_ROW + c_inv_corr_6
449 #define RND_INV_ROW_7 RND_INV_ROW + c_inv_corr_7
451 /* Table for rows 0,4 - constants are multiplied on cos_4_16 */
453 __declspec(align(16)) short tab_i_04
[] = {
454 16384, 21407, 16384, 8867,
455 -16384, 21407, 16384, -8867,
456 16384, -8867, 16384, -21407,
457 16384, 8867, -16384, -21407,
458 22725, 19266, 19266, -4520,
459 4520, 19266, 19266, -22725,
460 12873, -22725, 4520, -12873,
461 12873, 4520, -22725, -12873};
463 /* Table for rows 1,7 - constants are multiplied on cos_1_16 */
465 __declspec(align(16)) short tab_i_17
[] = {
466 22725, 29692, 22725, 12299,
467 -22725, 29692, 22725, -12299,
468 22725, -12299, 22725, -29692,
469 22725, 12299, -22725, -29692,
470 31521, 26722, 26722, -6270,
471 6270, 26722, 26722, -31521,
472 17855, -31521, 6270, -17855,
473 17855, 6270, -31521, -17855};
475 /* Table for rows 2,6 - constants are multiplied on cos_2_16 */
477 __declspec(align(16)) short tab_i_26
[] = {
478 21407, 27969, 21407, 11585,
479 -21407, 27969, 21407, -11585,
480 21407, -11585, 21407, -27969,
481 21407, 11585, -21407, -27969,
482 29692, 25172, 25172, -5906,
483 5906, 25172, 25172, -29692,
484 16819, -29692, 5906, -16819,
485 16819, 5906, -29692, -16819};
487 /* Table for rows 3,5 - constants are multiplied on cos_3_16 */
489 __declspec(align(16)) short tab_i_35
[] = {
490 19266, 25172, 19266, 10426,
491 -19266, 25172, 19266, -10426,
492 19266, -10426, 19266, -25172,
493 19266, 10426, -19266, -25172,
494 26722, 22654, 22654, -5315,
495 5315, 22654, 22654, -26722,
496 15137, -26722, 5315, -15137,
497 15137, 5315, -26722, -15137};
499 __declspec(align(16)) long round_i_0
[] = {RND_INV_ROW_0
,RND_INV_ROW_0
,
500 RND_INV_ROW_0
,RND_INV_ROW_0
};
501 __declspec(align(16)) long round_i_1
[] = {RND_INV_ROW_1
,RND_INV_ROW_1
,
502 RND_INV_ROW_1
,RND_INV_ROW_1
};
503 __declspec(align(16)) long round_i_2
[] = {RND_INV_ROW_2
,RND_INV_ROW_2
,
504 RND_INV_ROW_2
,RND_INV_ROW_2
};
505 __declspec(align(16)) long round_i_3
[] = {RND_INV_ROW_3
,RND_INV_ROW_3
,
506 RND_INV_ROW_3
,RND_INV_ROW_3
};
507 __declspec(align(16)) long round_i_4
[] = {RND_INV_ROW_4
,RND_INV_ROW_4
,
508 RND_INV_ROW_4
,RND_INV_ROW_4
};
509 __declspec(align(16)) long round_i_5
[] = {RND_INV_ROW_5
,RND_INV_ROW_5
,
510 RND_INV_ROW_5
,RND_INV_ROW_5
};
511 __declspec(align(16)) long round_i_6
[] = {RND_INV_ROW_6
,RND_INV_ROW_6
,
512 RND_INV_ROW_6
,RND_INV_ROW_6
};
513 __declspec(align(16)) long round_i_7
[] = {RND_INV_ROW_7
,RND_INV_ROW_7
,
514 RND_INV_ROW_7
,RND_INV_ROW_7
};
516 __declspec(align(16)) short tg_1_16
[] = {
517 13036, 13036, 13036, 13036, /* tg * (2<<16) + 0.5 */
518 13036, 13036, 13036, 13036};
519 __declspec(align(16)) short tg_2_16
[] = {
520 27146, 27146, 27146, 27146, /* tg * (2<<16) + 0.5 */
521 27146, 27146, 27146, 27146};
522 __declspec(align(16)) short tg_3_16
[] = {
523 -21746, -21746, -21746, -21746, /* tg * (2<<16) + 0.5 */
524 -21746, -21746, -21746, -21746};
525 __declspec(align(16)) short cos_4_16
[] = {
526 -19195, -19195, -19195, -19195, /* cos * (2<<16) + 0.5 */
527 -19195, -19195, -19195, -19195};
530 * In this implementation the outputs of the iDCT-1D are multiplied
531 * for rows 0,4 - on cos_4_16,
532 * for rows 1,7 - on cos_1_16,
533 * for rows 2,6 - on cos_2_16,
534 * for rows 3,5 - on cos_3_16
535 * and are shifted to the left for rise of accuracy
538 * FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
540 *-----------------------------------------------------------------------------
542 * On the first stage the calculation is executed at once for two rows.
543 * The permutation for each output row is done on second stage
544 * t7 t6 t5 t4 t3 t2 t1 t0 -> t4 t5 t6 t7 t3 t2 t1 t0
546 *-----------------------------------------------------------------------------
549 #define DCT_8_INV_ROW_2R(TABLE, ROUND1, ROUND2) __asm { \
550 __asm pshuflw xmm1, xmm0, 10001000b \
551 __asm pshuflw xmm0, xmm0, 11011101b \
552 __asm pshufhw xmm1, xmm1, 10001000b \
553 __asm pshufhw xmm0, xmm0, 11011101b \
554 __asm movdqa xmm2, XMMWORD PTR [TABLE] \
555 __asm pmaddwd xmm2, xmm1 \
556 __asm movdqa xmm3, XMMWORD PTR [TABLE + 32] \
557 __asm pmaddwd xmm3, xmm0 \
558 __asm pmaddwd xmm1, XMMWORD PTR [TABLE + 16] \
559 __asm pmaddwd xmm0, XMMWORD PTR [TABLE + 48] \
560 __asm pshuflw xmm5, xmm4, 10001000b \
561 __asm pshuflw xmm4, xmm4, 11011101b \
562 __asm pshufhw xmm5, xmm5, 10001000b \
563 __asm pshufhw xmm4, xmm4, 11011101b \
564 __asm movdqa xmm6, XMMWORD PTR [TABLE] \
565 __asm pmaddwd xmm6, xmm5 \
566 __asm movdqa xmm7, XMMWORD PTR [TABLE + 32] \
567 __asm pmaddwd xmm7, xmm4 \
568 __asm pmaddwd xmm5, XMMWORD PTR [TABLE + 16] \
569 __asm pmaddwd xmm4, XMMWORD PTR [TABLE + 48] \
570 __asm pshufd xmm1, xmm1, 01001110b \
571 __asm pshufd xmm0, xmm0, 01001110b \
572 __asm paddd xmm2, XMMWORD PTR [ROUND1] \
573 __asm paddd xmm3, xmm0 \
574 __asm paddd xmm1, xmm2 \
575 __asm pshufd xmm5, xmm5, 01001110b \
576 __asm pshufd xmm4, xmm4, 01001110b \
577 __asm movdqa xmm2, xmm1 \
578 __asm psubd xmm2, xmm3 \
579 __asm psrad xmm2, SHIFT_INV_ROW \
580 __asm paddd xmm1, xmm3 \
581 __asm psrad xmm1, SHIFT_INV_ROW \
582 __asm packssdw xmm1, xmm2 \
583 __asm paddd xmm6, XMMWORD PTR [ROUND2] \
584 __asm paddd xmm7, xmm4 \
585 __asm paddd xmm5, xmm6 \
586 __asm movdqa xmm6, xmm5 \
587 __asm psubd xmm6, xmm7 \
588 __asm psrad xmm6, SHIFT_INV_ROW \
589 __asm paddd xmm5, xmm7 \
590 __asm psrad xmm5, SHIFT_INV_ROW \
591 __asm packssdw xmm5, xmm6 \
596 * The second stage - inverse DCTs of columns
598 * The inputs are multiplied
599 * for rows 0,4 - on cos_4_16,
600 * for rows 1,7 - on cos_1_16,
601 * for rows 2,6 - on cos_2_16,
602 * for rows 3,5 - on cos_3_16
603 * and are shifted to the left for rise of accuracy
606 #define DCT_8_INV_COL_8R(INP, OUTP) __asm { \
607 __asm movdqa xmm0, [INP + 5*16] \
608 __asm movdqa xmm1, XMMWORD PTR tg_3_16 \
609 __asm movdqa xmm2, xmm0 \
610 __asm movdqa xmm3, [INP + 3*16] \
611 __asm pmulhw xmm0, xmm1 \
612 __asm movdqa xmm4, [INP + 7*16] \
613 __asm pmulhw xmm1, xmm3 \
614 __asm movdqa xmm5, XMMWORD PTR tg_1_16 \
615 __asm movdqa xmm6, xmm4 \
616 __asm pmulhw xmm4, xmm5 \
617 __asm paddsw xmm0, xmm2 \
618 __asm pmulhw xmm5, [INP + 1*16] \
619 __asm paddsw xmm1, xmm3 \
620 __asm movdqa xmm7, [INP + 6*16] \
621 __asm paddsw xmm0, xmm3 \
622 __asm movdqa xmm3, XMMWORD PTR tg_2_16 \
623 __asm psubsw xmm2, xmm1 \
624 __asm pmulhw xmm7, xmm3 \
625 __asm movdqa xmm1, xmm0 \
626 __asm pmulhw xmm3, [INP + 2*16] \
627 __asm psubsw xmm5, xmm6 \
628 __asm paddsw xmm4, [INP + 1*16] \
629 __asm paddsw xmm0, xmm4 \
630 __asm psubsw xmm4, xmm1 \
631 __asm pshufhw xmm0, xmm0, 00011011b \
632 __asm paddsw xmm7, [INP + 2*16] \
633 __asm movdqa xmm6, xmm5 \
634 __asm psubsw xmm3, [INP + 6*16] \
635 __asm psubsw xmm5, xmm2 \
636 __asm paddsw xmm6, xmm2 \
637 __asm movdqa [OUTP + 7*16], xmm0 \
638 __asm movdqa xmm1, xmm4 \
639 __asm movdqa xmm2, XMMWORD PTR cos_4_16 \
640 __asm paddsw xmm4, xmm5 \
641 __asm movdqa xmm0, XMMWORD PTR cos_4_16 \
642 __asm pmulhw xmm2, xmm4 \
643 __asm pshufhw xmm6, xmm6, 00011011b \
644 __asm movdqa [OUTP + 3*16], xmm6 \
645 __asm psubsw xmm1, xmm5 \
646 __asm movdqa xmm6, [INP + 0*16] \
647 __asm pmulhw xmm0, xmm1 \
648 __asm movdqa xmm5, [INP + 4*16] \
649 __asm paddsw xmm4, xmm2 \
650 __asm paddsw xmm5, xmm6 \
651 __asm psubsw xmm6, [INP + 4*16] \
652 __asm paddsw xmm0, xmm1 \
653 __asm pshufhw xmm4, xmm4, 00011011b \
654 __asm movdqa xmm2, xmm5 \
655 __asm paddsw xmm5, xmm7 \
656 __asm movdqa xmm1, xmm6 \
657 __asm psubsw xmm2, xmm7 \
658 __asm movdqa xmm7, [OUTP + 7*16] \
659 __asm paddsw xmm6, xmm3 \
660 __asm pshufhw xmm5, xmm5, 00011011b \
661 __asm paddsw xmm7, xmm5 \
662 __asm psubsw xmm1, xmm3 \
663 __asm pshufhw xmm6, xmm6, 00011011b \
664 __asm movdqa xmm3, xmm6 \
665 __asm paddsw xmm6, xmm4 \
666 __asm pshufhw xmm2, xmm2, 00011011b \
667 __asm psraw xmm7, SHIFT_INV_COL \
668 __asm movdqa [OUTP + 0*16], xmm7 \
669 __asm movdqa xmm7, xmm1 \
670 __asm paddsw xmm1, xmm0 \
671 __asm psraw xmm6, SHIFT_INV_COL \
672 __asm movdqa [OUTP + 1*16], xmm6 \
673 __asm pshufhw xmm1, xmm1, 00011011b \
674 __asm movdqa xmm6, [OUTP + 3*16] \
675 __asm psubsw xmm7, xmm0 \
676 __asm psraw xmm1, SHIFT_INV_COL \
677 __asm movdqa [OUTP + 2*16], xmm1 \
678 __asm psubsw xmm5, [OUTP + 7*16] \
679 __asm paddsw xmm6, xmm2 \
680 __asm psubsw xmm2, [OUTP + 3*16] \
681 __asm psubsw xmm3, xmm4 \
682 __asm psraw xmm7, SHIFT_INV_COL \
683 __asm pshufhw xmm7, xmm7, 00011011b \
684 __asm movdqa [OUTP + 5*16], xmm7 \
685 __asm psraw xmm5, SHIFT_INV_COL \
686 __asm movdqa [OUTP + 7*16], xmm5 \
687 __asm psraw xmm6, SHIFT_INV_COL \
688 __asm movdqa [OUTP + 3*16], xmm6 \
689 __asm psraw xmm2, SHIFT_INV_COL \
690 __asm movdqa [OUTP + 4*16], xmm2 \
691 __asm psraw xmm3, SHIFT_INV_COL \
692 __asm movdqa [OUTP + 6*16], xmm3 \
697 * Name: dct_8x8_inv_16s
698 * Purpose: Inverse Discrete Cosine Transform 8x8 with
699 * 2D buffer of short int data
701 * void dct_8x8_inv_16s ( short *src, short *dst )
703 * src - Pointer to the source buffer
704 * dst - Pointer to the destination buffer
709 dct_8x8_inv_16s ( short *src
, short *dst
) {
716 movdqa xmm0
, [ecx
+0*16]
717 movdqa xmm4
, [ecx
+4*16]
718 DCT_8_INV_ROW_2R(tab_i_04
, round_i_0
, round_i_4
)
719 movdqa
[edx
+0*16], xmm1
720 movdqa
[edx
+4*16], xmm5
722 movdqa xmm0
, [ecx
+1*16]
723 movdqa xmm4
, [ecx
+7*16]
724 DCT_8_INV_ROW_2R(tab_i_17
, round_i_1
, round_i_7
)
725 movdqa
[edx
+1*16], xmm1
726 movdqa
[edx
+7*16], xmm5
728 movdqa xmm0
, [ecx
+3*16]
729 movdqa xmm4
, [ecx
+5*16]
730 DCT_8_INV_ROW_2R(tab_i_35
, round_i_3
, round_i_5
);
731 movdqa
[edx
+3*16], xmm1
732 movdqa
[edx
+5*16], xmm5
734 movdqa xmm0
, [ecx
+2*16]
735 movdqa xmm4
, [ecx
+6*16]
736 DCT_8_INV_ROW_2R(tab_i_26
, round_i_2
, round_i_6
);
737 movdqa
[edx
+2*16], xmm1
738 movdqa
[edx
+6*16], xmm5
740 DCT_8_INV_COL_8R(edx
+0, edx
+0);
747 * ownpj_QuantInv_8x8_16s
750 * Dequantize 8x8 block of DCT coefficients
753 * void ownpj_QuantInv_8x8_16s
756 * const Ipp16u* pQTbl)*
761 ownpj_QuantInv_8x8_16s(short * pSrc
, short * pDst
, const unsigned short * pQTbl
)
779 movq mm0
, QWORD PTR
[esi
+0]
780 movq mm1
, QWORD PTR
[esi
+8]
781 movq mm2
, QWORD PTR
[esi
+16]
782 movq mm3
, QWORD PTR
[esi
+24]
784 prefetcht0
[esi
+ebx
] ; fetch next cache line
786 pmullw mm0
, QWORD PTR
[edx
+0]
787 pmullw mm1
, QWORD PTR
[edx
+8]
788 pmullw mm2
, QWORD PTR
[edx
+16]
789 pmullw mm3
, QWORD PTR
[edx
+24]
791 movq QWORD PTR
[edi
+0], mm0
792 movq QWORD PTR
[edi
+8], mm1
793 movq QWORD PTR
[edi
+16], mm2
794 movq QWORD PTR
[edi
+24], mm3
815 * ownpj_Add128_8x8_16s8u
818 * signed to unsigned conversion (level shift)
819 * for 8x8 block of DCT coefficients
822 * void ownpj_Add128_8x8_16s8u
823 * const Ipp16s* pSrc,
829 __declspec(align(16)) long const_128
[]= {0x00800080, 0x00800080, 0x00800080, 0x00800080};
832 ownpj_Add128_8x8_16s8u(const short * pSrc
, unsigned char * pDst
, int DstStep
)
850 movdqa xmm7
, XMMWORD PTR const_128
854 movdqa xmm0
, XMMWORD PTR
[esi
+0] ; line
0
855 movdqa xmm1
, XMMWORD PTR
[esi
+16] ; line
1
856 movdqa xmm2
, XMMWORD PTR
[esi
+32] ; line
2
857 movdqa xmm3
, XMMWORD PTR
[esi
+48] ; line
3
867 movq QWORD PTR
[edi
], xmm0
;0*DstStep
868 movq QWORD PTR
[edi
+ebx
], xmm2
;2*DstStep
873 movq QWORD PTR
[edi
+edx
], xmm0
;1*DstStep
874 movq QWORD PTR
[edi
+eax
], xmm2
;3*DstStep
894 * ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R
897 * Inverse DCT transform, de-quantization and level shift
900 * pSrc - pointer to source
901 * pDst - pointer to output array
902 * DstStep - line offset for output data
903 * pEncoderQuantTable - pointer to Quantization table
908 ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(
910 unsigned char * pDst
,
912 const unsigned short * pQuantInvTable
)
915 __declspec(align(16)) Ipp8u buf
[DCTSIZE2
*sizeof(Ipp16s
)];
916 Ipp16s
* workbuf
= (Ipp16s
*)buf
;
918 ownpj_QuantInv_8x8_16s(pSrc
,workbuf
,pQuantInvTable
);
919 dct_8x8_inv_16s(workbuf
,workbuf
);
920 ownpj_Add128_8x8_16s8u(workbuf
,pDst
,DstStep
);
925 jpeg_idct_islow_sse2 (
926 j_decompress_ptr cinfo
,
927 jpeg_component_info
* compptr
,
929 JSAMPARRAY output_buf
,
930 JDIMENSION output_col
)
936 __declspec(align(16)) Ipp8u workspace
[DCTSIZE2
];
940 quantptr
= (Ipp16u
*)compptr
->dct_table
;
943 ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(inptr
, workspace
, 8, quantptr
);
945 for(ctr
= 0; ctr
< DCTSIZE
; ctr
++)
947 outptr
= output_buf
[ctr
] + output_col
;
949 outptr
[0] = wsptr
[0];
950 outptr
[1] = wsptr
[1];
951 outptr
[2] = wsptr
[2];
952 outptr
[3] = wsptr
[3];
953 outptr
[4] = wsptr
[4];
954 outptr
[5] = wsptr
[5];
955 outptr
[6] = wsptr
[6];
956 outptr
[7] = wsptr
[7];
961 #endif /* HAVE_SSE2_INTEL_MNEMONICS */
963 #endif /* DCT_ISLOW_SUPPORTED */