4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains Huffman entropy decoding routines.
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU. To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
17 #define JPEG_INTERNALS
20 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
24 * Expanded entropy decoder object for Huffman decoding.
26 * The savable_state subrecord contains fields that change within an MCU,
27 * but must not be updated permanently until we complete the MCU.
31 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
34 /* This macro is to work around compilers with missing or broken
35 * structure assignment. You'll need to fix this code if you have
36 * such a compiler and you change MAX_COMPS_IN_SCAN.
39 #ifndef NO_STRUCT_ASSIGN
40 #define ASSIGN_STATE(dest,src) ((dest) = (src))
42 #if MAX_COMPS_IN_SCAN == 4
43 #define ASSIGN_STATE(dest,src) \
44 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
45 (dest).last_dc_val[1] = (src).last_dc_val[1], \
46 (dest).last_dc_val[2] = (src).last_dc_val[2], \
47 (dest).last_dc_val[3] = (src).last_dc_val[3])
53 struct jpeg_entropy_decoder pub
; /* public fields */
55 /* These fields are loaded into local variables at start of each MCU.
56 * In case of suspension, we exit WITHOUT updating them.
58 bitread_perm_state bitstate
; /* Bit buffer at start of MCU */
59 savable_state saved
; /* Other state at start of MCU */
61 /* These fields are NOT loaded into local working state. */
62 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
64 /* Pointers to derived tables (these workspaces have image lifespan) */
65 d_derived_tbl
* dc_derived_tbls
[NUM_HUFF_TBLS
];
66 d_derived_tbl
* ac_derived_tbls
[NUM_HUFF_TBLS
];
68 /* Precalculated info set up by start_pass for use in decode_mcu: */
70 /* Pointers to derived tables to be used for each block within an MCU */
71 d_derived_tbl
* dc_cur_tbls
[D_MAX_BLOCKS_IN_MCU
];
72 d_derived_tbl
* ac_cur_tbls
[D_MAX_BLOCKS_IN_MCU
];
73 /* Whether we care about the DC and AC coefficient values for each block */
74 boolean dc_needed
[D_MAX_BLOCKS_IN_MCU
];
75 boolean ac_needed
[D_MAX_BLOCKS_IN_MCU
];
76 } huff_entropy_decoder
;
78 typedef huff_entropy_decoder
* huff_entropy_ptr
;
82 * Initialize for a Huffman-compressed scan.
86 start_pass_huff_decoder (j_decompress_ptr cinfo
)
88 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
89 int ci
, blkn
, dctbl
, actbl
;
90 jpeg_component_info
* compptr
;
92 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
93 * This ought to be an error condition, but we make it a warning because
94 * there are some baseline files out there with all zeroes in these bytes.
96 if (cinfo
->Ss
!= 0 || cinfo
->Se
!= DCTSIZE2
-1 ||
97 cinfo
->Ah
!= 0 || cinfo
->Al
!= 0)
98 WARNMS(cinfo
, JWRN_NOT_SEQUENTIAL
);
100 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
101 compptr
= cinfo
->cur_comp_info
[ci
];
102 dctbl
= compptr
->dc_tbl_no
;
103 actbl
= compptr
->ac_tbl_no
;
104 /* Compute derived values for Huffman tables */
105 /* We may do this more than once for a table, but it's not expensive */
106 jpeg_make_d_derived_tbl(cinfo
, TRUE
, dctbl
,
107 & entropy
->dc_derived_tbls
[dctbl
]);
108 jpeg_make_d_derived_tbl(cinfo
, FALSE
, actbl
,
109 & entropy
->ac_derived_tbls
[actbl
]);
110 /* Initialize DC predictions to 0 */
111 entropy
->saved
.last_dc_val
[ci
] = 0;
114 /* Precalculate decoding info for each block in an MCU of this scan */
115 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
116 ci
= cinfo
->MCU_membership
[blkn
];
117 compptr
= cinfo
->cur_comp_info
[ci
];
118 /* Precalculate which table to use for each block */
119 entropy
->dc_cur_tbls
[blkn
] = entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
];
120 entropy
->ac_cur_tbls
[blkn
] = entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
];
121 /* Decide whether we really care about the coefficient values */
122 if (compptr
->component_needed
) {
123 entropy
->dc_needed
[blkn
] = TRUE
;
124 /* we don't need the ACs if producing a 1/8th-size image */
125 entropy
->ac_needed
[blkn
] = (compptr
->DCT_scaled_size
> 1);
127 entropy
->dc_needed
[blkn
] = entropy
->ac_needed
[blkn
] = FALSE
;
131 /* Initialize bitread state variables */
132 entropy
->bitstate
.bits_left
= 0;
133 entropy
->bitstate
.get_buffer
= 0; /* unnecessary, but keeps Purify quiet */
134 entropy
->pub
.insufficient_data
= FALSE
;
136 /* Initialize restart counter */
137 entropy
->restarts_to_go
= cinfo
->restart_interval
;
142 * Compute the derived values for a Huffman table.
143 * This routine also performs some validation checks on the table.
145 * Note this is also used by jdphuff.c.
149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo
, boolean isDC
, int tblno
,
150 d_derived_tbl
** pdtbl
)
154 int p
, i
, l
, si
, numsymbols
;
157 unsigned int huffcode
[257];
160 /* Note that huffsize[] and huffcode[] are filled in code-length order,
161 * paralleling the order of the symbols themselves in htbl->huffval[].
164 /* Find the input Huffman table */
165 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
166 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
168 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
170 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
172 /* Allocate a workspace if we haven't already done so. */
174 *pdtbl
= (d_derived_tbl
*)
175 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
176 SIZEOF(d_derived_tbl
));
178 dtbl
->pub
= htbl
; /* fill in back link */
180 /* Figure C.1: make table of Huffman code length for each symbol */
183 for (l
= 1; l
<= 16; l
++) {
184 i
= (int) htbl
->bits
[l
];
185 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
186 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
188 huffsize
[p
++] = (char) l
;
193 /* Figure C.2: generate the codes themselves */
194 /* We also validate that the counts represent a legal Huffman code tree. */
199 while (huffsize
[p
]) {
200 while (((int) huffsize
[p
]) == si
) {
201 huffcode
[p
++] = code
;
204 /* code is now 1 more than the last code used for codelength si; but
205 * it must still fit in si bits, since no code is allowed to be all ones.
207 if (((INT32
) code
) >= (((INT32
) 1) << si
))
208 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
213 /* Figure F.15: generate decoding tables for bit-sequential decoding */
216 for (l
= 1; l
<= 16; l
++) {
218 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
219 * minus the minimum code of length l
221 dtbl
->valoffset
[l
] = (INT32
) p
- (INT32
) huffcode
[p
];
223 dtbl
->maxcode
[l
] = huffcode
[p
-1]; /* maximum code of length l */
225 dtbl
->maxcode
[l
] = -1; /* -1 if no codes of this length */
228 dtbl
->maxcode
[17] = 0xFFFFFL
; /* ensures jpeg_huff_decode terminates */
230 /* Compute lookahead tables to speed up decoding.
231 * First we set all the table entries to 0, indicating "too long";
232 * then we iterate through the Huffman codes that are short enough and
233 * fill in all the entries that correspond to bit sequences starting
237 MEMZERO(dtbl
->look_nbits
, SIZEOF(dtbl
->look_nbits
));
240 for (l
= 1; l
<= HUFF_LOOKAHEAD
; l
++) {
241 for (i
= 1; i
<= (int) htbl
->bits
[l
]; i
++, p
++) {
242 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
243 /* Generate left-justified code followed by all possible bit sequences */
244 lookbits
= huffcode
[p
] << (HUFF_LOOKAHEAD
-l
);
245 for (ctr
= 1 << (HUFF_LOOKAHEAD
-l
); ctr
> 0; ctr
--) {
246 dtbl
->look_nbits
[lookbits
] = l
;
247 dtbl
->look_sym
[lookbits
] = htbl
->huffval
[p
];
253 /* Validate symbols as being reasonable.
254 * For AC tables, we make no check, but accept all byte values 0..255.
255 * For DC tables, we require the symbols to be in range 0..15.
256 * (Tighter bounds could be applied depending on the data depth and mode,
257 * but this is sufficient to ensure safe decoding.)
260 for (i
= 0; i
< numsymbols
; i
++) {
261 int sym
= htbl
->huffval
[i
];
262 if (sym
< 0 || sym
> 15)
263 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
270 * Out-of-line code for bit fetching (shared with jdphuff.c).
271 * See jdhuff.h for info about usage.
272 * Note: current values of get_buffer and bits_left are passed as parameters,
273 * but are returned in the corresponding fields of the state struct.
275 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
276 * of get_buffer to be used. (On machines with wider words, an even larger
277 * buffer could be used.) However, on some machines 32-bit shifts are
278 * quite slow and take time proportional to the number of places shifted.
279 * (This is true with most PC compilers, for instance.) In this case it may
280 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
281 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
285 #define MIN_GET_BITS 15 /* minimum allowable value */
287 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
292 jpeg_fill_bit_buffer (bitread_working_state
* state
,
293 register bit_buf_type get_buffer
, register int bits_left
,
295 /* Load up the bit buffer to a depth of at least nbits */
297 /* Copy heavily used state fields into locals (hopefully registers) */
298 register const JOCTET
* next_input_byte
= state
->next_input_byte
;
299 register size_t bytes_in_buffer
= state
->bytes_in_buffer
;
300 j_decompress_ptr cinfo
= state
->cinfo
;
302 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
303 /* (It is assumed that no request will be for more than that many bits.) */
304 /* We fail to do so only if we hit a marker or are forced to suspend. */
306 if (cinfo
->unread_marker
== 0) { /* cannot advance past a marker */
307 while (bits_left
< MIN_GET_BITS
) {
310 /* Attempt to read a byte */
311 if (bytes_in_buffer
== 0) {
312 if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
))
314 next_input_byte
= cinfo
->src
->next_input_byte
;
315 bytes_in_buffer
= cinfo
->src
->bytes_in_buffer
;
318 c
= GETJOCTET(*next_input_byte
++);
320 /* If it's 0xFF, check and discard stuffed zero byte */
322 /* Loop here to discard any padding FF's on terminating marker,
323 * so that we can save a valid unread_marker value. NOTE: we will
324 * accept multiple FF's followed by a 0 as meaning a single FF data
325 * byte. This data pattern is not valid according to the standard.
328 if (bytes_in_buffer
== 0) {
329 if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
))
331 next_input_byte
= cinfo
->src
->next_input_byte
;
332 bytes_in_buffer
= cinfo
->src
->bytes_in_buffer
;
335 c
= GETJOCTET(*next_input_byte
++);
339 /* Found FF/00, which represents an FF data byte */
342 /* Oops, it's actually a marker indicating end of compressed data.
343 * Save the marker code for later use.
344 * Fine point: it might appear that we should save the marker into
345 * bitread working state, not straight into permanent state. But
346 * once we have hit a marker, we cannot need to suspend within the
347 * current MCU, because we will read no more bytes from the data
348 * source. So it is OK to update permanent state right away.
350 cinfo
->unread_marker
= c
;
351 /* See if we need to insert some fake zero bits. */
356 /* OK, load c into get_buffer */
357 get_buffer
= (get_buffer
<< 8) | c
;
362 /* We get here if we've read the marker that terminates the compressed
363 * data segment. There should be enough bits in the buffer register
364 * to satisfy the request; if so, no problem.
366 if (nbits
> bits_left
) {
367 /* Uh-oh. Report corrupted data to user and stuff zeroes into
368 * the data stream, so that we can produce some kind of image.
369 * We use a nonvolatile flag to ensure that only one warning message
370 * appears per data segment.
372 if (! cinfo
->entropy
->insufficient_data
) {
373 WARNMS(cinfo
, JWRN_HIT_MARKER
);
374 cinfo
->entropy
->insufficient_data
= TRUE
;
376 /* Fill the buffer with zero bits */
377 get_buffer
<<= MIN_GET_BITS
- bits_left
;
378 bits_left
= MIN_GET_BITS
;
382 /* Unload the local registers */
383 state
->next_input_byte
= next_input_byte
;
384 state
->bytes_in_buffer
= bytes_in_buffer
;
385 state
->get_buffer
= get_buffer
;
386 state
->bits_left
= bits_left
;
393 * Out-of-line code for Huffman code decoding.
394 * See jdhuff.h for info about usage.
398 jpeg_huff_decode (bitread_working_state
* state
,
399 register bit_buf_type get_buffer
, register int bits_left
,
400 d_derived_tbl
* htbl
, int min_bits
)
402 register int l
= min_bits
;
405 /* HUFF_DECODE has determined that the code is at least min_bits */
406 /* bits long, so fetch that many bits in one swoop. */
408 CHECK_BIT_BUFFER(*state
, l
, return -1);
411 /* Collect the rest of the Huffman code one bit at a time. */
412 /* This is per Figure F.16 in the JPEG spec. */
414 while (code
> htbl
->maxcode
[l
]) {
416 CHECK_BIT_BUFFER(*state
, 1, return -1);
421 /* Unload the local registers */
422 state
->get_buffer
= get_buffer
;
423 state
->bits_left
= bits_left
;
425 /* With garbage input we may reach the sentinel value l = 17. */
428 WARNMS(state
->cinfo
, JWRN_HUFF_BAD_CODE
);
429 return 0; /* fake a zero as the safest result */
432 return htbl
->pub
->huffval
[ (int) (code
+ htbl
->valoffset
[l
]) ];
437 * Figure F.12: extend sign bit.
438 * On some machines, a shift and add will be faster than a table lookup.
443 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
447 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
449 static const int extend_test
[16] = /* entry n is 2**(n-1) */
450 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
451 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
453 static const int extend_offset
[16] = /* entry n is (-1 << n) + 1 */
454 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
455 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
456 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
457 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
459 #endif /* AVOID_TABLES */
463 * Check for a restart marker & resynchronize decoder.
464 * Returns FALSE if must suspend.
468 process_restart (j_decompress_ptr cinfo
)
470 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
473 /* Throw away any unused bits remaining in bit buffer; */
474 /* include any full bytes in next_marker's count of discarded bytes */
475 cinfo
->marker
->discarded_bytes
+= entropy
->bitstate
.bits_left
/ 8;
476 entropy
->bitstate
.bits_left
= 0;
478 /* Advance past the RSTn marker */
479 if (! (*cinfo
->marker
->read_restart_marker
) (cinfo
))
482 /* Re-initialize DC predictions to 0 */
483 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
484 entropy
->saved
.last_dc_val
[ci
] = 0;
486 /* Reset restart counter */
487 entropy
->restarts_to_go
= cinfo
->restart_interval
;
489 /* Reset out-of-data flag, unless read_restart_marker left us smack up
490 * against a marker. In that case we will end up treating the next data
491 * segment as empty, and we can avoid producing bogus output pixels by
492 * leaving the flag set.
494 if (cinfo
->unread_marker
== 0)
495 entropy
->pub
.insufficient_data
= FALSE
;
502 * Decode and return one MCU's worth of Huffman-compressed coefficients.
503 * The coefficients are reordered from zigzag order into natural array order,
504 * but are not dequantized.
506 * The i'th block of the MCU is stored into the block pointed to by
507 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
508 * (Wholesale zeroing is usually a little faster than retail...)
510 * Returns FALSE if data source requested suspension. In that case no
511 * changes have been made to permanent state. (Exception: some output
512 * coefficients may already have been assigned. This is harmless for
513 * this module, since we'll just re-assign them on the next call.)
517 decode_mcu (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
519 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
524 /* Process restart marker if needed; may have to suspend */
525 if (cinfo
->restart_interval
) {
526 if (entropy
->restarts_to_go
== 0)
527 if (! process_restart(cinfo
))
531 /* If we've run out of data, just leave the MCU set to zeroes.
532 * This way, we return uniform gray for the remainder of the segment.
534 if (! entropy
->pub
.insufficient_data
) {
536 /* Load up working state */
537 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
538 ASSIGN_STATE(state
, entropy
->saved
);
540 /* Outer loop handles each block in the MCU */
542 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
543 JBLOCKROW block
= MCU_data
[blkn
];
544 d_derived_tbl
* dctbl
= entropy
->dc_cur_tbls
[blkn
];
545 d_derived_tbl
* actbl
= entropy
->ac_cur_tbls
[blkn
];
546 register int s
, k
, r
;
548 /* Decode a single block's worth of coefficients */
550 /* Section F.2.2.1: decode the DC coefficient difference */
551 HUFF_DECODE(s
, br_state
, dctbl
, return FALSE
, label1
);
553 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
555 s
= HUFF_EXTEND(r
, s
);
558 if (entropy
->dc_needed
[blkn
]) {
559 /* Convert DC difference to actual value, update last_dc_val */
560 int ci
= cinfo
->MCU_membership
[blkn
];
561 s
+= state
.last_dc_val
[ci
];
562 state
.last_dc_val
[ci
] = s
;
563 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
564 (*block
)[0] = (JCOEF
) s
;
567 if (entropy
->ac_needed
[blkn
]) {
569 /* Section F.2.2.2: decode the AC coefficients */
570 /* Since zeroes are skipped, output area must be cleared beforehand */
571 for (k
= 1; k
< DCTSIZE2
; k
++) {
572 HUFF_DECODE(s
, br_state
, actbl
, return FALSE
, label2
);
579 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
581 s
= HUFF_EXTEND(r
, s
);
582 /* Output coefficient in natural (dezigzagged) order.
583 * Note: the extra entries in jpeg_natural_order[] will save us
584 * if k >= DCTSIZE2, which could happen if the data is corrupted.
586 (*block
)[jpeg_natural_order
[k
]] = (JCOEF
) s
;
596 /* Section F.2.2.2: decode the AC coefficients */
597 /* In this path we just discard the values */
598 for (k
= 1; k
< DCTSIZE2
; k
++) {
599 HUFF_DECODE(s
, br_state
, actbl
, return FALSE
, label3
);
606 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
618 /* Completed MCU, so update state */
619 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
620 ASSIGN_STATE(entropy
->saved
, state
);
623 /* Account for restart interval (no-op if not using restarts) */
624 entropy
->restarts_to_go
--;
631 * Module initialization routine for Huffman entropy decoding.
635 jinit_huff_decoder (j_decompress_ptr cinfo
)
637 huff_entropy_ptr entropy
;
640 entropy
= (huff_entropy_ptr
)
641 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
642 SIZEOF(huff_entropy_decoder
));
643 cinfo
->entropy
= (struct jpeg_entropy_decoder
*) entropy
;
644 entropy
->pub
.start_pass
= start_pass_huff_decoder
;
645 entropy
->pub
.decode_mcu
= decode_mcu
;
647 /* Mark tables unallocated */
648 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
649 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;