2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
27 # include <asm/signal.h>
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
57 # if defined(MSWINCE) || defined (SN_TARGET_PS3)
58 # define SIGSEGV 0 /* value is irrelevant */
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
90 # define NEED_FIND_LIMIT
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
100 #ifdef NEED_FIND_LIMIT
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
113 # include <windows.h>
117 # include <Processes.h>
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
124 #if defined(USE_MUNMAP)
126 --> USE_MUNMAP requires USE_MMAP
129 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
130 # include <sys/types.h>
131 # include <sys/mman.h>
132 # include <sys/stat.h>
140 #if (defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX) || defined(NETBSD)) && !defined(FREEBSD)
142 # include <sys/siginfo.h>
144 /* Define SETJMP and friends to be the version that restores */
145 /* the signal mask. */
146 # define SETJMP(env) sigsetjmp(env, 1)
147 # define LONGJMP(env, val) siglongjmp(env, val)
148 # define JMP_BUF sigjmp_buf
150 # define SETJMP(env) setjmp(env)
151 # define LONGJMP(env, val) longjmp(env, val)
152 # define JMP_BUF jmp_buf
156 /* for get_etext and friends */
157 #include <mach-o/getsect.h>
161 /* Apparently necessary for djgpp 2.01. May cause problems with */
162 /* other versions. */
163 typedef long unsigned int caddr_t
;
167 # include "il/PCR_IL.h"
168 # include "th/PCR_ThCtl.h"
169 # include "mm/PCR_MM.h"
172 #if !defined(NO_EXECUTE_PERMISSION)
173 # define OPT_PROT_EXEC PROT_EXEC
175 # define OPT_PROT_EXEC 0
178 #if defined(LINUX) && \
179 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
181 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
182 /* and/or to find the register backing store base (IA64). Do it once */
187 /* Repeatedly perform a read call until the buffer is filled or */
188 /* we encounter EOF. */
189 ssize_t
GC_repeat_read(int fd
, char *buf
, size_t count
)
191 ssize_t num_read
= 0;
194 while (num_read
< count
) {
195 result
= READ(fd
, buf
+ num_read
, count
- num_read
);
196 if (result
< 0) return result
;
197 if (result
== 0) break;
204 * Apply fn to a buffer containing the contents of /proc/self/maps.
205 * Return the result of fn or, if we failed, 0.
206 * We currently do nothing to /proc/self/maps other than simply read
207 * it. This code could be simplified if we could determine its size
211 word
GC_apply_to_maps(word (*fn
)(char *))
215 size_t maps_size
= 4000; /* Initial guess. */
216 static char init_buf
[1];
217 static char *maps_buf
= init_buf
;
218 static size_t maps_buf_sz
= 1;
220 /* Read /proc/self/maps, growing maps_buf as necessary. */
221 /* Note that we may not allocate conventionally, and */
222 /* thus can't use stdio. */
224 if (maps_size
>= maps_buf_sz
) {
225 /* Grow only by powers of 2, since we leak "too small" buffers. */
226 while (maps_size
>= maps_buf_sz
) maps_buf_sz
*= 2;
227 maps_buf
= GC_scratch_alloc(maps_buf_sz
);
228 if (maps_buf
== 0) return 0;
230 f
= open("/proc/self/maps", O_RDONLY
);
231 if (-1 == f
) return 0;
234 result
= GC_repeat_read(f
, maps_buf
, maps_buf_sz
-1);
235 if (result
<= 0) return 0;
237 } while (result
== maps_buf_sz
-1);
239 } while (maps_size
>= maps_buf_sz
);
240 maps_buf
[maps_size
] = '\0';
242 /* Apply fn to result. */
246 #endif /* Need GC_apply_to_maps */
248 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
250 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
251 // locate all writable data segments that belong to shared libraries.
252 // The format of one of these entries and the fields we care about
254 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
255 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
256 // start end prot maj_dev
258 // Note that since about auguat 2003 kernels, the columns no longer have
259 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
260 // anywhere, which is safer anyway.
264 * Assign various fields of the first line in buf_ptr to *start, *end,
265 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
267 char *GC_parse_map_entry(char *buf_ptr
, word
*start
, word
*end
,
268 char *prot_buf
, unsigned int *maj_dev
)
270 char *start_start
, *end_start
, *prot_start
, *maj_dev_start
;
274 if (buf_ptr
== NULL
|| *buf_ptr
== '\0') {
279 while (isspace(*p
)) ++p
;
281 GC_ASSERT(isxdigit(*start_start
));
282 *start
= strtoul(start_start
, &endp
, 16); p
= endp
;
287 GC_ASSERT(isxdigit(*end_start
));
288 *end
= strtoul(end_start
, &endp
, 16); p
= endp
;
289 GC_ASSERT(isspace(*p
));
291 while (isspace(*p
)) ++p
;
293 GC_ASSERT(*prot_start
== 'r' || *prot_start
== '-');
294 memcpy(prot_buf
, prot_start
, 4);
296 if (prot_buf
[1] == 'w') {/* we can skip the rest if it's not writable. */
297 /* Skip past protection field to offset field */
298 while (!isspace(*p
)) ++p
; while (isspace(*p
)) ++p
;
299 GC_ASSERT(isxdigit(*p
));
300 /* Skip past offset field, which we ignore */
301 while (!isspace(*p
)) ++p
; while (isspace(*p
)) ++p
;
303 GC_ASSERT(isxdigit(*maj_dev_start
));
304 *maj_dev
= strtoul(maj_dev_start
, NULL
, 16);
307 while (*p
&& *p
++ != '\n');
312 #endif /* Need to parse /proc/self/maps. */
314 #if defined(SEARCH_FOR_DATA_START)
315 /* The I386 case can be handled without a search. The Alpha case */
316 /* used to be handled differently as well, but the rules changed */
317 /* for recent Linux versions. This seems to be the easiest way to */
318 /* cover all versions. */
321 /* Some Linux distributions arrange to define __data_start. Some */
322 /* define data_start as a weak symbol. The latter is technically */
323 /* broken, since the user program may define data_start, in which */
324 /* case we lose. Nonetheless, we try both, prefering __data_start. */
325 /* We assume gcc-compatible pragmas. */
326 # pragma weak __data_start
327 extern int __data_start
[];
328 # pragma weak data_start
329 extern int data_start
[];
335 void GC_init_linux_data_start()
337 extern ptr_t
GC_find_limit();
341 * Not needed, avoids the SIGSEGV caused by GC_find_limit which
342 * complicates debugging.
347 /* Try the easy approaches first: */
348 if ((ptr_t
)__data_start
!= 0) {
349 GC_data_start
= (ptr_t
)(__data_start
);
352 if ((ptr_t
)data_start
!= 0) {
353 GC_data_start
= (ptr_t
)(data_start
);
357 GC_data_start
= GC_find_limit((ptr_t
)(_end
), FALSE
);
363 # ifndef ECOS_GC_MEMORY_SIZE
364 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
365 # endif /* ECOS_GC_MEMORY_SIZE */
367 // setjmp() function, as described in ANSI para 7.6.1.1
369 #define SETJMP( __env__ ) hal_setjmp( __env__ )
371 // FIXME: This is a simple way of allocating memory which is
372 // compatible with ECOS early releases. Later releases use a more
373 // sophisticated means of allocating memory than this simple static
374 // allocator, but this method is at least bound to work.
375 static char memory
[ECOS_GC_MEMORY_SIZE
];
376 static char *brk
= memory
;
378 static void *tiny_sbrk(ptrdiff_t increment
)
384 if (brk
> memory
+ sizeof memory
)
392 #define sbrk tiny_sbrk
395 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
398 void GC_init_netbsd_elf()
400 extern ptr_t
GC_find_limit();
401 extern char **environ
;
402 /* This may need to be environ, without the underscore, for */
404 GC_data_start
= GC_find_limit((ptr_t
)&environ
, FALSE
);
412 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
415 unsigned short magic_number
;
416 unsigned short padding
[29];
420 #define E_MAGIC(x) (x).magic_number
421 #define EMAGIC 0x5A4D
422 #define E_LFANEW(x) (x).new_exe_offset
425 unsigned char magic_number
[2];
426 unsigned char byte_order
;
427 unsigned char word_order
;
428 unsigned long exe_format_level
;
431 unsigned long padding1
[13];
432 unsigned long object_table_offset
;
433 unsigned long object_count
;
434 unsigned long padding2
[31];
437 #define E32_MAGIC1(x) (x).magic_number[0]
438 #define E32MAGIC1 'L'
439 #define E32_MAGIC2(x) (x).magic_number[1]
440 #define E32MAGIC2 'X'
441 #define E32_BORDER(x) (x).byte_order
443 #define E32_WORDER(x) (x).word_order
445 #define E32_CPU(x) (x).cpu
447 #define E32_OBJTAB(x) (x).object_table_offset
448 #define E32_OBJCNT(x) (x).object_count
454 unsigned long pagemap
;
455 unsigned long mapsize
;
456 unsigned long reserved
;
459 #define O32_FLAGS(x) (x).flags
460 #define OBJREAD 0x0001L
461 #define OBJWRITE 0x0002L
462 #define OBJINVALID 0x0080L
463 #define O32_SIZE(x) (x).size
464 #define O32_BASE(x) (x).base
466 # else /* IBM's compiler */
468 /* A kludge to get around what appears to be a header file bug */
470 # define WORD unsigned short
473 # define DWORD unsigned long
480 # endif /* __IBMC__ */
482 # define INCL_DOSEXCEPTIONS
483 # define INCL_DOSPROCESS
484 # define INCL_DOSERRORS
485 # define INCL_DOSMODULEMGR
486 # define INCL_DOSMEMMGR
490 /* Disable and enable signals during nontrivial allocations */
492 void GC_disable_signals(void)
496 DosEnterMustComplete(&nest
);
497 if (nest
!= 1) ABORT("nested GC_disable_signals");
500 void GC_enable_signals(void)
504 DosExitMustComplete(&nest
);
505 if (nest
!= 0) ABORT("GC_enable_signals");
511 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
512 && !defined(MSWINCE) \
513 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
514 && !defined(NOSYS) && !defined(ECOS) && !defined(SN_TARGET_PS3)
516 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
517 /* Use the traditional BSD interface */
518 # define SIGSET_T int
519 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
520 # define SIG_FILL(set) (set) = 0x7fffffff
521 /* Setting the leading bit appears to provoke a bug in some */
522 /* longjmp implementations. Most systems appear not to have */
524 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
526 /* Use POSIX/SYSV interface */
527 # define SIGSET_T sigset_t
528 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
529 # define SIG_FILL(set) sigfillset(&set)
530 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
533 static GC_bool mask_initialized
= FALSE
;
535 static SIGSET_T new_mask
;
537 static SIGSET_T old_mask
;
539 static SIGSET_T dummy
;
541 #if defined(PRINTSTATS) && !defined(THREADS)
542 # define CHECK_SIGNALS
543 int GC_sig_disabled
= 0;
546 void GC_disable_signals()
548 if (!mask_initialized
) {
551 SIG_DEL(new_mask
, SIGSEGV
);
552 SIG_DEL(new_mask
, SIGILL
);
553 SIG_DEL(new_mask
, SIGQUIT
);
555 SIG_DEL(new_mask
, SIGBUS
);
558 SIG_DEL(new_mask
, SIGIOT
);
561 SIG_DEL(new_mask
, SIGEMT
);
564 SIG_DEL(new_mask
, SIGTRAP
);
566 mask_initialized
= TRUE
;
568 # ifdef CHECK_SIGNALS
569 if (GC_sig_disabled
!= 0) ABORT("Nested disables");
572 SIGSETMASK(old_mask
,new_mask
);
575 void GC_enable_signals()
577 # ifdef CHECK_SIGNALS
578 if (GC_sig_disabled
!= 1) ABORT("Unmatched enable");
581 SIGSETMASK(dummy
,old_mask
);
588 /* Ivan Demakov: simplest way (to me) */
590 void GC_disable_signals() { }
591 void GC_enable_signals() { }
594 /* Find the page size */
597 # if defined(MSWIN32) || defined(MSWINCE)
598 void GC_setpagesize()
600 GetSystemInfo(&GC_sysinfo
);
601 GC_page_size
= GC_sysinfo
.dwPageSize
;
605 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
606 || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
607 void GC_setpagesize()
609 GC_page_size
= GETPAGESIZE();
612 /* It's acceptable to fake it. */
613 void GC_setpagesize()
615 GC_page_size
= HBLKSIZE
;
621 * Find the base of the stack.
622 * Used only in single-threaded environment.
623 * With threads, GC_mark_roots needs to know how to do this.
624 * Called with allocator lock held.
626 # if defined(MSWIN32) || defined(MSWINCE)
627 # define is_writable(prot) ((prot) == PAGE_READWRITE \
628 || (prot) == PAGE_WRITECOPY \
629 || (prot) == PAGE_EXECUTE_READWRITE \
630 || (prot) == PAGE_EXECUTE_WRITECOPY)
631 /* Return the number of bytes that are writable starting at p. */
632 /* The pointer p is assumed to be page aligned. */
633 /* If base is not 0, *base becomes the beginning of the */
634 /* allocation region containing p. */
635 word
GC_get_writable_length(ptr_t p
, ptr_t
*base
)
637 MEMORY_BASIC_INFORMATION buf
;
641 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
642 if (result
!= sizeof(buf
)) ABORT("Weird VirtualQuery result");
643 if (base
!= 0) *base
= (ptr_t
)(buf
.AllocationBase
);
644 protect
= (buf
.Protect
& ~(PAGE_GUARD
| PAGE_NOCACHE
));
645 if (!is_writable(protect
)) {
648 if (buf
.State
!= MEM_COMMIT
) return(0);
649 return(buf
.RegionSize
);
652 ptr_t
GC_get_stack_base()
655 ptr_t sp
= (ptr_t
)(&dummy
);
656 ptr_t trunc_sp
= (ptr_t
)((word
)sp
& ~(GC_page_size
- 1));
657 word size
= GC_get_writable_length(trunc_sp
, 0);
659 return(trunc_sp
+ size
);
663 # endif /* MS Windows */
666 # include <kernel/OS.h>
667 ptr_t
GC_get_stack_base(){
669 get_thread_info(find_thread(NULL
),&th
);
677 ptr_t
GC_get_stack_base()
682 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
683 GC_err_printf0("DosGetInfoBlocks failed\n");
684 ABORT("DosGetInfoBlocks failed\n");
686 return((ptr_t
)(ptib
-> tib_pstacklimit
));
693 # include "AmigaOS.c"
697 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
700 typedef void (*handler
)(int);
702 typedef void (*handler
)();
705 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
706 || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
707 static struct sigaction old_segv_act
;
708 # if defined(IRIX5) || defined(HPUX) \
709 || defined(HURD) || defined(NETBSD)
710 static struct sigaction old_bus_act
;
713 static handler old_segv_handler
, old_bus_handler
;
717 void GC_set_and_save_fault_handler(handler h
)
719 void GC_set_and_save_fault_handler(h
)
723 # if defined(SUNOS5SIGS) || defined(IRIX5) \
724 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
725 struct sigaction act
;
728 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
730 act
.sa_flags
= SA_RESTART
| SA_NODEFER
;
732 act
.sa_flags
= SA_RESTART
;
735 (void) sigemptyset(&act
.sa_mask
);
736 # ifdef GC_IRIX_THREADS
737 /* Older versions have a bug related to retrieving and */
738 /* and setting a handler at the same time. */
739 (void) sigaction(SIGSEGV
, 0, &old_segv_act
);
740 (void) sigaction(SIGSEGV
, &act
, 0);
741 (void) sigaction(SIGBUS
, 0, &old_bus_act
);
742 (void) sigaction(SIGBUS
, &act
, 0);
744 (void) sigaction(SIGSEGV
, &act
, &old_segv_act
);
745 # if defined(IRIX5) \
746 || defined(HPUX) || defined(HURD) || defined(NETBSD)
747 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
748 /* Pthreads doesn't exist under Irix 5.x, so we */
749 /* don't have to worry in the threads case. */
750 (void) sigaction(SIGBUS
, &act
, &old_bus_act
);
752 # endif /* GC_IRIX_THREADS */
754 old_segv_handler
= signal(SIGSEGV
, h
);
756 old_bus_handler
= signal(SIGBUS
, h
);
760 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
762 # ifdef NEED_FIND_LIMIT
763 /* Some tools to implement HEURISTIC2 */
764 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
765 /* static */ JMP_BUF GC_jmp_buf
;
768 void GC_fault_handler(sig
)
771 LONGJMP(GC_jmp_buf
, 1);
774 void GC_setup_temporary_fault_handler()
776 GC_set_and_save_fault_handler(GC_fault_handler
);
779 void GC_reset_fault_handler()
781 # if defined(SUNOS5SIGS) || defined(IRIX5) \
782 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
783 (void) sigaction(SIGSEGV
, &old_segv_act
, 0);
784 # if defined(IRIX5) \
785 || defined(HPUX) || defined(HURD) || defined(NETBSD)
786 (void) sigaction(SIGBUS
, &old_bus_act
, 0);
789 (void) signal(SIGSEGV
, old_segv_handler
);
791 (void) signal(SIGBUS
, old_bus_handler
);
796 /* Return the first nonaddressible location > p (up) or */
797 /* the smallest location q s.t. [q,p) is addressable (!up). */
798 /* We assume that p (up) or p-1 (!up) is addressable. */
799 ptr_t
GC_find_limit(p
, up
)
803 static VOLATILE ptr_t result
;
804 /* Needs to be static, since otherwise it may not be */
805 /* preserved across the longjmp. Can safely be */
806 /* static since it's only called once, with the */
807 /* allocation lock held. */
810 GC_setup_temporary_fault_handler();
811 if (SETJMP(GC_jmp_buf
) == 0) {
812 result
= (ptr_t
)(((word
)(p
))
813 & ~(MIN_PAGE_SIZE
-1));
816 result
+= MIN_PAGE_SIZE
;
818 result
-= MIN_PAGE_SIZE
;
820 GC_noop1((word
)(*result
));
823 GC_reset_fault_handler();
825 result
+= MIN_PAGE_SIZE
;
831 #if defined(ECOS) || defined(NOSYS)
832 ptr_t
GC_get_stack_base()
838 #ifdef HPUX_STACKBOTTOM
840 #include <sys/param.h>
841 #include <sys/pstat.h>
843 ptr_t
GC_get_register_stack_base(void)
845 struct pst_vm_status vm_status
;
848 while (pstat_getprocvm(&vm_status
, sizeof(vm_status
), 0, i
++) == 1) {
849 if (vm_status
.pst_type
== PS_RSESTACK
) {
850 return (ptr_t
) vm_status
.pst_vaddr
;
854 /* old way to get the register stackbottom */
855 return (ptr_t
)(((word
)GC_stackbottom
- BACKING_STORE_DISPLACEMENT
- 1)
856 & ~(BACKING_STORE_ALIGNMENT
- 1));
859 #endif /* HPUX_STACK_BOTTOM */
861 #ifdef LINUX_STACKBOTTOM
863 #include <sys/types.h>
864 #include <sys/stat.h>
866 # define STAT_SKIP 27 /* Number of fields preceding startstack */
867 /* field in /proc/self/stat */
869 #ifdef USE_LIBC_PRIVATES
870 # pragma weak __libc_stack_end
871 extern ptr_t __libc_stack_end
;
875 /* Try to read the backing store base from /proc/self/maps. */
876 /* We look for the writable mapping with a 0 major device, */
877 /* which is as close to our frame as possible, but below it.*/
878 static word
backing_store_base_from_maps(char *maps
)
881 char *buf_ptr
= maps
;
883 unsigned int maj_dev
;
884 word current_best
= 0;
888 buf_ptr
= GC_parse_map_entry(buf_ptr
, &start
, &end
, prot_buf
, &maj_dev
);
889 if (buf_ptr
== NULL
) return current_best
;
890 if (prot_buf
[1] == 'w' && maj_dev
== 0) {
891 if (end
< (word
)(&dummy
) && start
> current_best
) current_best
= start
;
897 static word
backing_store_base_from_proc(void)
899 return GC_apply_to_maps(backing_store_base_from_maps
);
902 # ifdef USE_LIBC_PRIVATES
903 # pragma weak __libc_ia64_register_backing_store_base
904 extern ptr_t __libc_ia64_register_backing_store_base
;
907 ptr_t
GC_get_register_stack_base(void)
909 # ifdef USE_LIBC_PRIVATES
910 if (0 != &__libc_ia64_register_backing_store_base
911 && 0 != __libc_ia64_register_backing_store_base
) {
912 /* Glibc 2.2.4 has a bug such that for dynamically linked */
913 /* executables __libc_ia64_register_backing_store_base is */
914 /* defined but uninitialized during constructor calls. */
915 /* Hence we check for both nonzero address and value. */
916 return __libc_ia64_register_backing_store_base
;
919 word result
= backing_store_base_from_proc();
921 /* Use dumb heuristics. Works only for default configuration. */
922 result
= (word
)GC_stackbottom
- BACKING_STORE_DISPLACEMENT
;
923 result
+= BACKING_STORE_ALIGNMENT
- 1;
924 result
&= ~(BACKING_STORE_ALIGNMENT
- 1);
925 /* Verify that it's at least readable. If not, we goofed. */
926 GC_noop1(*(word
*)result
);
928 return (ptr_t
)result
;
932 void *GC_set_stackbottom
= NULL
;
934 ptr_t
GC_linux_stack_base(void)
936 /* We read the stack base value from /proc/self/stat. We do this */
937 /* using direct I/O system calls in order to avoid calling malloc */
938 /* in case REDIRECT_MALLOC is defined. */
939 # define STAT_BUF_SIZE 4096
940 # define STAT_READ read
941 /* Should probably call the real read, if read is wrapped. */
942 char stat_buf
[STAT_BUF_SIZE
];
946 size_t i
, buf_offset
= 0;
948 /* First try the easy way. This should work for glibc 2.2 */
949 /* This fails in a prelinked ("prelink" command) executable */
950 /* since the correct value of __libc_stack_end never */
951 /* becomes visible to us. The second test works around */
953 # ifdef USE_LIBC_PRIVATES
954 if (0 != &__libc_stack_end
&& 0 != __libc_stack_end
) {
956 /* Some versions of glibc set the address 16 bytes too */
957 /* low while the initialization code is running. */
958 if (((word
)__libc_stack_end
& 0xfff) + 0x10 < 0x1000) {
959 return __libc_stack_end
+ 0x10;
960 } /* Otherwise it's not safe to add 16 bytes and we fall */
961 /* back to using /proc. */
964 /* Older versions of glibc for 64-bit Sparc do not set
965 * this variable correctly, it gets set to either zero
968 if (__libc_stack_end
!= (ptr_t
) (unsigned long)0x1)
969 return __libc_stack_end
;
971 return __libc_stack_end
;
976 f
= open("/proc/self/stat", O_RDONLY
);
977 if (f
< 0 || STAT_READ(f
, stat_buf
, STAT_BUF_SIZE
) < 2 * STAT_SKIP
) {
978 ABORT("Couldn't read /proc/self/stat");
980 c
= stat_buf
[buf_offset
++];
981 /* Skip the required number of fields. This number is hopefully */
982 /* constant across all Linux implementations. */
983 for (i
= 0; i
< STAT_SKIP
; ++i
) {
984 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
985 while (!isspace(c
)) c
= stat_buf
[buf_offset
++];
987 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
991 c
= stat_buf
[buf_offset
++];
994 if (result
< 0x10000000) ABORT("Absurd stack bottom value");
995 return (ptr_t
)result
;
998 #endif /* LINUX_STACKBOTTOM */
1000 #ifdef FREEBSD_STACKBOTTOM
1002 /* This uses an undocumented sysctl call, but at least one expert */
1003 /* believes it will stay. */
1006 #include <sys/types.h>
1007 #include <sys/sysctl.h>
1009 ptr_t
GC_freebsd_stack_base(void)
1011 int nm
[2] = {CTL_KERN
, KERN_USRSTACK
};
1013 size_t len
= sizeof(ptr_t
);
1014 int r
= sysctl(nm
, 2, &base
, &len
, NULL
, 0);
1016 if (r
) ABORT("Error getting stack base");
1021 #endif /* FREEBSD_STACKBOTTOM */
1023 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1024 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1026 ptr_t
GC_get_stack_base()
1028 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1029 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1034 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1037 return(STACKBOTTOM
);
1040 # ifdef STACK_GROWS_DOWN
1041 result
= (ptr_t
)((((word
)(&dummy
))
1042 + STACKBOTTOM_ALIGNMENT_M1
)
1043 & ~STACKBOTTOM_ALIGNMENT_M1
);
1045 result
= (ptr_t
)(((word
)(&dummy
))
1046 & ~STACKBOTTOM_ALIGNMENT_M1
);
1048 # endif /* HEURISTIC1 */
1049 # ifdef LINUX_STACKBOTTOM
1050 result
= GC_linux_stack_base();
1052 # ifdef FREEBSD_STACKBOTTOM
1053 result
= GC_freebsd_stack_base();
1056 # ifdef STACK_GROWS_DOWN
1057 result
= GC_find_limit((ptr_t
)(&dummy
), TRUE
);
1058 # ifdef HEURISTIC2_LIMIT
1059 if (result
> HEURISTIC2_LIMIT
1060 && (ptr_t
)(&dummy
) < HEURISTIC2_LIMIT
) {
1061 result
= HEURISTIC2_LIMIT
;
1065 result
= GC_find_limit((ptr_t
)(&dummy
), FALSE
);
1066 # ifdef HEURISTIC2_LIMIT
1067 if (result
< HEURISTIC2_LIMIT
1068 && (ptr_t
)(&dummy
) > HEURISTIC2_LIMIT
) {
1069 result
= HEURISTIC2_LIMIT
;
1074 # endif /* HEURISTIC2 */
1075 # ifdef STACK_GROWS_DOWN
1076 if (result
== 0) result
= (ptr_t
)(signed_word
)(-sizeof(ptr_t
));
1079 # endif /* STACKBOTTOM */
1082 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1085 * Register static data segment(s) as roots.
1086 * If more data segments are added later then they need to be registered
1087 * add that point (as we do with SunOS dynamic loading),
1088 * or GC_mark_roots needs to check for them (as we do with PCR).
1089 * Called with allocator lock held.
1094 void GC_register_data_segments()
1098 HMODULE module_handle
;
1099 # define PBUFSIZ 512
1100 UCHAR path
[PBUFSIZ
];
1102 struct exe_hdr hdrdos
; /* MSDOS header. */
1103 struct e32_exe hdr386
; /* Real header for my executable */
1104 struct o32_obj seg
; /* Currrent segment */
1108 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
1109 GC_err_printf0("DosGetInfoBlocks failed\n");
1110 ABORT("DosGetInfoBlocks failed\n");
1112 module_handle
= ppib
-> pib_hmte
;
1113 if (DosQueryModuleName(module_handle
, PBUFSIZ
, path
) != NO_ERROR
) {
1114 GC_err_printf0("DosQueryModuleName failed\n");
1115 ABORT("DosGetInfoBlocks failed\n");
1117 myexefile
= fopen(path
, "rb");
1118 if (myexefile
== 0) {
1119 GC_err_puts("Couldn't open executable ");
1120 GC_err_puts(path
); GC_err_puts("\n");
1121 ABORT("Failed to open executable\n");
1123 if (fread((char *)(&hdrdos
), 1, sizeof hdrdos
, myexefile
) < sizeof hdrdos
) {
1124 GC_err_puts("Couldn't read MSDOS header from ");
1125 GC_err_puts(path
); GC_err_puts("\n");
1126 ABORT("Couldn't read MSDOS header");
1128 if (E_MAGIC(hdrdos
) != EMAGIC
) {
1129 GC_err_puts("Executable has wrong DOS magic number: ");
1130 GC_err_puts(path
); GC_err_puts("\n");
1131 ABORT("Bad DOS magic number");
1133 if (fseek(myexefile
, E_LFANEW(hdrdos
), SEEK_SET
) != 0) {
1134 GC_err_puts("Seek to new header failed in ");
1135 GC_err_puts(path
); GC_err_puts("\n");
1136 ABORT("Bad DOS magic number");
1138 if (fread((char *)(&hdr386
), 1, sizeof hdr386
, myexefile
) < sizeof hdr386
) {
1139 GC_err_puts("Couldn't read MSDOS header from ");
1140 GC_err_puts(path
); GC_err_puts("\n");
1141 ABORT("Couldn't read OS/2 header");
1143 if (E32_MAGIC1(hdr386
) != E32MAGIC1
|| E32_MAGIC2(hdr386
) != E32MAGIC2
) {
1144 GC_err_puts("Executable has wrong OS/2 magic number:");
1145 GC_err_puts(path
); GC_err_puts("\n");
1146 ABORT("Bad OS/2 magic number");
1148 if ( E32_BORDER(hdr386
) != E32LEBO
|| E32_WORDER(hdr386
) != E32LEWO
) {
1149 GC_err_puts("Executable %s has wrong byte order: ");
1150 GC_err_puts(path
); GC_err_puts("\n");
1151 ABORT("Bad byte order");
1153 if ( E32_CPU(hdr386
) == E32CPU286
) {
1154 GC_err_puts("GC can't handle 80286 executables: ");
1155 GC_err_puts(path
); GC_err_puts("\n");
1158 if (fseek(myexefile
, E_LFANEW(hdrdos
) + E32_OBJTAB(hdr386
),
1160 GC_err_puts("Seek to object table failed: ");
1161 GC_err_puts(path
); GC_err_puts("\n");
1162 ABORT("Seek to object table failed");
1164 for (nsegs
= E32_OBJCNT(hdr386
); nsegs
> 0; nsegs
--) {
1166 if (fread((char *)(&seg
), 1, sizeof seg
, myexefile
) < sizeof seg
) {
1167 GC_err_puts("Couldn't read obj table entry from ");
1168 GC_err_puts(path
); GC_err_puts("\n");
1169 ABORT("Couldn't read obj table entry");
1171 flags
= O32_FLAGS(seg
);
1172 if (!(flags
& OBJWRITE
)) continue;
1173 if (!(flags
& OBJREAD
)) continue;
1174 if (flags
& OBJINVALID
) {
1175 GC_err_printf0("Object with invalid pages?\n");
1178 GC_add_roots_inner(O32_BASE(seg
), O32_BASE(seg
)+O32_SIZE(seg
), FALSE
);
1184 # if defined(MSWIN32) || defined(MSWINCE)
1187 /* Unfortunately, we have to handle win32s very differently from NT, */
1188 /* Since VirtualQuery has very different semantics. In particular, */
1189 /* under win32s a VirtualQuery call on an unmapped page returns an */
1190 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1191 /* all real work is done by GC_register_dynamic_libraries. Under */
1192 /* win32s, we cannot find the data segments associated with dll's. */
1193 /* We register the main data segment here. */
1194 GC_bool GC_no_win32_dlls
= FALSE
;
1195 /* This used to be set for gcc, to avoid dealing with */
1196 /* the structured exception handling issues. But we now have */
1197 /* assembly code to do that right. */
1199 void GC_init_win32()
1201 /* if we're running under win32s, assume that no DLLs will be loaded */
1202 DWORD v
= GetVersion();
1203 GC_no_win32_dlls
|= ((v
& 0x80000000) && (v
& 0xff) <= 3);
1206 /* Return the smallest address a such that VirtualQuery */
1207 /* returns correct results for all addresses between a and start. */
1208 /* Assumes VirtualQuery returns correct information for start. */
1209 ptr_t
GC_least_described_address(ptr_t start
)
1211 MEMORY_BASIC_INFORMATION buf
;
1217 limit
= GC_sysinfo
.lpMinimumApplicationAddress
;
1218 p
= (ptr_t
)((word
)start
& ~(GC_page_size
- 1));
1220 q
= (LPVOID
)(p
- GC_page_size
);
1221 if ((ptr_t
)q
> (ptr_t
)p
/* underflow */ || q
< limit
) break;
1222 result
= VirtualQuery(q
, &buf
, sizeof(buf
));
1223 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0) break;
1224 p
= (ptr_t
)(buf
.AllocationBase
);
1230 # ifndef REDIRECT_MALLOC
1231 /* We maintain a linked list of AllocationBase values that we know */
1232 /* correspond to malloc heap sections. Currently this is only called */
1233 /* during a GC. But there is some hope that for long running */
1234 /* programs we will eventually see most heap sections. */
1236 /* In the long run, it would be more reliable to occasionally walk */
1237 /* the malloc heap with HeapWalk on the default heap. But that */
1238 /* apparently works only for NT-based Windows. */
1240 /* In the long run, a better data structure would also be nice ... */
1241 struct GC_malloc_heap_list
{
1242 void * allocation_base
;
1243 struct GC_malloc_heap_list
*next
;
1244 } *GC_malloc_heap_l
= 0;
1246 /* Is p the base of one of the malloc heap sections we already know */
1248 GC_bool
GC_is_malloc_heap_base(ptr_t p
)
1250 struct GC_malloc_heap_list
*q
= GC_malloc_heap_l
;
1253 if (q
-> allocation_base
== p
) return TRUE
;
1259 void *GC_get_allocation_base(void *p
)
1261 MEMORY_BASIC_INFORMATION buf
;
1262 DWORD result
= VirtualQuery(p
, &buf
, sizeof(buf
));
1263 if (result
!= sizeof(buf
)) {
1264 ABORT("Weird VirtualQuery result");
1266 return buf
.AllocationBase
;
1269 size_t GC_max_root_size
= 100000; /* Appr. largest root size. */
1271 void GC_add_current_malloc_heap()
1273 struct GC_malloc_heap_list
*new_l
=
1274 malloc(sizeof(struct GC_malloc_heap_list
));
1275 void * candidate
= GC_get_allocation_base(new_l
);
1277 if (new_l
== 0) return;
1278 if (GC_is_malloc_heap_base(candidate
)) {
1279 /* Try a little harder to find malloc heap. */
1280 size_t req_size
= 10000;
1282 void *p
= malloc(req_size
);
1283 if (0 == p
) { free(new_l
); return; }
1284 candidate
= GC_get_allocation_base(p
);
1287 } while (GC_is_malloc_heap_base(candidate
)
1288 && req_size
< GC_max_root_size
/10 && req_size
< 500000);
1289 if (GC_is_malloc_heap_base(candidate
)) {
1290 free(new_l
); return;
1295 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1298 new_l
-> allocation_base
= candidate
;
1299 new_l
-> next
= GC_malloc_heap_l
;
1300 GC_malloc_heap_l
= new_l
;
1302 # endif /* REDIRECT_MALLOC */
1304 /* Is p the start of either the malloc heap, or of one of our */
1305 /* heap sections? */
1306 GC_bool
GC_is_heap_base (ptr_t p
)
1311 # ifndef REDIRECT_MALLOC
1312 static word last_gc_no
= -1;
1314 if (last_gc_no
!= GC_gc_no
) {
1315 GC_add_current_malloc_heap();
1316 last_gc_no
= GC_gc_no
;
1318 if (GC_root_size
> GC_max_root_size
) GC_max_root_size
= GC_root_size
;
1319 if (GC_is_malloc_heap_base(p
)) return TRUE
;
1321 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
1322 if (GC_heap_bases
[i
] == p
) return TRUE
;
1328 void GC_register_root_section(ptr_t static_root
)
1330 MEMORY_BASIC_INFORMATION buf
;
1335 char * limit
, * new_limit
;
1337 if (!GC_no_win32_dlls
) return;
1338 p
= base
= limit
= GC_least_described_address(static_root
);
1339 while (p
< GC_sysinfo
.lpMaximumApplicationAddress
) {
1340 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
1341 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0
1342 || GC_is_heap_base(buf
.AllocationBase
)) break;
1343 new_limit
= (char *)p
+ buf
.RegionSize
;
1344 protect
= buf
.Protect
;
1345 if (buf
.State
== MEM_COMMIT
1346 && is_writable(protect
)) {
1347 if ((char *)p
== limit
) {
1350 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1355 if (p
> (LPVOID
)new_limit
/* overflow */) break;
1356 p
= (LPVOID
)new_limit
;
1358 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1362 void GC_register_data_segments()
1366 GC_register_root_section((ptr_t
)(&dummy
));
1370 # else /* !OS2 && !Windows */
1372 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1373 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1374 ptr_t
GC_SysVGetDataStart(max_page_size
, etext_addr
)
1378 word text_end
= ((word
)(etext_addr
) + sizeof(word
) - 1)
1379 & ~(sizeof(word
) - 1);
1380 /* etext rounded to word boundary */
1381 word next_page
= ((text_end
+ (word
)max_page_size
- 1)
1382 & ~((word
)max_page_size
- 1));
1383 word page_offset
= (text_end
& ((word
)max_page_size
- 1));
1384 VOLATILE
char * result
= (char *)(next_page
+ page_offset
);
1385 /* Note that this isnt equivalent to just adding */
1386 /* max_page_size to &etext if &etext is at a page boundary */
1388 GC_setup_temporary_fault_handler();
1389 if (SETJMP(GC_jmp_buf
) == 0) {
1390 /* Try writing to the address. */
1392 GC_reset_fault_handler();
1394 GC_reset_fault_handler();
1395 /* We got here via a longjmp. The address is not readable. */
1396 /* This is known to happen under Solaris 2.4 + gcc, which place */
1397 /* string constants in the text segment, but after etext. */
1398 /* Use plan B. Note that we now know there is a gap between */
1399 /* text and data segments, so plan A bought us something. */
1400 result
= (char *)GC_find_limit((ptr_t
)(DATAEND
), FALSE
);
1402 return((ptr_t
)result
);
1406 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__) || defined(__x86_64__)) && !defined(PCR)
1407 /* Its unclear whether this should be identical to the above, or */
1408 /* whether it should apply to non-X86 architectures. */
1409 /* For now we don't assume that there is always an empty page after */
1410 /* etext. But in some cases there actually seems to be slightly more. */
1411 /* This also deals with holes between read-only data and writable data. */
1412 ptr_t
GC_FreeBSDGetDataStart(max_page_size
, etext_addr
)
1416 word text_end
= ((word
)(etext_addr
) + sizeof(word
) - 1)
1417 & ~(sizeof(word
) - 1);
1418 /* etext rounded to word boundary */
1419 VOLATILE word next_page
= (text_end
+ (word
)max_page_size
- 1)
1420 & ~((word
)max_page_size
- 1);
1421 VOLATILE ptr_t result
= (ptr_t
)text_end
;
1422 GC_setup_temporary_fault_handler();
1423 if (SETJMP(GC_jmp_buf
) == 0) {
1424 /* Try reading at the address. */
1425 /* This should happen before there is another thread. */
1426 for (; next_page
< (word
)(DATAEND
); next_page
+= (word
)max_page_size
)
1427 *(VOLATILE
char *)next_page
;
1428 GC_reset_fault_handler();
1430 GC_reset_fault_handler();
1431 /* As above, we go to plan B */
1432 result
= GC_find_limit((ptr_t
)(DATAEND
), FALSE
);
1442 # define GC_AMIGA_DS
1443 # include "AmigaOS.c"
1446 #else /* !OS2 && !Windows && !AMIGA */
1448 void GC_register_data_segments()
1450 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1451 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1452 /* As of Solaris 2.3, the Solaris threads implementation */
1453 /* allocates the data structure for the initial thread with */
1454 /* sbrk at process startup. It needs to be scanned, so that */
1455 /* we don't lose some malloc allocated data structures */
1456 /* hanging from it. We're on thin ice here ... */
1457 extern caddr_t
sbrk();
1459 GC_ASSERT(DATASTART
);
1460 GC_add_roots_inner(DATASTART
, (char *)sbrk(0), FALSE
);
1462 GC_ASSERT(DATASTART
);
1463 GC_add_roots_inner(DATASTART
, (char *)(DATAEND
), FALSE
);
1464 # if defined(DATASTART2)
1465 GC_add_roots_inner(DATASTART2
, (char *)(DATAEND2
), FALSE
);
1471 # if defined(THINK_C)
1472 extern void* GC_MacGetDataStart(void);
1473 /* globals begin above stack and end at a5. */
1474 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1475 (ptr_t
)LMGetCurrentA5(), FALSE
);
1477 # if defined(__MWERKS__)
1479 extern void* GC_MacGetDataStart(void);
1480 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1481 # if __option(far_data)
1482 extern void* GC_MacGetDataEnd(void);
1484 /* globals begin above stack and end at a5. */
1485 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1486 (ptr_t
)LMGetCurrentA5(), FALSE
);
1487 /* MATTHEW: Handle Far Globals */
1488 # if __option(far_data)
1489 /* Far globals follow he QD globals: */
1490 GC_add_roots_inner((ptr_t
)LMGetCurrentA5(),
1491 (ptr_t
)GC_MacGetDataEnd(), FALSE
);
1494 extern char __data_start__
[], __data_end__
[];
1495 GC_add_roots_inner((ptr_t
)&__data_start__
,
1496 (ptr_t
)&__data_end__
, FALSE
);
1497 # endif /* __POWERPC__ */
1498 # endif /* __MWERKS__ */
1499 # endif /* !THINK_C */
1503 /* Dynamic libraries are added at every collection, since they may */
1507 # endif /* ! AMIGA */
1508 # endif /* ! MSWIN32 && ! MSWINCE*/
1512 * Auxiliary routines for obtaining memory from OS.
1515 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1516 && !defined(MSWIN32) && !defined(MSWINCE) \
1517 && !defined(MACOS) && !defined(DOS4GW) && !defined(SN_TARGET_PS3)
1520 extern caddr_t
sbrk();
1523 # define SBRK_ARG_T ptrdiff_t
1525 # define SBRK_ARG_T int
1529 # if 0 && defined(RS6000) /* We now use mmap */
1530 /* The compiler seems to generate speculative reads one past the end of */
1531 /* an allocated object. Hence we need to make sure that the page */
1532 /* following the last heap page is also mapped. */
1533 ptr_t
GC_unix_get_mem(bytes
)
1536 caddr_t cur_brk
= (caddr_t
)sbrk(0);
1538 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1539 static caddr_t my_brk_val
= 0;
1541 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1543 if((caddr_t
)(sbrk(GC_page_size
- lsbs
)) == (caddr_t
)(-1)) return(0);
1545 if (cur_brk
== my_brk_val
) {
1546 /* Use the extra block we allocated last time. */
1547 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1548 if (result
== (caddr_t
)(-1)) return(0);
1549 result
-= GC_page_size
;
1551 result
= (ptr_t
)sbrk(GC_page_size
+ (SBRK_ARG_T
)bytes
);
1552 if (result
== (caddr_t
)(-1)) return(0);
1554 my_brk_val
= result
+ bytes
+ GC_page_size
; /* Always page aligned */
1555 return((ptr_t
)result
);
1558 #else /* Not RS6000 */
1560 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
1562 #ifdef USE_MMAP_FIXED
1563 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1564 /* Seems to yield better performance on Solaris 2, but can */
1565 /* be unreliable if something is already mapped at the address. */
1567 # define GC_MMAP_FLAGS MAP_PRIVATE
1570 #ifdef USE_MMAP_ANON
1572 # if defined(MAP_ANONYMOUS)
1573 # define OPT_MAP_ANON MAP_ANONYMOUS
1575 # define OPT_MAP_ANON MAP_ANON
1579 # define OPT_MAP_ANON 0
1582 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1584 #if defined(USE_MMAP) || defined(FALLBACK_TO_MMAP)
1585 /* Tested only under Linux, IRIX5 and Solaris 2 */
1588 # define HEAP_START 0
1591 #ifdef FALLBACK_TO_MMAP
1592 static ptr_t
GC_unix_get_mem_mmap(bytes
)
1594 ptr_t
GC_unix_get_mem(bytes
)
1599 static ptr_t last_addr
= HEAP_START
;
1601 # ifndef USE_MMAP_ANON
1602 static GC_bool initialized
= FALSE
;
1605 zero_fd
= open("/dev/zero", O_RDONLY
);
1606 fcntl(zero_fd
, F_SETFD
, FD_CLOEXEC
);
1611 if (bytes
& (GC_page_size
-1)) ABORT("Bad GET_MEM arg");
1612 result
= mmap(last_addr
, bytes
, PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
,
1613 GC_MMAP_FLAGS
| OPT_MAP_ANON
, zero_fd
, 0/* offset */);
1614 if (result
== MAP_FAILED
) return(0);
1615 last_addr
= (ptr_t
)result
+ bytes
+ GC_page_size
- 1;
1616 last_addr
= (ptr_t
)((word
)last_addr
& ~(GC_page_size
- 1));
1617 # if !defined(LINUX)
1618 if (last_addr
== 0) {
1619 /* Oops. We got the end of the address space. This isn't */
1620 /* usable by arbitrary C code, since one-past-end pointers */
1621 /* don't work, so we discard it and try again. */
1622 munmap(result
, (size_t)(-GC_page_size
) - (size_t)result
);
1623 /* Leave last page mapped, so we can't repeat. */
1624 return GC_unix_get_mem(bytes
);
1627 GC_ASSERT(last_addr
!= 0);
1629 if (((word
)result
% HBLKSIZE
) != 0)
1630 ABORT ("GC_unix_get_mem: Memory returned by mmap is not aligned to HBLKSIZE.");
1631 return((ptr_t
)result
);
1638 ptr_t
GC_unix_get_mem(bytes
)
1643 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1644 /* The equivalent may be needed on other systems as well. */
1648 ptr_t cur_brk
= (ptr_t
)sbrk(0);
1649 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1651 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1653 if((ptr_t
)sbrk(GC_page_size
- lsbs
) == (ptr_t
)(-1)) return(0);
1655 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1656 if (result
== (ptr_t
)(-1)) {
1657 #ifdef FALLBACK_TO_MMAP
1658 result
= GC_unix_get_mem_mmap (bytes
);
1670 #endif /* Not USE_MMAP */
1671 #endif /* Not RS6000 */
1677 void * os2_alloc(size_t bytes
)
1681 if (DosAllocMem(&result
, bytes
, PAG_EXECUTE
| PAG_READ
|
1682 PAG_WRITE
| PAG_COMMIT
)
1686 if (result
== 0) return(os2_alloc(bytes
));
1693 # if defined(MSWIN32) || defined(MSWINCE)
1694 SYSTEM_INFO GC_sysinfo
;
1699 # ifdef USE_GLOBAL_ALLOC
1700 # define GLOBAL_ALLOC_TEST 1
1702 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1705 word GC_n_heap_bases
= 0;
1707 ptr_t
GC_win32_get_mem(bytes
)
1712 if (GLOBAL_ALLOC_TEST
) {
1713 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1714 /* There are also unconfirmed rumors of other */
1715 /* problems, so we dodge the issue. */
1716 result
= (ptr_t
) GlobalAlloc(0, bytes
+ HBLKSIZE
);
1717 result
= (ptr_t
)(((word
)result
+ HBLKSIZE
) & ~(HBLKSIZE
-1));
1719 /* VirtualProtect only works on regions returned by a */
1720 /* single VirtualAlloc call. Thus we allocate one */
1721 /* extra page, which will prevent merging of blocks */
1722 /* in separate regions, and eliminate any temptation */
1723 /* to call VirtualProtect on a range spanning regions. */
1724 /* This wastes a small amount of memory, and risks */
1725 /* increased fragmentation. But better alternatives */
1726 /* would require effort. */
1727 result
= (ptr_t
) VirtualAlloc(NULL
, bytes
+ 1,
1728 MEM_COMMIT
| MEM_RESERVE
,
1729 PAGE_EXECUTE_READWRITE
);
1731 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1732 /* If I read the documentation correctly, this can */
1733 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1734 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1735 GC_heap_bases
[GC_n_heap_bases
++] = result
;
1739 void GC_win32_free_heap ()
1741 if (GC_no_win32_dlls
) {
1742 while (GC_n_heap_bases
> 0) {
1743 GlobalFree (GC_heap_bases
[--GC_n_heap_bases
]);
1744 GC_heap_bases
[GC_n_heap_bases
] = 0;
1751 # define GC_AMIGA_AM
1752 # include "AmigaOS.c"
1758 word GC_n_heap_bases
= 0;
1760 ptr_t
GC_wince_get_mem(bytes
)
1766 /* Round up allocation size to multiple of page size */
1767 bytes
= (bytes
+ GC_page_size
-1) & ~(GC_page_size
-1);
1769 /* Try to find reserved, uncommitted pages */
1770 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
1771 if (((word
)(-(signed_word
)GC_heap_lengths
[i
])
1772 & (GC_sysinfo
.dwAllocationGranularity
-1))
1774 result
= GC_heap_bases
[i
] + GC_heap_lengths
[i
];
1779 if (i
== GC_n_heap_bases
) {
1780 /* Reserve more pages */
1781 word res_bytes
= (bytes
+ GC_sysinfo
.dwAllocationGranularity
-1)
1782 & ~(GC_sysinfo
.dwAllocationGranularity
-1);
1783 /* If we ever support MPROTECT_VDB here, we will probably need to */
1784 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1785 /* never spans regions. It seems to be OK for a VirtualFree argument */
1786 /* to span regions, so we should be OK for now. */
1787 result
= (ptr_t
) VirtualAlloc(NULL
, res_bytes
,
1788 MEM_RESERVE
| MEM_TOP_DOWN
,
1789 PAGE_EXECUTE_READWRITE
);
1790 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1791 /* If I read the documentation correctly, this can */
1792 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1793 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1794 GC_heap_bases
[GC_n_heap_bases
] = result
;
1795 GC_heap_lengths
[GC_n_heap_bases
] = 0;
1800 result
= (ptr_t
) VirtualAlloc(result
, bytes
,
1802 PAGE_EXECUTE_READWRITE
);
1803 if (result
!= NULL
) {
1804 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1805 GC_heap_lengths
[i
] += bytes
;
1814 /* For now, this only works on Win32/WinCE and some Unix-like */
1815 /* systems. If you have something else, don't define */
1817 /* We assume ANSI C to support this feature. */
1819 #if !defined(MSWIN32) && !defined(MSWINCE)
1822 #include <sys/mman.h>
1823 #include <sys/stat.h>
1824 #include <sys/types.h>
1828 /* Compute a page aligned starting address for the unmap */
1829 /* operation on a block of size bytes starting at start. */
1830 /* Return 0 if the block is too small to make this feasible. */
1831 ptr_t
GC_unmap_start(ptr_t start
, word bytes
)
1833 ptr_t result
= start
;
1834 /* Round start to next page boundary. */
1835 result
+= GC_page_size
- 1;
1836 result
= (ptr_t
)((word
)result
& ~(GC_page_size
- 1));
1837 if (result
+ GC_page_size
> start
+ bytes
) return 0;
1841 /* Compute end address for an unmap operation on the indicated */
1843 ptr_t
GC_unmap_end(ptr_t start
, word bytes
)
1845 ptr_t end_addr
= start
+ bytes
;
1846 end_addr
= (ptr_t
)((word
)end_addr
& ~(GC_page_size
- 1));
1850 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1851 /* memory using VirtualAlloc and VirtualFree. These functions */
1852 /* work on individual allocations of virtual memory, made */
1853 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1854 /* The ranges we need to (de)commit may span several of these */
1855 /* allocations; therefore we use VirtualQuery to check */
1856 /* allocation lengths, and split up the range as necessary. */
1858 /* We assume that GC_remap is called on exactly the same range */
1859 /* as a previous call to GC_unmap. It is safe to consistently */
1860 /* round the endpoints in both places. */
1861 void GC_unmap(ptr_t start
, word bytes
)
1863 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1864 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1865 word len
= end_addr
- start_addr
;
1866 if (0 == start_addr
) return;
1867 # if defined(MSWIN32) || defined(MSWINCE)
1869 MEMORY_BASIC_INFORMATION mem_info
;
1871 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1872 != sizeof(mem_info
))
1873 ABORT("Weird VirtualQuery result");
1874 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1875 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1876 ABORT("VirtualFree failed");
1877 GC_unmapped_bytes
+= free_len
;
1878 start_addr
+= free_len
;
1882 /* We immediately remap it to prevent an intervening mmap from */
1883 /* accidentally grabbing the same address space. */
1886 result
= mmap(start_addr
, len
, PROT_NONE
,
1887 MAP_PRIVATE
| MAP_FIXED
| OPT_MAP_ANON
,
1888 zero_fd
, 0/* offset */);
1889 if (result
!= (void *)start_addr
) ABORT("mmap(...PROT_NONE...) failed");
1891 GC_unmapped_bytes
+= len
;
1896 void GC_remap(ptr_t start
, word bytes
)
1898 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1899 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1900 word len
= end_addr
- start_addr
;
1902 # if defined(MSWIN32) || defined(MSWINCE)
1905 if (0 == start_addr
) return;
1907 MEMORY_BASIC_INFORMATION mem_info
;
1909 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1910 != sizeof(mem_info
))
1911 ABORT("Weird VirtualQuery result");
1912 alloc_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1913 result
= VirtualAlloc(start_addr
, alloc_len
,
1915 PAGE_EXECUTE_READWRITE
);
1916 if (result
!= start_addr
) {
1917 ABORT("VirtualAlloc remapping failed");
1919 GC_unmapped_bytes
-= alloc_len
;
1920 start_addr
+= alloc_len
;
1924 /* It was already remapped with PROT_NONE. */
1927 if (0 == start_addr
) return;
1928 result
= mprotect(start_addr
, len
,
1929 PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
);
1932 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1933 start_addr
, len
, errno
);
1934 ABORT("Mprotect remapping failed");
1936 GC_unmapped_bytes
-= len
;
1940 /* Two adjacent blocks have already been unmapped and are about to */
1941 /* be merged. Unmap the whole block. This typically requires */
1942 /* that we unmap a small section in the middle that was not previously */
1943 /* unmapped due to alignment constraints. */
1944 void GC_unmap_gap(ptr_t start1
, word bytes1
, ptr_t start2
, word bytes2
)
1946 ptr_t start1_addr
= GC_unmap_start(start1
, bytes1
);
1947 ptr_t end1_addr
= GC_unmap_end(start1
, bytes1
);
1948 ptr_t start2_addr
= GC_unmap_start(start2
, bytes2
);
1949 ptr_t end2_addr
= GC_unmap_end(start2
, bytes2
);
1950 ptr_t start_addr
= end1_addr
;
1951 ptr_t end_addr
= start2_addr
;
1953 GC_ASSERT(start1
+ bytes1
== start2
);
1954 if (0 == start1_addr
) start_addr
= GC_unmap_start(start1
, bytes1
+ bytes2
);
1955 if (0 == start2_addr
) end_addr
= GC_unmap_end(start1
, bytes1
+ bytes2
);
1956 if (0 == start_addr
) return;
1957 len
= end_addr
- start_addr
;
1958 # if defined(MSWIN32) || defined(MSWINCE)
1960 MEMORY_BASIC_INFORMATION mem_info
;
1962 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1963 != sizeof(mem_info
))
1964 ABORT("Weird VirtualQuery result");
1965 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1966 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1967 ABORT("VirtualFree failed");
1968 GC_unmapped_bytes
+= free_len
;
1969 start_addr
+= free_len
;
1973 if (len
!= 0 && munmap(start_addr
, len
) != 0) ABORT("munmap failed");
1974 GC_unmapped_bytes
+= len
;
1978 #endif /* USE_MUNMAP */
1980 /* Routine for pushing any additional roots. In THREADS */
1981 /* environment, this is also responsible for marking from */
1982 /* thread stacks. */
1984 void (*GC_push_other_roots
)() = 0;
1988 PCR_ERes
GC_push_thread_stack(PCR_Th_T
*t
, PCR_Any dummy
)
1990 struct PCR_ThCtl_TInfoRep info
;
1993 info
.ti_stkLow
= info
.ti_stkHi
= 0;
1994 result
= PCR_ThCtl_GetInfo(t
, &info
);
1995 GC_push_all_stack((ptr_t
)(info
.ti_stkLow
), (ptr_t
)(info
.ti_stkHi
));
1999 /* Push the contents of an old object. We treat this as stack */
2000 /* data only becasue that makes it robust against mark stack */
2002 PCR_ERes
GC_push_old_obj(void *p
, size_t size
, PCR_Any data
)
2004 GC_push_all_stack((ptr_t
)p
, (ptr_t
)p
+ size
);
2005 return(PCR_ERes_okay
);
2009 void GC_default_push_other_roots
GC_PROTO((void))
2011 /* Traverse data allocated by previous memory managers. */
2013 extern struct PCR_MM_ProcsRep
* GC_old_allocator
;
2015 if ((*(GC_old_allocator
->mmp_enumerate
))(PCR_Bool_false
,
2018 ABORT("Old object enumeration failed");
2021 /* Traverse all thread stacks. */
2023 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack
,0))
2024 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2025 ABORT("Thread stack marking failed\n");
2033 # ifdef ALL_INTERIOR_POINTERS
2037 void GC_push_thread_structures
GC_PROTO((void))
2039 /* Not our responsibibility. */
2042 extern void ThreadF__ProcessStacks();
2044 void GC_push_thread_stack(start
, stop
)
2047 GC_push_all_stack((ptr_t
)start
, (ptr_t
)stop
+ sizeof(word
));
2050 /* Push routine with M3 specific calling convention. */
2051 GC_m3_push_root(dummy1
, p
, dummy2
, dummy3
)
2053 ptr_t dummy1
, dummy2
;
2058 GC_PUSH_ONE_STACK(q
, p
);
2061 /* M3 set equivalent to RTHeap.TracedRefTypes */
2062 typedef struct { int elts
[1]; } RefTypeSet
;
2063 RefTypeSet GC_TracedRefTypes
= {{0x1}};
2065 void GC_default_push_other_roots
GC_PROTO((void))
2067 /* Use the M3 provided routine for finding static roots. */
2068 /* This is a bit dubious, since it presumes no C roots. */
2069 /* We handle the collector roots explicitly in GC_push_roots */
2070 RTMain__GlobalMapProc(GC_m3_push_root
, 0, GC_TracedRefTypes
);
2071 if (GC_words_allocd
> 0) {
2072 ThreadF__ProcessStacks(GC_push_thread_stack
);
2074 /* Otherwise this isn't absolutely necessary, and we have */
2075 /* startup ordering problems. */
2078 # endif /* SRC_M3 */
2080 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2081 defined(GC_WIN32_THREADS)
2083 extern void GC_push_all_stacks();
2085 void GC_default_push_other_roots
GC_PROTO((void))
2087 GC_push_all_stacks();
2090 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2091 #ifdef SN_TARGET_PS3
2092 void GC_default_push_other_roots
GC_PROTO((void))
2094 printf ("WARNING WARNING WARNING\nGC_default_push_other_roots is not implemented\n");
2096 void GC_push_thread_structures
GC_PROTO((void))
2098 printf ("WARNING WARNING WARNING\nGC_default_push_thread_structures is not implemented\n");
2102 void (*GC_push_other_roots
) GC_PROTO((void)) = GC_default_push_other_roots
;
2104 #endif /* THREADS */
2107 * Routines for accessing dirty bits on virtual pages.
2108 * We plan to eventually implement four strategies for doing so:
2109 * DEFAULT_VDB: A simple dummy implementation that treats every page
2110 * as possibly dirty. This makes incremental collection
2111 * useless, but the implementation is still correct.
2112 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2113 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2114 * works under some SVR4 variants. Even then, it may be
2115 * too slow to be entirely satisfactory. Requires reading
2116 * dirty bits for entire address space. Implementations tend
2117 * to assume that the client is a (slow) debugger.
2118 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2119 * dirtied pages. The implementation (and implementability)
2120 * is highly system dependent. This usually fails when system
2121 * calls write to a protected page. We prevent the read system
2122 * call from doing so. It is the clients responsibility to
2123 * make sure that other system calls are similarly protected
2124 * or write only to the stack.
2126 GC_bool GC_dirty_maintained
= FALSE
;
2130 /* All of the following assume the allocation lock is held, and */
2131 /* signals are disabled. */
2133 /* The client asserts that unallocated pages in the heap are never */
2136 /* Initialize virtual dirty bit implementation. */
2137 void GC_dirty_init()
2140 GC_printf0("Initializing DEFAULT_VDB...\n");
2142 GC_dirty_maintained
= TRUE
;
2145 /* Retrieve system dirty bits for heap to a local buffer. */
2146 /* Restore the systems notion of which pages are dirty. */
2147 void GC_read_dirty()
2150 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2151 /* If the actual page size is different, this returns TRUE if any */
2152 /* of the pages overlapping h are dirty. This routine may err on the */
2153 /* side of labelling pages as dirty (and this implementation does). */
2155 GC_bool
GC_page_was_dirty(h
)
2162 * The following two routines are typically less crucial. They matter
2163 * most with large dynamic libraries, or if we can't accurately identify
2164 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2165 * versions are adequate.
2168 /* Could any valid GC heap pointer ever have been written to this page? */
2170 GC_bool
GC_page_was_ever_dirty(h
)
2176 /* Reset the n pages starting at h to "was never dirty" status. */
2177 void GC_is_fresh(h
, n
)
2184 /* I) hints that [h, h+nblocks) is about to be written. */
2185 /* II) guarantees that protection is removed. */
2186 /* (I) may speed up some dirty bit implementations. */
2187 /* (II) may be essential if we need to ensure that */
2188 /* pointer-free system call buffers in the heap are */
2189 /* not protected. */
2191 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
2198 # endif /* DEFAULT_VDB */
2201 # ifdef MPROTECT_VDB
2204 * See DEFAULT_VDB for interface descriptions.
2208 * This implementation maintains dirty bits itself by catching write
2209 * faults and keeping track of them. We assume nobody else catches
2210 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2211 * This means that clients must ensure that system calls don't write
2212 * to the write-protected heap. Probably the best way to do this is to
2213 * ensure that system calls write at most to POINTERFREE objects in the
2214 * heap, and do even that only if we are on a platform on which those
2215 * are not protected. Another alternative is to wrap system calls
2216 * (see example for read below), but the current implementation holds
2217 * a lock across blocking calls, making it problematic for multithreaded
2219 * We assume the page size is a multiple of HBLKSIZE.
2220 * We prefer them to be the same. We avoid protecting POINTERFREE
2221 * objects only if they are the same.
2224 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2226 # include <sys/mman.h>
2227 # include <signal.h>
2228 # include <sys/syscall.h>
2230 # define PROTECT(addr, len) \
2231 if (mprotect((caddr_t)(addr), (size_t)(len), \
2232 PROT_READ | OPT_PROT_EXEC) < 0) { \
2233 ABORT("mprotect failed"); \
2235 # define UNPROTECT(addr, len) \
2236 if (mprotect((caddr_t)(addr), (size_t)(len), \
2237 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2238 ABORT("un-mprotect failed"); \
2244 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2245 decrease the likelihood of some of the problems described below. */
2246 #include <mach/vm_map.h>
2247 static mach_port_t GC_task_self
;
2248 #define PROTECT(addr,len) \
2249 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2250 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2251 ABORT("vm_portect failed"); \
2253 #define UNPROTECT(addr,len) \
2254 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2255 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2256 ABORT("vm_portect failed"); \
2261 # include <signal.h>
2264 static DWORD protect_junk
;
2265 # define PROTECT(addr, len) \
2266 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2268 DWORD last_error = GetLastError(); \
2269 GC_printf1("Last error code: %lx\n", last_error); \
2270 ABORT("VirtualProtect failed"); \
2272 # define UNPROTECT(addr, len) \
2273 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2275 ABORT("un-VirtualProtect failed"); \
2277 # endif /* !DARWIN */
2278 # endif /* MSWIN32 || MSWINCE || DARWIN */
2280 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2281 typedef void (* SIG_PF
)();
2282 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2284 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2287 typedef void (* SIG_PF
)(int);
2289 typedef void (* SIG_PF
)();
2291 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2293 #if defined(MSWIN32)
2294 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF
;
2296 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2298 #if defined(MSWINCE)
2299 typedef LONG (WINAPI
*SIG_PF
)(struct _EXCEPTION_POINTERS
*);
2301 # define SIG_DFL (SIG_PF) (-1)
2304 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2305 typedef void (* REAL_SIG_PF
)(int, int, struct sigcontext
*);
2306 #endif /* IRIX5 || OSF1 || HURD */
2308 #if defined(SUNOS5SIGS)
2309 # if defined(HPUX) || defined(FREEBSD)
2310 # define SIGINFO_T siginfo_t
2312 # define SIGINFO_T struct siginfo
2315 typedef void (* REAL_SIG_PF
)(int, SIGINFO_T
*, void *);
2317 typedef void (* REAL_SIG_PF
)();
2319 #endif /* SUNOS5SIGS */
2322 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2323 typedef struct sigcontext s_c
;
2324 # else /* glibc < 2.2 */
2325 # include <linux/version.h>
2326 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2327 typedef struct sigcontext s_c
;
2329 typedef struct sigcontext_struct s_c
;
2331 # endif /* glibc < 2.2 */
2332 # if defined(ALPHA) || defined(M68K)
2333 typedef void (* REAL_SIG_PF
)(int, int, s_c
*);
2335 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2336 typedef void (* REAL_SIG_PF
)(int, siginfo_t
*, s_c
*);
2338 /* According to SUSV3, the last argument should have type */
2339 /* void * or ucontext_t * */
2341 typedef void (* REAL_SIG_PF
)(int, s_c
);
2345 /* Retrieve fault address from sigcontext structure by decoding */
2347 char * get_fault_addr(s_c
*sc
) {
2351 instr
= *((unsigned *)(sc
->sc_pc
));
2352 faultaddr
= sc
->sc_regs
[(instr
>> 16) & 0x1f];
2353 faultaddr
+= (word
) (((int)instr
<< 16) >> 16);
2354 return (char *)faultaddr
;
2356 # endif /* !ALPHA */
2360 SIG_PF GC_old_bus_handler
;
2361 SIG_PF GC_old_segv_handler
; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2362 #endif /* !DARWIN */
2364 #if defined(THREADS)
2365 /* We need to lock around the bitmap update in the write fault handler */
2366 /* in order to avoid the risk of losing a bit. We do this with a */
2367 /* test-and-set spin lock if we know how to do that. Otherwise we */
2368 /* check whether we are already in the handler and use the dumb but */
2369 /* safe fallback algorithm of setting all bits in the word. */
2370 /* Contention should be very rare, so we do the minimum to handle it */
2372 #ifdef GC_TEST_AND_SET_DEFINED
2373 static VOLATILE
unsigned int fault_handler_lock
= 0;
2374 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2375 while (GC_test_and_set(&fault_handler_lock
)) {}
2376 /* Could also revert to set_pht_entry_from_index_safe if initial */
2377 /* GC_test_and_set fails. */
2378 set_pht_entry_from_index(db
, index
);
2379 GC_clear(&fault_handler_lock
);
2381 #else /* !GC_TEST_AND_SET_DEFINED */
2382 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2383 /* just before we notice the conflict and correct it. We may end up */
2384 /* looking at it while it's wrong. But this requires contention */
2385 /* exactly when a GC is triggered, which seems far less likely to */
2386 /* fail than the old code, which had no reported failures. Thus we */
2387 /* leave it this way while we think of something better, or support */
2388 /* GC_test_and_set on the remaining platforms. */
2389 static VOLATILE word currently_updating
= 0;
2390 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2391 unsigned int update_dummy
;
2392 currently_updating
= (word
)(&update_dummy
);
2393 set_pht_entry_from_index(db
, index
);
2394 /* If we get contention in the 10 or so instruction window here, */
2395 /* and we get stopped by a GC between the two updates, we lose! */
2396 if (currently_updating
!= (word
)(&update_dummy
)) {
2397 set_pht_entry_from_index_safe(db
, index
);
2398 /* We claim that if two threads concurrently try to update the */
2399 /* dirty bit vector, the first one to execute UPDATE_START */
2400 /* will see it changed when UPDATE_END is executed. (Note that */
2401 /* &update_dummy must differ in two distinct threads.) It */
2402 /* will then execute set_pht_entry_from_index_safe, thus */
2403 /* returning us to a safe state, though not soon enough. */
2406 #endif /* !GC_TEST_AND_SET_DEFINED */
2407 #else /* !THREADS */
2408 # define async_set_pht_entry_from_index(db, index) \
2409 set_pht_entry_from_index(db, index)
2410 #endif /* !THREADS */
2413 #if !defined(DARWIN)
2414 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2415 void GC_write_fault_handler(sig
, code
, scp
, addr
)
2417 struct sigcontext
*scp
;
2420 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2421 # define CODE_OK (FC_CODE(code) == FC_PROT \
2422 || (FC_CODE(code) == FC_OBJERR \
2423 && FC_ERRNO(code) == FC_PROT))
2426 # define SIG_OK (sig == SIGBUS)
2427 # define CODE_OK TRUE
2429 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2431 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2433 void GC_write_fault_handler(int sig
, int code
, struct sigcontext
*scp
)
2435 # define SIG_OK (sig == SIGSEGV)
2436 # define CODE_OK (code == 2 /* experimentally determined */)
2439 # define SIG_OK (sig == SIGSEGV)
2440 # define CODE_OK (code == EACCES)
2443 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2444 # define CODE_OK TRUE
2446 # endif /* IRIX5 || OSF1 || HURD */
2449 # if defined(ALPHA) || defined(M68K)
2450 void GC_write_fault_handler(int sig
, int code
, s_c
* sc
)
2452 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2453 void GC_write_fault_handler(int sig
, siginfo_t
* si
, s_c
* scp
)
2456 void GC_write_fault_handler(int sig
, int a2
, int a3
, int a4
, s_c sc
)
2458 void GC_write_fault_handler(int sig
, s_c sc
)
2462 # define SIG_OK (sig == SIGSEGV)
2463 # define CODE_OK TRUE
2464 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2465 /* Should probably consider alignment issues on other */
2466 /* architectures. */
2469 # if defined(SUNOS5SIGS)
2471 void GC_write_fault_handler(int sig
, SIGINFO_T
*scp
, void * context
)
2473 void GC_write_fault_handler(sig
, scp
, context
)
2479 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2480 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2481 || (scp -> si_code == BUS_ADRERR) \
2482 || (scp -> si_code == BUS_UNKNOWN) \
2483 || (scp -> si_code == SEGV_UNKNOWN) \
2484 || (scp -> si_code == BUS_OBJERR)
2487 # define SIG_OK (sig == SIGBUS)
2488 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2490 # define SIG_OK (sig == SIGSEGV)
2491 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2494 # endif /* SUNOS5SIGS */
2496 # if defined(MSWIN32) || defined(MSWINCE)
2497 LONG WINAPI
GC_write_fault_handler(struct _EXCEPTION_POINTERS
*exc_info
)
2498 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2499 STATUS_ACCESS_VIOLATION)
2500 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2502 # endif /* MSWIN32 || MSWINCE */
2504 register unsigned i
;
2506 char *addr
= (char *) code
;
2509 char * addr
= (char *) (size_t) (scp
-> sc_badvaddr
);
2511 # if defined(OSF1) && defined(ALPHA)
2512 char * addr
= (char *) (scp
-> sc_traparg_a0
);
2515 char * addr
= (char *) (scp
-> si_addr
);
2519 char * addr
= (char *) (sc
.cr2
);
2524 struct sigcontext
*scp
= (struct sigcontext
*)(sc
);
2526 int format
= (scp
->sc_formatvec
>> 12) & 0xf;
2527 unsigned long *framedata
= (unsigned long *)(scp
+ 1);
2530 if (format
== 0xa || format
== 0xb) {
2533 } else if (format
== 7) {
2536 if (framedata
[1] & 0x08000000) {
2537 /* correct addr on misaligned access */
2538 ea
= (ea
+4095)&(~4095);
2540 } else if (format
== 4) {
2543 if (framedata
[1] & 0x08000000) {
2544 /* correct addr on misaligned access */
2545 ea
= (ea
+4095)&(~4095);
2551 char * addr
= get_fault_addr(sc
);
2553 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2554 char * addr
= si
-> si_addr
;
2555 /* I believe this is claimed to work on all platforms for */
2556 /* Linux 2.3.47 and later. Hopefully we don't have to */
2557 /* worry about earlier kernels on IA64. */
2559 # if defined(POWERPC)
2560 char * addr
= (char *) (sc
.regs
->dar
);
2563 char * addr
= (char *)sc
.fault_address
;
2566 char * addr
= (char *)sc
.regs
.csraddr
;
2568 --> architecture
not supported
2577 # if defined(MSWIN32) || defined(MSWINCE)
2578 char * addr
= (char *) (exc_info
-> ExceptionRecord
2579 -> ExceptionInformation
[1]);
2580 # define sig SIGSEGV
2583 if (SIG_OK
&& CODE_OK
) {
2584 register struct hblk
* h
=
2585 (struct hblk
*)((word
)addr
& ~(GC_page_size
-1));
2586 GC_bool in_allocd_block
;
2589 /* Address is only within the correct physical page. */
2590 in_allocd_block
= FALSE
;
2591 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2592 if (HDR(h
+i
) != 0) {
2593 in_allocd_block
= TRUE
;
2597 in_allocd_block
= (HDR(addr
) != 0);
2599 if (!in_allocd_block
) {
2600 /* FIXME - We should make sure that we invoke the */
2601 /* old handler with the appropriate calling */
2602 /* sequence, which often depends on SA_SIGINFO. */
2604 /* Heap blocks now begin and end on page boundaries */
2607 if (sig
== SIGSEGV
) {
2608 old_handler
= GC_old_segv_handler
;
2610 old_handler
= GC_old_bus_handler
;
2612 if (old_handler
== SIG_DFL
) {
2613 # if !defined(MSWIN32) && !defined(MSWINCE)
2614 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2615 ABORT("Unexpected bus error or segmentation fault");
2617 return(EXCEPTION_CONTINUE_SEARCH
);
2620 # if defined (SUNOS4) \
2621 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2622 (*old_handler
) (sig
, code
, scp
, addr
);
2625 # if defined (SUNOS5SIGS)
2627 * FIXME: For FreeBSD, this code should check if the
2628 * old signal handler used the traditional BSD style and
2629 * if so call it using that style.
2631 (*(REAL_SIG_PF
)old_handler
) (sig
, scp
, context
);
2634 # if defined (LINUX)
2635 # if defined(ALPHA) || defined(M68K)
2636 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, sc
);
2638 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2639 (*(REAL_SIG_PF
)old_handler
) (sig
, si
, scp
);
2641 (*(REAL_SIG_PF
)old_handler
) (sig
, sc
);
2646 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2647 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, scp
);
2651 return((*old_handler
)(exc_info
));
2655 UNPROTECT(h
, GC_page_size
);
2656 /* We need to make sure that no collection occurs between */
2657 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2658 /* a write by a third thread might go unnoticed. Reversing */
2659 /* the order is just as bad, since we would end up unprotecting */
2660 /* a page in a GC cycle during which it's not marked. */
2661 /* Currently we do this by disabling the thread stopping */
2662 /* signals while this handler is running. An alternative might */
2663 /* be to record the fact that we're about to unprotect, or */
2664 /* have just unprotected a page in the GC's thread structure, */
2665 /* and then to have the thread stopping code set the dirty */
2666 /* flag, if necessary. */
2667 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2668 register int index
= PHT_HASH(h
+i
);
2670 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2673 /* These reset the signal handler each time by default. */
2674 signal(SIGSEGV
, (SIG_PF
) GC_write_fault_handler
);
2676 /* The write may not take place before dirty bits are read. */
2677 /* But then we'll fault again ... */
2678 # if defined(MSWIN32) || defined(MSWINCE)
2679 return(EXCEPTION_CONTINUE_EXECUTION
);
2684 #if defined(MSWIN32) || defined(MSWINCE)
2685 return EXCEPTION_CONTINUE_SEARCH
;
2687 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2688 ABORT("Unexpected bus error or segmentation fault");
2691 #endif /* !DARWIN */
2694 * We hold the allocation lock. We expect block h to be written
2695 * shortly. Ensure that all pages containing any part of the n hblks
2696 * starting at h are no longer protected. If is_ptrfree is false,
2697 * also ensure that they will subsequently appear to be dirty.
2699 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
2704 struct hblk
* h_trunc
; /* Truncated to page boundary */
2705 struct hblk
* h_end
; /* Page boundary following block end */
2706 struct hblk
* current
;
2707 GC_bool found_clean
;
2709 if (!GC_dirty_maintained
) return;
2710 h_trunc
= (struct hblk
*)((word
)h
& ~(GC_page_size
-1));
2711 h_end
= (struct hblk
*)(((word
)(h
+ nblocks
) + GC_page_size
-1)
2712 & ~(GC_page_size
-1));
2713 found_clean
= FALSE
;
2714 for (current
= h_trunc
; current
< h_end
; ++current
) {
2715 int index
= PHT_HASH(current
);
2717 if (!is_ptrfree
|| current
< h
|| current
>= h
+ nblocks
) {
2718 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2721 UNPROTECT(h_trunc
, (ptr_t
)h_end
- (ptr_t
)h_trunc
);
2724 #if !defined(DARWIN)
2725 void GC_dirty_init()
2727 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2728 defined(OSF1) || defined(HURD)
2729 struct sigaction act
, oldact
;
2730 /* We should probably specify SA_SIGINFO for Linux, and handle */
2731 /* the different architectures more uniformly. */
2732 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2733 || defined(OSF1) || defined(HURD)
2734 act
.sa_flags
= SA_RESTART
;
2735 act
.sa_handler
= (SIG_PF
)GC_write_fault_handler
;
2737 act
.sa_flags
= SA_RESTART
| SA_SIGINFO
;
2738 act
.sa_sigaction
= GC_write_fault_handler
;
2740 (void)sigemptyset(&act
.sa_mask
);
2742 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2743 /* handler. This effectively makes the handler atomic w.r.t. */
2744 /* stopping the world for GC. */
2745 (void)sigaddset(&act
.sa_mask
, SIG_SUSPEND
);
2746 # endif /* SIG_SUSPEND */
2749 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2751 GC_dirty_maintained
= TRUE
;
2752 if (GC_page_size
% HBLKSIZE
!= 0) {
2753 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2754 ABORT("Page size not multiple of HBLKSIZE");
2756 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2757 GC_old_bus_handler
= signal(SIGBUS
, GC_write_fault_handler
);
2758 if (GC_old_bus_handler
== SIG_IGN
) {
2759 GC_err_printf0("Previously ignored bus error!?");
2760 GC_old_bus_handler
= SIG_DFL
;
2762 if (GC_old_bus_handler
!= SIG_DFL
) {
2764 GC_err_printf0("Replaced other SIGBUS handler\n");
2768 # if defined(SUNOS4)
2769 GC_old_segv_handler
= signal(SIGSEGV
, (SIG_PF
)GC_write_fault_handler
);
2770 if (GC_old_segv_handler
== SIG_IGN
) {
2771 GC_err_printf0("Previously ignored segmentation violation!?");
2772 GC_old_segv_handler
= SIG_DFL
;
2774 if (GC_old_segv_handler
!= SIG_DFL
) {
2776 GC_err_printf0("Replaced other SIGSEGV handler\n");
2780 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2781 || defined(LINUX) || defined(OSF1) || defined(HURD)
2782 /* SUNOS5SIGS includes HPUX */
2783 # if defined(GC_IRIX_THREADS)
2784 sigaction(SIGSEGV
, 0, &oldact
);
2785 sigaction(SIGSEGV
, &act
, 0);
2788 int res
= sigaction(SIGSEGV
, &act
, &oldact
);
2789 if (res
!= 0) ABORT("Sigaction failed");
2792 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2793 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2795 GC_old_segv_handler
= oldact
.sa_handler
;
2796 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2797 if (oldact
.sa_flags
& SA_SIGINFO
) {
2798 GC_old_segv_handler
= (SIG_PF
)(oldact
.sa_sigaction
);
2800 GC_old_segv_handler
= oldact
.sa_handler
;
2803 if (GC_old_segv_handler
== SIG_IGN
) {
2804 GC_err_printf0("Previously ignored segmentation violation!?");
2805 GC_old_segv_handler
= SIG_DFL
;
2807 if (GC_old_segv_handler
!= SIG_DFL
) {
2809 GC_err_printf0("Replaced other SIGSEGV handler\n");
2812 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2813 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2814 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2815 sigaction(SIGBUS
, &act
, &oldact
);
2816 GC_old_bus_handler
= oldact
.sa_handler
;
2817 if (GC_old_bus_handler
== SIG_IGN
) {
2818 GC_err_printf0("Previously ignored bus error!?");
2819 GC_old_bus_handler
= SIG_DFL
;
2821 if (GC_old_bus_handler
!= SIG_DFL
) {
2823 GC_err_printf0("Replaced other SIGBUS handler\n");
2826 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2827 # if defined(MSWIN32)
2828 GC_old_segv_handler
= SetUnhandledExceptionFilter(GC_write_fault_handler
);
2829 if (GC_old_segv_handler
!= NULL
) {
2831 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2834 GC_old_segv_handler
= SIG_DFL
;
2838 #endif /* !DARWIN */
2840 int GC_incremental_protection_needs()
2842 if (GC_page_size
== HBLKSIZE
) {
2843 return GC_PROTECTS_POINTER_HEAP
;
2845 return GC_PROTECTS_POINTER_HEAP
| GC_PROTECTS_PTRFREE_HEAP
;
2849 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2851 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2853 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2854 void GC_protect_heap()
2858 struct hblk
* current
;
2859 struct hblk
* current_start
; /* Start of block to be protected. */
2860 struct hblk
* limit
;
2862 GC_bool protect_all
=
2863 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP
));
2864 for (i
= 0; i
< GC_n_heap_sects
; i
++) {
2865 start
= GC_heap_sects
[i
].hs_start
;
2866 len
= GC_heap_sects
[i
].hs_bytes
;
2868 PROTECT(start
, len
);
2870 GC_ASSERT(PAGE_ALIGNED(len
))
2871 GC_ASSERT(PAGE_ALIGNED(start
))
2872 current_start
= current
= (struct hblk
*)start
;
2873 limit
= (struct hblk
*)(start
+ len
);
2874 while (current
< limit
) {
2879 GC_ASSERT(PAGE_ALIGNED(current
));
2880 GET_HDR(current
, hhdr
);
2881 if (IS_FORWARDING_ADDR_OR_NIL(hhdr
)) {
2882 /* This can happen only if we're at the beginning of a */
2883 /* heap segment, and a block spans heap segments. */
2884 /* We will handle that block as part of the preceding */
2886 GC_ASSERT(current_start
== current
);
2887 current_start
= ++current
;
2890 if (HBLK_IS_FREE(hhdr
)) {
2891 GC_ASSERT(PAGE_ALIGNED(hhdr
-> hb_sz
));
2892 nhblks
= divHBLKSZ(hhdr
-> hb_sz
);
2893 is_ptrfree
= TRUE
; /* dirty on alloc */
2895 nhblks
= OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
);
2896 is_ptrfree
= IS_PTRFREE(hhdr
);
2899 if (current_start
< current
) {
2900 PROTECT(current_start
, (ptr_t
)current
- (ptr_t
)current_start
);
2902 current_start
= (current
+= nhblks
);
2907 if (current_start
< current
) {
2908 PROTECT(current_start
, (ptr_t
)current
- (ptr_t
)current_start
);
2914 /* We assume that either the world is stopped or its OK to lose dirty */
2915 /* bits while this is happenning (as in GC_enable_incremental). */
2916 void GC_read_dirty()
2918 BCOPY((word
*)GC_dirty_pages
, GC_grungy_pages
,
2919 (sizeof GC_dirty_pages
));
2920 BZERO((word
*)GC_dirty_pages
, (sizeof GC_dirty_pages
));
2924 GC_bool
GC_page_was_dirty(h
)
2927 register word index
= PHT_HASH(h
);
2929 return(HDR(h
) == 0 || get_pht_entry_from_index(GC_grungy_pages
, index
));
2933 * Acquiring the allocation lock here is dangerous, since this
2934 * can be called from within GC_call_with_alloc_lock, and the cord
2935 * package does so. On systems that allow nested lock acquisition, this
2937 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2940 static GC_bool syscall_acquired_lock
= FALSE
; /* Protected by GC lock. */
2942 void GC_begin_syscall()
2944 if (!I_HOLD_LOCK()) {
2946 syscall_acquired_lock
= TRUE
;
2950 void GC_end_syscall()
2952 if (syscall_acquired_lock
) {
2953 syscall_acquired_lock
= FALSE
;
2958 void GC_unprotect_range(addr
, len
)
2962 struct hblk
* start_block
;
2963 struct hblk
* end_block
;
2964 register struct hblk
*h
;
2967 if (!GC_dirty_maintained
) return;
2968 obj_start
= GC_base(addr
);
2969 if (obj_start
== 0) return;
2970 if (GC_base(addr
+ len
- 1) != obj_start
) {
2971 ABORT("GC_unprotect_range(range bigger than object)");
2973 start_block
= (struct hblk
*)((word
)addr
& ~(GC_page_size
- 1));
2974 end_block
= (struct hblk
*)((word
)(addr
+ len
- 1) & ~(GC_page_size
- 1));
2975 end_block
+= GC_page_size
/HBLKSIZE
- 1;
2976 for (h
= start_block
; h
<= end_block
; h
++) {
2977 register word index
= PHT_HASH(h
);
2979 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2981 UNPROTECT(start_block
,
2982 ((ptr_t
)end_block
- (ptr_t
)start_block
) + HBLKSIZE
);
2987 /* We no longer wrap read by default, since that was causing too many */
2988 /* problems. It is preferred that the client instead avoids writing */
2989 /* to the write-protected heap with a system call. */
2990 /* This still serves as sample code if you do want to wrap system calls.*/
2992 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2993 /* Replacement for UNIX system call. */
2994 /* Other calls that write to the heap should be handled similarly. */
2995 /* Note that this doesn't work well for blocking reads: It will hold */
2996 /* the allocation lock for the entire duration of the call. Multithreaded */
2997 /* clients should really ensure that it won't block, either by setting */
2998 /* the descriptor nonblocking, or by calling select or poll first, to */
2999 /* make sure that input is available. */
3000 /* Another, preferred alternative is to ensure that system calls never */
3001 /* write to the protected heap (see above). */
3002 # if defined(__STDC__) && !defined(SUNOS4)
3003 # include <unistd.h>
3004 # include <sys/uio.h>
3005 ssize_t
read(int fd
, void *buf
, size_t nbyte
)
3008 int read(fd
, buf
, nbyte
)
3010 int GC_read(fd
, buf
, nbyte
)
3020 GC_unprotect_range(buf
, (word
)nbyte
);
3021 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
3022 /* Indirect system call may not always be easily available. */
3023 /* We could call _read, but that would interfere with the */
3024 /* libpthread interception of read. */
3025 /* On Linux, we have to be careful with the linuxthreads */
3026 /* read interception. */
3031 iov
.iov_len
= nbyte
;
3032 result
= readv(fd
, &iov
, 1);
3036 result
= __read(fd
, buf
, nbyte
);
3038 /* The two zero args at the end of this list are because one
3039 IA-64 syscall() implementation actually requires six args
3040 to be passed, even though they aren't always used. */
3041 result
= syscall(SYS_read
, fd
, buf
, nbyte
, 0, 0);
3047 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3049 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3050 /* We use the GNU ld call wrapping facility. */
3051 /* This requires that the linker be invoked with "--wrap read". */
3052 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3053 /* I'm not sure that this actually wraps whatever version of read */
3054 /* is called by stdio. That code also mentions __read. */
3055 # include <unistd.h>
3056 ssize_t
__wrap_read(int fd
, void *buf
, size_t nbyte
)
3061 GC_unprotect_range(buf
, (word
)nbyte
);
3062 result
= __real_read(fd
, buf
, nbyte
);
3067 /* We should probably also do this for __read, or whatever stdio */
3068 /* actually calls. */
3074 GC_bool
GC_page_was_ever_dirty(h
)
3080 /* Reset the n pages starting at h to "was never dirty" status. */
3082 void GC_is_fresh(h
, n
)
3088 # endif /* MPROTECT_VDB */
3093 * See DEFAULT_VDB for interface descriptions.
3097 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3098 * from which we can read page modified bits. This facility is far from
3099 * optimal (e.g. we would like to get the info for only some of the
3100 * address space), but it avoids intercepting system calls.
3104 #include <sys/types.h>
3105 #include <sys/signal.h>
3106 #include <sys/fault.h>
3107 #include <sys/syscall.h>
3108 #include <sys/procfs.h>
3109 #include <sys/stat.h>
3111 #define INITIAL_BUF_SZ 16384
3112 word GC_proc_buf_size
= INITIAL_BUF_SZ
;
3115 #ifdef GC_SOLARIS_THREADS
3116 /* We don't have exact sp values for threads. So we count on */
3117 /* occasionally declaring stack pages to be fresh. Thus we */
3118 /* need a real implementation of GC_is_fresh. We can't clear */
3119 /* entries in GC_written_pages, since that would declare all */
3120 /* pages with the given hash address to be fresh. */
3121 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3122 struct hblk
** GC_fresh_pages
; /* A direct mapped cache. */
3123 /* Collisions are dropped. */
3125 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3126 # define ADD_FRESH_PAGE(h) \
3127 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3128 # define PAGE_IS_FRESH(h) \
3129 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3132 /* Add all pages in pht2 to pht1 */
3133 void GC_or_pages(pht1
, pht2
)
3134 page_hash_table pht1
, pht2
;
3138 for (i
= 0; i
< PHT_SIZE
; i
++) pht1
[i
] |= pht2
[i
];
3143 void GC_dirty_init()
3148 GC_dirty_maintained
= TRUE
;
3149 if (GC_words_allocd
!= 0 || GC_words_allocd_before_gc
!= 0) {
3152 for (i
= 0; i
< PHT_SIZE
; i
++) GC_written_pages
[i
] = (word
)(-1);
3154 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3156 (GC_words_allocd
+ GC_words_allocd_before_gc
));
3159 sprintf(buf
, "/proc/%d", getpid());
3160 fd
= open(buf
, O_RDONLY
);
3162 ABORT("/proc open failed");
3164 GC_proc_fd
= syscall(SYS_ioctl
, fd
, PIOCOPENPD
, 0);
3166 syscall(SYS_fcntl
, GC_proc_fd
, F_SETFD
, FD_CLOEXEC
);
3167 if (GC_proc_fd
< 0) {
3168 ABORT("/proc ioctl failed");
3170 GC_proc_buf
= GC_scratch_alloc(GC_proc_buf_size
);
3171 # ifdef GC_SOLARIS_THREADS
3172 GC_fresh_pages
= (struct hblk
**)
3173 GC_scratch_alloc(MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3174 if (GC_fresh_pages
== 0) {
3175 GC_err_printf0("No space for fresh pages\n");
3178 BZERO(GC_fresh_pages
, MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3182 /* Ignore write hints. They don't help us here. */
3184 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
3191 #ifdef GC_SOLARIS_THREADS
3192 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3194 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3197 void GC_read_dirty()
3199 unsigned long ps
, np
;
3202 struct prasmap
* map
;
3204 ptr_t current_addr
, limit
;
3208 BZERO(GC_grungy_pages
, (sizeof GC_grungy_pages
));
3211 if (READ(GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
3213 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3217 /* Retry with larger buffer. */
3218 word new_size
= 2 * GC_proc_buf_size
;
3219 char * new_buf
= GC_scratch_alloc(new_size
);
3222 GC_proc_buf
= bufp
= new_buf
;
3223 GC_proc_buf_size
= new_size
;
3225 if (READ(GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
3226 WARN("Insufficient space for /proc read\n", 0);
3228 memset(GC_grungy_pages
, 0xff, sizeof (page_hash_table
));
3229 memset(GC_written_pages
, 0xff, sizeof(page_hash_table
));
3230 # ifdef GC_SOLARIS_THREADS
3231 BZERO(GC_fresh_pages
,
3232 MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3238 /* Copy dirty bits into GC_grungy_pages */
3239 nmaps
= ((struct prpageheader
*)bufp
) -> pr_nmap
;
3240 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3241 nmaps, PG_REFERENCED, PG_MODIFIED); */
3242 bufp
= bufp
+ sizeof(struct prpageheader
);
3243 for (i
= 0; i
< nmaps
; i
++) {
3244 map
= (struct prasmap
*)bufp
;
3245 vaddr
= (ptr_t
)(map
-> pr_vaddr
);
3246 ps
= map
-> pr_pagesize
;
3247 np
= map
-> pr_npage
;
3248 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3249 limit
= vaddr
+ ps
* np
;
3250 bufp
+= sizeof (struct prasmap
);
3251 for (current_addr
= vaddr
;
3252 current_addr
< limit
; current_addr
+= ps
){
3253 if ((*bufp
++) & PG_MODIFIED
) {
3254 register struct hblk
* h
= (struct hblk
*) current_addr
;
3256 while ((ptr_t
)h
< current_addr
+ ps
) {
3257 register word index
= PHT_HASH(h
);
3259 set_pht_entry_from_index(GC_grungy_pages
, index
);
3260 # ifdef GC_SOLARIS_THREADS
3262 register int slot
= FRESH_PAGE_SLOT(h
);
3264 if (GC_fresh_pages
[slot
] == h
) {
3265 GC_fresh_pages
[slot
] = 0;
3273 bufp
+= sizeof(long) - 1;
3274 bufp
= (char *)((unsigned long)bufp
& ~(sizeof(long)-1));
3276 /* Update GC_written_pages. */
3277 GC_or_pages(GC_written_pages
, GC_grungy_pages
);
3278 # ifdef GC_SOLARIS_THREADS
3279 /* Make sure that old stacks are considered completely clean */
3280 /* unless written again. */
3281 GC_old_stacks_are_fresh();
3287 GC_bool
GC_page_was_dirty(h
)
3290 register word index
= PHT_HASH(h
);
3291 register GC_bool result
;
3293 result
= get_pht_entry_from_index(GC_grungy_pages
, index
);
3294 # ifdef GC_SOLARIS_THREADS
3295 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
3296 /* This happens only if page was declared fresh since */
3297 /* the read_dirty call, e.g. because it's in an unused */
3298 /* thread stack. It's OK to treat it as clean, in */
3299 /* that case. And it's consistent with */
3300 /* GC_page_was_ever_dirty. */
3305 GC_bool
GC_page_was_ever_dirty(h
)
3308 register word index
= PHT_HASH(h
);
3309 register GC_bool result
;
3311 result
= get_pht_entry_from_index(GC_written_pages
, index
);
3312 # ifdef GC_SOLARIS_THREADS
3313 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
3318 /* Caller holds allocation lock. */
3319 void GC_is_fresh(h
, n
)
3324 register word index
;
3326 # ifdef GC_SOLARIS_THREADS
3329 if (GC_fresh_pages
!= 0) {
3330 for (i
= 0; i
< n
; i
++) {
3331 ADD_FRESH_PAGE(h
+ i
);
3337 # endif /* PROC_VDB */
3342 # include "vd/PCR_VD.h"
3344 # define NPAGES (32*1024) /* 128 MB */
3346 PCR_VD_DB GC_grungy_bits
[NPAGES
];
3348 ptr_t GC_vd_base
; /* Address corresponding to GC_grungy_bits[0] */
3349 /* HBLKSIZE aligned. */
3351 void GC_dirty_init()
3353 GC_dirty_maintained
= TRUE
;
3354 /* For the time being, we assume the heap generally grows up */
3355 GC_vd_base
= GC_heap_sects
[0].hs_start
;
3356 if (GC_vd_base
== 0) {
3357 ABORT("Bad initial heap segment");
3359 if (PCR_VD_Start(HBLKSIZE
, GC_vd_base
, NPAGES
*HBLKSIZE
)
3361 ABORT("dirty bit initialization failed");
3365 void GC_read_dirty()
3367 /* lazily enable dirty bits on newly added heap sects */
3369 static int onhs
= 0;
3370 int nhs
= GC_n_heap_sects
;
3371 for( ; onhs
< nhs
; onhs
++ ) {
3372 PCR_VD_WriteProtectEnable(
3373 GC_heap_sects
[onhs
].hs_start
,
3374 GC_heap_sects
[onhs
].hs_bytes
);
3379 if (PCR_VD_Clear(GC_vd_base
, NPAGES
*HBLKSIZE
, GC_grungy_bits
)
3381 ABORT("dirty bit read failed");
3385 GC_bool
GC_page_was_dirty(h
)
3388 if((ptr_t
)h
< GC_vd_base
|| (ptr_t
)h
>= GC_vd_base
+ NPAGES
*HBLKSIZE
) {
3391 return(GC_grungy_bits
[h
- (struct hblk
*)GC_vd_base
] & PCR_VD_DB_dirtyBit
);
3395 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
3400 PCR_VD_WriteProtectDisable(h
, nblocks
*HBLKSIZE
);
3401 PCR_VD_WriteProtectEnable(h
, nblocks
*HBLKSIZE
);
3404 # endif /* PCR_VDB */
3406 #if defined(MPROTECT_VDB) && defined(DARWIN)
3407 /* The following sources were used as a *reference* for this exception handling
3409 1. Apple's mach/xnu documentation
3410 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3411 omnigroup's macosx-dev list.
3412 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3413 3. macosx-nat.c from Apple's GDB source code.
3416 /* The bug that caused all this trouble should now be fixed. This should
3417 eventually be removed if all goes well. */
3418 /* define BROKEN_EXCEPTION_HANDLING */
3420 #include <mach/mach.h>
3421 #include <mach/mach_error.h>
3422 #include <mach/thread_status.h>
3423 #include <mach/exception.h>
3424 #include <mach/task.h>
3425 #include <pthread.h>
3427 /* These are not defined in any header, although they are documented */
3428 extern boolean_t
exc_server(mach_msg_header_t
*,mach_msg_header_t
*);
3429 extern kern_return_t
exception_raise(
3430 mach_port_t
,mach_port_t
,mach_port_t
,
3431 exception_type_t
,exception_data_t
,mach_msg_type_number_t
);
3432 extern kern_return_t
exception_raise_state(
3433 mach_port_t
,mach_port_t
,mach_port_t
,
3434 exception_type_t
,exception_data_t
,mach_msg_type_number_t
,
3435 thread_state_flavor_t
*,thread_state_t
,mach_msg_type_number_t
,
3436 thread_state_t
,mach_msg_type_number_t
*);
3437 extern kern_return_t
exception_raise_state_identity(
3438 mach_port_t
,mach_port_t
,mach_port_t
,
3439 exception_type_t
,exception_data_t
,mach_msg_type_number_t
,
3440 thread_state_flavor_t
*,thread_state_t
,mach_msg_type_number_t
,
3441 thread_state_t
,mach_msg_type_number_t
*);
3444 #define MAX_EXCEPTION_PORTS 16
3447 mach_msg_type_number_t count
;
3448 exception_mask_t masks
[MAX_EXCEPTION_PORTS
];
3449 exception_handler_t ports
[MAX_EXCEPTION_PORTS
];
3450 exception_behavior_t behaviors
[MAX_EXCEPTION_PORTS
];
3451 thread_state_flavor_t flavors
[MAX_EXCEPTION_PORTS
];
3455 mach_port_t exception
;
3456 #if defined(THREADS)
3462 mach_msg_header_t head
;
3466 GC_MP_NORMAL
, GC_MP_DISCARDING
, GC_MP_STOPPED
3467 } GC_mprotect_state_t
;
3469 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3470 but it isn't documented. Use the source and see if they
3475 /* These values are only used on the reply port */
3478 #if defined(THREADS)
3480 GC_mprotect_state_t GC_mprotect_state
;
3482 /* The following should ONLY be called when the world is stopped */
3483 static void GC_mprotect_thread_notify(mach_msg_id_t id
) {
3486 mach_msg_trailer_t trailer
;
3488 mach_msg_return_t r
;
3490 buf
.msg
.head
.msgh_bits
=
3491 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND
,0);
3492 buf
.msg
.head
.msgh_size
= sizeof(buf
.msg
);
3493 buf
.msg
.head
.msgh_remote_port
= GC_ports
.exception
;
3494 buf
.msg
.head
.msgh_local_port
= MACH_PORT_NULL
;
3495 buf
.msg
.head
.msgh_id
= id
;
3499 MACH_SEND_MSG
|MACH_RCV_MSG
|MACH_RCV_LARGE
,
3503 MACH_MSG_TIMEOUT_NONE
,
3505 if(r
!= MACH_MSG_SUCCESS
)
3506 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3507 if(buf
.msg
.head
.msgh_id
!= ID_ACK
)
3508 ABORT("invalid ack in GC_mprotect_thread_notify");
3511 /* Should only be called by the mprotect thread */
3512 static void GC_mprotect_thread_reply() {
3514 mach_msg_return_t r
;
3516 msg
.head
.msgh_bits
=
3517 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND
,0);
3518 msg
.head
.msgh_size
= sizeof(msg
);
3519 msg
.head
.msgh_remote_port
= GC_ports
.reply
;
3520 msg
.head
.msgh_local_port
= MACH_PORT_NULL
;
3521 msg
.head
.msgh_id
= ID_ACK
;
3529 MACH_MSG_TIMEOUT_NONE
,
3531 if(r
!= MACH_MSG_SUCCESS
)
3532 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3535 void GC_mprotect_stop() {
3536 GC_mprotect_thread_notify(ID_STOP
);
3538 void GC_mprotect_resume() {
3539 GC_mprotect_thread_notify(ID_RESUME
);
3542 #else /* !THREADS */
3543 /* The compiler should optimize away any GC_mprotect_state computations */
3544 #define GC_mprotect_state GC_MP_NORMAL
3547 static void *GC_mprotect_thread(void *arg
) {
3548 mach_msg_return_t r
;
3549 /* These two structures contain some private kernel data. We don't need to
3550 access any of it so we don't bother defining a proper struct. The
3551 correct definitions are in the xnu source code. */
3553 mach_msg_header_t head
;
3557 mach_msg_header_t head
;
3558 mach_msg_body_t msgh_body
;
3564 GC_darwin_register_mach_handler_thread(mach_thread_self());
3569 MACH_RCV_MSG
|MACH_RCV_LARGE
|
3570 (GC_mprotect_state
== GC_MP_DISCARDING
? MACH_RCV_TIMEOUT
: 0),
3574 GC_mprotect_state
== GC_MP_DISCARDING
? 0 : MACH_MSG_TIMEOUT_NONE
,
3577 id
= r
== MACH_MSG_SUCCESS
? msg
.head
.msgh_id
: -1;
3579 #if defined(THREADS)
3580 if(GC_mprotect_state
== GC_MP_DISCARDING
) {
3581 if(r
== MACH_RCV_TIMED_OUT
) {
3582 GC_mprotect_state
= GC_MP_STOPPED
;
3583 GC_mprotect_thread_reply();
3586 if(r
== MACH_MSG_SUCCESS
&& (id
== ID_STOP
|| id
== ID_RESUME
))
3587 ABORT("out of order mprotect thread request");
3591 if(r
!= MACH_MSG_SUCCESS
) {
3592 GC_err_printf2("mach_msg failed with %d %s\n",
3593 (int)r
,mach_error_string(r
));
3594 ABORT("mach_msg failed");
3598 #if defined(THREADS)
3600 if(GC_mprotect_state
!= GC_MP_NORMAL
)
3601 ABORT("Called mprotect_stop when state wasn't normal");
3602 GC_mprotect_state
= GC_MP_DISCARDING
;
3605 if(GC_mprotect_state
!= GC_MP_STOPPED
)
3606 ABORT("Called mprotect_resume when state wasn't stopped");
3607 GC_mprotect_state
= GC_MP_NORMAL
;
3608 GC_mprotect_thread_reply();
3610 #endif /* THREADS */
3612 /* Handle the message (calls catch_exception_raise) */
3613 if(!exc_server(&msg
.head
,&reply
.head
))
3614 ABORT("exc_server failed");
3615 /* Send the reply */
3619 reply
.head
.msgh_size
,
3622 MACH_MSG_TIMEOUT_NONE
,
3624 if(r
!= MACH_MSG_SUCCESS
) {
3625 /* This will fail if the thread dies, but the thread shouldn't
3627 #ifdef BROKEN_EXCEPTION_HANDLING
3629 "mach_msg failed with %d %s while sending exc reply\n",
3630 (int)r
,mach_error_string(r
));
3632 ABORT("mach_msg failed while sending exception reply");
3641 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3642 be going throught the mach exception handler. However, it seems a SIGBUS is
3643 occasionally sent for some unknown reason. Even more odd, it seems to be
3644 meaningless and safe to ignore. */
3645 #ifdef BROKEN_EXCEPTION_HANDLING
3647 typedef void (* SIG_PF
)();
3648 static SIG_PF GC_old_bus_handler
;
3650 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3651 Even if this doesn't get updated property, it isn't really a problem */
3652 static int GC_sigbus_count
;
3654 static void GC_darwin_sigbus(int num
,siginfo_t
*sip
,void *context
) {
3655 if(num
!= SIGBUS
) ABORT("Got a non-sigbus signal in the sigbus handler");
3657 /* Ugh... some seem safe to ignore, but too many in a row probably means
3658 trouble. GC_sigbus_count is reset for each mach exception that is
3660 if(GC_sigbus_count
>= 8) {
3661 ABORT("Got more than 8 SIGBUSs in a row!");
3664 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3667 #endif /* BROKEN_EXCEPTION_HANDLING */
3669 void GC_dirty_init() {
3673 pthread_attr_t attr
;
3674 exception_mask_t mask
;
3677 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3678 "implementation\n");
3680 # ifdef BROKEN_EXCEPTION_HANDLING
3681 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3682 "exception handling bugs.\n");
3684 GC_dirty_maintained
= TRUE
;
3685 if (GC_page_size
% HBLKSIZE
!= 0) {
3686 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3687 ABORT("Page size not multiple of HBLKSIZE");
3690 GC_task_self
= me
= mach_task_self();
3692 r
= mach_port_allocate(me
,MACH_PORT_RIGHT_RECEIVE
,&GC_ports
.exception
);
3693 if(r
!= KERN_SUCCESS
) ABORT("mach_port_allocate failed (exception port)");
3695 r
= mach_port_insert_right(me
,GC_ports
.exception
,GC_ports
.exception
,
3696 MACH_MSG_TYPE_MAKE_SEND
);
3697 if(r
!= KERN_SUCCESS
)
3698 ABORT("mach_port_insert_right failed (exception port)");
3700 #if defined(THREADS)
3701 r
= mach_port_allocate(me
,MACH_PORT_RIGHT_RECEIVE
,&GC_ports
.reply
);
3702 if(r
!= KERN_SUCCESS
) ABORT("mach_port_allocate failed (reply port)");
3705 /* The exceptions we want to catch */
3706 mask
= EXC_MASK_BAD_ACCESS
;
3708 r
= task_get_exception_ports(
3711 GC_old_exc_ports
.masks
,
3712 &GC_old_exc_ports
.count
,
3713 GC_old_exc_ports
.ports
,
3714 GC_old_exc_ports
.behaviors
,
3715 GC_old_exc_ports
.flavors
3717 if(r
!= KERN_SUCCESS
) ABORT("task_get_exception_ports failed");
3719 r
= task_set_exception_ports(
3724 GC_MACH_THREAD_STATE_FLAVOR
3726 if(r
!= KERN_SUCCESS
) ABORT("task_set_exception_ports failed");
3728 if(pthread_attr_init(&attr
) != 0) ABORT("pthread_attr_init failed");
3729 if(pthread_attr_setdetachstate(&attr
,PTHREAD_CREATE_DETACHED
) != 0)
3730 ABORT("pthread_attr_setdetachedstate failed");
3732 # undef pthread_create
3733 /* This will call the real pthread function, not our wrapper */
3734 if(pthread_create(&thread
,&attr
,GC_mprotect_thread
,NULL
) != 0)
3735 ABORT("pthread_create failed");
3736 pthread_attr_destroy(&attr
);
3738 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3739 #ifdef BROKEN_EXCEPTION_HANDLING
3741 struct sigaction sa
, oldsa
;
3742 sa
.sa_handler
= (SIG_PF
)GC_darwin_sigbus
;
3743 sigemptyset(&sa
.sa_mask
);
3744 sa
.sa_flags
= SA_RESTART
|SA_SIGINFO
;
3745 if(sigaction(SIGBUS
,&sa
,&oldsa
) < 0) ABORT("sigaction");
3746 GC_old_bus_handler
= (SIG_PF
)oldsa
.sa_handler
;
3747 if (GC_old_bus_handler
!= SIG_DFL
) {
3749 GC_err_printf0("Replaced other SIGBUS handler\n");
3753 #endif /* BROKEN_EXCEPTION_HANDLING */
3756 /* The source code for Apple's GDB was used as a reference for the exception
3757 forwarding code. This code is similar to be GDB code only because there is
3758 only one way to do it. */
3759 static kern_return_t
GC_forward_exception(
3762 exception_type_t exception
,
3763 exception_data_t data
,
3764 mach_msg_type_number_t data_count
3769 exception_behavior_t behavior
;
3770 thread_state_flavor_t flavor
;
3772 thread_state_t thread_state
;
3773 mach_msg_type_number_t thread_state_count
= THREAD_STATE_MAX
;
3775 for(i
=0;i
<GC_old_exc_ports
.count
;i
++)
3776 if(GC_old_exc_ports
.masks
[i
] & (1 << exception
))
3778 if(i
==GC_old_exc_ports
.count
) ABORT("No handler for exception!");
3780 port
= GC_old_exc_ports
.ports
[i
];
3781 behavior
= GC_old_exc_ports
.behaviors
[i
];
3782 flavor
= GC_old_exc_ports
.flavors
[i
];
3784 if(behavior
!= EXCEPTION_DEFAULT
) {
3785 r
= thread_get_state(thread
,flavor
,thread_state
,&thread_state_count
);
3786 if(r
!= KERN_SUCCESS
)
3787 ABORT("thread_get_state failed in forward_exception");
3791 case EXCEPTION_DEFAULT
:
3792 r
= exception_raise(port
,thread
,task
,exception
,data
,data_count
);
3794 case EXCEPTION_STATE
:
3795 r
= exception_raise_state(port
,thread
,task
,exception
,data
,
3796 data_count
,&flavor
,thread_state
,thread_state_count
,
3797 thread_state
,&thread_state_count
);
3799 case EXCEPTION_STATE_IDENTITY
:
3800 r
= exception_raise_state_identity(port
,thread
,task
,exception
,data
,
3801 data_count
,&flavor
,thread_state
,thread_state_count
,
3802 thread_state
,&thread_state_count
);
3805 r
= KERN_FAILURE
; /* make gcc happy */
3806 ABORT("forward_exception: unknown behavior");
3810 if(behavior
!= EXCEPTION_DEFAULT
) {
3811 r
= thread_set_state(thread
,flavor
,thread_state
,thread_state_count
);
3812 if(r
!= KERN_SUCCESS
)
3813 ABORT("thread_set_state failed in forward_exception");
3819 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3821 /* This violates the namespace rules but there isn't anything that can be done
3822 about it. The exception handling stuff is hard coded to call this */
3824 catch_exception_raise(
3825 mach_port_t exception_port
,mach_port_t thread
,mach_port_t task
,
3826 exception_type_t exception
,exception_data_t code
,
3827 mach_msg_type_number_t code_count
3833 # if defined(POWERPC)
3834 # if CPP_WORDSZ == 32
3835 thread_state_flavor_t flavor
= PPC_EXCEPTION_STATE
;
3836 mach_msg_type_number_t exc_state_count
= PPC_EXCEPTION_STATE_COUNT
;
3837 ppc_exception_state_t exc_state
;
3839 thread_state_flavor_t flavor
= PPC_EXCEPTION_STATE64
;
3840 mach_msg_type_number_t exc_state_count
= PPC_EXCEPTION_STATE64_COUNT
;
3841 ppc_exception_state64_t exc_state
;
3843 # elif defined(I386)
3844 thread_state_flavor_t flavor
= i386_EXCEPTION_STATE
;
3845 mach_msg_type_number_t exc_state_count
= i386_EXCEPTION_STATE_COUNT
;
3846 i386_exception_state_t exc_state
;
3848 # error FIXME for non-ppc darwin
3852 if(exception
!= EXC_BAD_ACCESS
|| code
[0] != KERN_PROTECTION_FAILURE
) {
3853 #ifdef DEBUG_EXCEPTION_HANDLING
3854 /* We aren't interested, pass it on to the old handler */
3855 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3857 code_count
> 0 ? code
[0] : -1,
3858 code_count
> 1 ? code
[1] : -1);
3863 r
= thread_get_state(thread
,flavor
,
3864 (natural_t
*)&exc_state
,&exc_state_count
);
3865 if(r
!= KERN_SUCCESS
) {
3866 /* The thread is supposed to be suspended while the exception handler
3867 is called. This shouldn't fail. */
3868 #ifdef BROKEN_EXCEPTION_HANDLING
3869 GC_err_printf0("thread_get_state failed in "
3870 "catch_exception_raise\n");
3871 return KERN_SUCCESS
;
3873 ABORT("thread_get_state failed in catch_exception_raise");
3877 /* This is the address that caused the fault */
3878 #if defined(POWERPC)
3879 addr
= (char*) exc_state
.dar
;
3880 #elif defined (I386)
3881 addr
= (char*) exc_state
.faultvaddr
;
3883 # error FIXME for non POWERPC/I386
3886 if((HDR(addr
)) == 0) {
3887 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3888 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3889 a bunch in a row before doing anything about it. If a "real" fault
3890 ever occurres it'll just keep faulting over and over and we'll hit
3891 the limit pretty quickly. */
3892 #ifdef BROKEN_EXCEPTION_HANDLING
3893 static char *last_fault
;
3894 static int last_fault_count
;
3896 if(addr
!= last_fault
) {
3898 last_fault_count
= 0;
3900 if(++last_fault_count
< 32) {
3901 if(last_fault_count
== 1)
3903 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3905 return KERN_SUCCESS
;
3908 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr
);
3909 /* Can't pass it along to the signal handler because that is
3910 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3911 signals don't always work too well from the exception handler. */
3912 GC_err_printf0("Aborting\n");
3914 #else /* BROKEN_EXCEPTION_HANDLING */
3915 /* Pass it along to the next exception handler
3916 (which should call SIGBUS/SIGSEGV) */
3918 #endif /* !BROKEN_EXCEPTION_HANDLING */
3921 #ifdef BROKEN_EXCEPTION_HANDLING
3922 /* Reset the number of consecutive SIGBUSs */
3923 GC_sigbus_count
= 0;
3926 if(GC_mprotect_state
== GC_MP_NORMAL
) { /* common case */
3927 h
= (struct hblk
*)((word
)addr
& ~(GC_page_size
-1));
3928 UNPROTECT(h
, GC_page_size
);
3929 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
3930 register int index
= PHT_HASH(h
+i
);
3931 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
3933 } else if(GC_mprotect_state
== GC_MP_DISCARDING
) {
3934 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3935 when we're just going to PROTECT() it again later. The thread
3936 will just fault again once it resumes */
3938 /* Shouldn't happen, i don't think */
3939 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3942 return KERN_SUCCESS
;
3946 /* These should never be called, but just in case... */
3947 kern_return_t
catch_exception_raise_state(mach_port_name_t exception_port
,
3948 int exception
, exception_data_t code
, mach_msg_type_number_t codeCnt
,
3949 int flavor
, thread_state_t old_state
, int old_stateCnt
,
3950 thread_state_t new_state
, int new_stateCnt
)
3952 ABORT("catch_exception_raise_state");
3953 return(KERN_INVALID_ARGUMENT
);
3955 kern_return_t
catch_exception_raise_state_identity(
3956 mach_port_name_t exception_port
, mach_port_t thread
, mach_port_t task
,
3957 int exception
, exception_data_t code
, mach_msg_type_number_t codeCnt
,
3958 int flavor
, thread_state_t old_state
, int old_stateCnt
,
3959 thread_state_t new_state
, int new_stateCnt
)
3961 ABORT("catch_exception_raise_state_identity");
3962 return(KERN_INVALID_ARGUMENT
);
3966 #endif /* DARWIN && MPROTECT_VDB */
3968 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3969 int GC_incremental_protection_needs()
3971 return GC_PROTECTS_NONE
;
3973 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3976 * Call stack save code for debugging.
3977 * Should probably be in mach_dep.c, but that requires reorganization.
3980 /* I suspect the following works for most X86 *nix variants, so */
3981 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3982 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3983 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3984 # include <features.h>
3987 struct frame
*fr_savfp
;
3989 long fr_arg
[NARGS
]; /* All the arguments go here. */
3995 # include <features.h>
4000 struct frame
*fr_savfp
;
4009 # if defined(SUNOS4)
4010 # include <machine/frame.h>
4012 # if defined (DRSNX)
4013 # include <sys/sparc/frame.h>
4015 # if defined(OPENBSD)
4018 # if defined(FREEBSD) || defined(NETBSD)
4019 # include <machine/frame.h>
4021 # include <sys/frame.h>
4028 --> We only know how to to get the first
6 arguments
4032 #ifdef NEED_CALLINFO
4033 /* Fill in the pc and argument information for up to NFRAMES of my */
4034 /* callers. Ignore my frame and my callers frame. */
4037 # include <unistd.h>
4040 #endif /* NEED_CALLINFO */
4042 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4043 # include <execinfo.h>
4046 #ifdef SAVE_CALL_CHAIN
4048 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4049 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4051 #ifdef REDIRECT_MALLOC
4052 /* Deal with possible malloc calls in backtrace by omitting */
4053 /* the infinitely recursing backtrace. */
4055 __thread
/* If your compiler doesn't understand this */
4056 /* you could use something like pthread_getspecific. */
4058 GC_in_save_callers
= FALSE
;
4061 void GC_save_callers (info
)
4062 struct callinfo info
[NFRAMES
];
4064 void * tmp_info
[NFRAMES
+ 1];
4066 # define IGNORE_FRAMES 1
4068 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4069 /* points to our own frame. */
4070 # ifdef REDIRECT_MALLOC
4071 if (GC_in_save_callers
) {
4072 info
[0].ci_pc
= (word
)(&GC_save_callers
);
4073 for (i
= 1; i
< NFRAMES
; ++i
) info
[i
].ci_pc
= 0;
4076 GC_in_save_callers
= TRUE
;
4078 GC_ASSERT(sizeof(struct callinfo
) == sizeof(void *));
4079 npcs
= backtrace((void **)tmp_info
, NFRAMES
+ IGNORE_FRAMES
);
4080 BCOPY(tmp_info
+IGNORE_FRAMES
, info
, (npcs
- IGNORE_FRAMES
) * sizeof(void *));
4081 for (i
= npcs
- IGNORE_FRAMES
; i
< NFRAMES
; ++i
) info
[i
].ci_pc
= 0;
4082 # ifdef REDIRECT_MALLOC
4083 GC_in_save_callers
= FALSE
;
4087 #else /* No builtin backtrace; do it ourselves */
4089 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4090 # define FR_SAVFP fr_fp
4091 # define FR_SAVPC fr_pc
4093 # define FR_SAVFP fr_savfp
4094 # define FR_SAVPC fr_savpc
4097 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4103 void GC_save_callers (info
)
4104 struct callinfo info
[NFRAMES
];
4106 struct frame
*frame
;
4110 /* We assume this is turned on only with gcc as the compiler. */
4111 asm("movl %%ebp,%0" : "=r"(frame
));
4114 frame
= (struct frame
*) GC_save_regs_in_stack ();
4115 fp
= (struct frame
*)((long) frame
-> FR_SAVFP
+ BIAS
);
4118 for (; (!(fp HOTTER_THAN frame
) && !(GC_stackbottom
HOTTER_THAN (ptr_t
)fp
)
4119 && (nframes
< NFRAMES
));
4120 fp
= (struct frame
*)((long) fp
-> FR_SAVFP
+ BIAS
), nframes
++) {
4123 info
[nframes
].ci_pc
= fp
->FR_SAVPC
;
4125 for (i
= 0; i
< NARGS
; i
++) {
4126 info
[nframes
].ci_arg
[i
] = ~(fp
->fr_arg
[i
]);
4128 # endif /* NARGS > 0 */
4130 if (nframes
< NFRAMES
) info
[nframes
].ci_pc
= 0;
4133 #endif /* No builtin backtrace */
4135 #endif /* SAVE_CALL_CHAIN */
4137 #ifdef NEED_CALLINFO
4139 /* Print info to stderr. We do NOT hold the allocation lock */
4140 void GC_print_callers (info
)
4141 struct callinfo info
[NFRAMES
];
4144 static int reentry_count
= 0;
4145 GC_bool stop
= FALSE
;
4147 /* FIXME: This should probably use a different lock, so that we */
4148 /* become callable with or without the allocation lock. */
4154 GC_err_printf0("\tCaller at allocation:\n");
4156 GC_err_printf0("\tCall chain at allocation:\n");
4158 for (i
= 0; i
< NFRAMES
&& !stop
; i
++) {
4159 if (info
[i
].ci_pc
== 0) break;
4164 GC_err_printf0("\t\targs: ");
4165 for (j
= 0; j
< NARGS
; j
++) {
4166 if (j
!= 0) GC_err_printf0(", ");
4167 GC_err_printf2("%d (0x%X)", ~(info
[i
].ci_arg
[j
]),
4168 ~(info
[i
].ci_arg
[j
]));
4170 GC_err_printf0("\n");
4173 if (reentry_count
> 1) {
4174 /* We were called during an allocation during */
4175 /* a previous GC_print_callers call; punt. */
4176 GC_err_printf1("\t\t##PC##= 0x%lx\n", info
[i
].ci_pc
);
4183 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4184 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4186 backtrace_symbols((void **)(&(info
[i
].ci_pc
)), 1);
4187 char *name
= sym_name
[0];
4191 sprintf(buf
, "##PC##= 0x%lx", info
[i
].ci_pc
);
4193 # if defined(LINUX) && !defined(SMALL_CONFIG)
4194 /* Try for a line number. */
4197 static char exe_name
[EXE_SZ
];
4199 char cmd_buf
[CMD_SZ
];
4200 # define RESULT_SZ 200
4201 static char result_buf
[RESULT_SZ
];
4204 # define PRELOAD_SZ 200
4205 char preload_buf
[PRELOAD_SZ
];
4206 static GC_bool found_exe_name
= FALSE
;
4207 static GC_bool will_fail
= FALSE
;
4209 /* Try to get it via a hairy and expensive scheme. */
4210 /* First we get the name of the executable: */
4211 if (will_fail
) goto out
;
4212 if (!found_exe_name
) {
4213 ret_code
= readlink("/proc/self/exe", exe_name
, EXE_SZ
);
4214 if (ret_code
< 0 || ret_code
>= EXE_SZ
4215 || exe_name
[0] != '/') {
4216 will_fail
= TRUE
; /* Dont try again. */
4219 exe_name
[ret_code
] = '\0';
4220 found_exe_name
= TRUE
;
4222 /* Then we use popen to start addr2line -e <exe> <addr> */
4223 /* There are faster ways to do this, but hopefully this */
4224 /* isn't time critical. */
4225 sprintf(cmd_buf
, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name
,
4226 (unsigned long)info
[i
].ci_pc
);
4227 old_preload
= getenv ("LD_PRELOAD");
4228 if (0 != old_preload
) {
4229 if (strlen (old_preload
) >= PRELOAD_SZ
) {
4233 strcpy (preload_buf
, old_preload
);
4234 unsetenv ("LD_PRELOAD");
4236 pipe
= popen(cmd_buf
, "r");
4237 if (0 != old_preload
4238 && 0 != setenv ("LD_PRELOAD", preload_buf
, 0)) {
4239 WARN("Failed to reset LD_PRELOAD\n", 0);
4242 || (result_len
= fread(result_buf
, 1, RESULT_SZ
- 1, pipe
))
4244 if (pipe
!= NULL
) pclose(pipe
);
4248 if (result_buf
[result_len
- 1] == '\n') --result_len
;
4249 result_buf
[result_len
] = 0;
4250 if (result_buf
[0] == '?'
4251 || result_buf
[result_len
-2] == ':'
4252 && result_buf
[result_len
-1] == '0') {
4256 /* Get rid of embedded newline, if any. Test for "main" */
4258 char * nl
= strchr(result_buf
, '\n');
4259 if (nl
!= NULL
&& nl
< result_buf
+ result_len
) {
4262 if (strncmp(result_buf
, "main", nl
- result_buf
) == 0) {
4266 if (result_len
< RESULT_SZ
- 25) {
4267 /* Add in hex address */
4268 sprintf(result_buf
+ result_len
, " [0x%lx]",
4269 (unsigned long)info
[i
].ci_pc
);
4276 GC_err_printf1("\t\t%s\n", name
);
4277 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4278 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4279 free(sym_name
); /* May call GC_free; that's OK */
4288 #endif /* NEED_CALLINFO */
4292 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4294 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4295 addresses in FIND_LEAK output. */
4297 static word
dump_maps(char *maps
)
4299 GC_err_write(maps
, strlen(maps
));
4303 void GC_print_address_map()
4305 GC_err_printf0("---------- Begin address map ----------\n");
4306 GC_apply_to_maps(dump_maps
);
4307 GC_err_printf0("---------- End address map ----------\n");