2 // This file is part of Moodle - http://moodle.org/
4 // Moodle is free software: you can redistribute it and/or modify
5 // it under the terms of the GNU General Public License as published by
6 // the Free Software Foundation, either version 3 of the License, or
7 // (at your option) any later version.
9 // Moodle is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 // GNU General Public License for more details.
14 // You should have received a copy of the GNU General Public License
15 // along with Moodle. If not, see <http://www.gnu.org/licenses/>.
18 * Regressors interface.
20 * @package core_analytics
21 * @copyright 2017 David Monllao {@link http://www.davidmonllao.com}
22 * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
25 namespace core_analytics
;
27 defined('MOODLE_INTERNAL') ||
die();
30 * Regressors interface.
32 * @package core_analytics
33 * @copyright 2016 David Monllao {@link http://www.davidmonllao.com}
34 * @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
36 interface regressor
extends predictor
{
39 * Train this processor regression model using the provided supervised learning dataset.
41 * @param string $uniqueid
42 * @param \stored_file $dataset
43 * @param string $outputdir
46 public function train_regression($uniqueid, \stored_file
$dataset, $outputdir);
49 * Estimates linear values for the provided dataset samples.
51 * @param string $uniqueid
52 * @param \stored_file $dataset
53 * @param mixed $outputdir
56 public function estimate($uniqueid, \stored_file
$dataset, $outputdir);
59 * Evaluates this processor regression model using the provided supervised learning dataset.
61 * @param string $uniqueid
62 * @param float $maxdeviation
63 * @param int $niterations
64 * @param \stored_file $dataset
65 * @param string $outputdir
66 * @param string $trainedmodeldir
69 public function evaluate_regression($uniqueid, $maxdeviation, $niterations, \stored_file
$dataset,
70 $outputdir, $trainedmodeldir);