2010-04-09 Rodrigo Kumpera <rkumpera@novell.com>
[mono.git] / libgc / os_dep.c
blob3a4b8a006338990cd3c02700d29314bf61e423f5
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE) || defined (SN_TARGET_PS3)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 #endif
129 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
130 # include <sys/types.h>
131 # include <sys/mman.h>
132 # include <sys/stat.h>
133 # include <errno.h>
134 #endif
136 #ifdef UNIX_LIKE
137 # include <fcntl.h>
138 #endif
140 #if (defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX) || defined(NETBSD)) && !defined(FREEBSD)
141 # ifdef SUNOS5SIGS
142 # include <sys/siginfo.h>
143 # endif
144 /* Define SETJMP and friends to be the version that restores */
145 /* the signal mask. */
146 # define SETJMP(env) sigsetjmp(env, 1)
147 # define LONGJMP(env, val) siglongjmp(env, val)
148 # define JMP_BUF sigjmp_buf
149 #else
150 # define SETJMP(env) setjmp(env)
151 # define LONGJMP(env, val) longjmp(env, val)
152 # define JMP_BUF jmp_buf
153 #endif
155 #ifdef DARWIN
156 /* for get_etext and friends */
157 #include <mach-o/getsect.h>
158 #endif
160 #ifdef DJGPP
161 /* Apparently necessary for djgpp 2.01. May cause problems with */
162 /* other versions. */
163 typedef long unsigned int caddr_t;
164 #endif
166 #ifdef PCR
167 # include "il/PCR_IL.h"
168 # include "th/PCR_ThCtl.h"
169 # include "mm/PCR_MM.h"
170 #endif
172 #if !defined(NO_EXECUTE_PERMISSION)
173 # define OPT_PROT_EXEC PROT_EXEC
174 #else
175 # define OPT_PROT_EXEC 0
176 #endif
178 #if defined(LINUX) && \
179 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
181 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
182 /* and/or to find the register backing store base (IA64). Do it once */
183 /* here. */
185 #define READ read
187 /* Repeatedly perform a read call until the buffer is filled or */
188 /* we encounter EOF. */
189 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
191 ssize_t num_read = 0;
192 ssize_t result;
194 while (num_read < count) {
195 result = READ(fd, buf + num_read, count - num_read);
196 if (result < 0) return result;
197 if (result == 0) break;
198 num_read += result;
200 return num_read;
204 * Apply fn to a buffer containing the contents of /proc/self/maps.
205 * Return the result of fn or, if we failed, 0.
206 * We currently do nothing to /proc/self/maps other than simply read
207 * it. This code could be simplified if we could determine its size
208 * ahead of time.
211 word GC_apply_to_maps(word (*fn)(char *))
213 int f;
214 int result;
215 size_t maps_size = 4000; /* Initial guess. */
216 static char init_buf[1];
217 static char *maps_buf = init_buf;
218 static size_t maps_buf_sz = 1;
220 /* Read /proc/self/maps, growing maps_buf as necessary. */
221 /* Note that we may not allocate conventionally, and */
222 /* thus can't use stdio. */
223 do {
224 if (maps_size >= maps_buf_sz) {
225 /* Grow only by powers of 2, since we leak "too small" buffers. */
226 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
227 maps_buf = GC_scratch_alloc(maps_buf_sz);
228 if (maps_buf == 0) return 0;
230 f = open("/proc/self/maps", O_RDONLY);
231 if (-1 == f) return 0;
232 maps_size = 0;
233 do {
234 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
235 if (result <= 0) return 0;
236 maps_size += result;
237 } while (result == maps_buf_sz-1);
238 close(f);
239 } while (maps_size >= maps_buf_sz);
240 maps_buf[maps_size] = '\0';
242 /* Apply fn to result. */
243 return fn(maps_buf);
246 #endif /* Need GC_apply_to_maps */
248 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
250 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
251 // locate all writable data segments that belong to shared libraries.
252 // The format of one of these entries and the fields we care about
253 // is as follows:
254 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
255 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
256 // start end prot maj_dev
258 // Note that since about auguat 2003 kernels, the columns no longer have
259 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
260 // anywhere, which is safer anyway.
264 * Assign various fields of the first line in buf_ptr to *start, *end,
265 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
267 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
268 char *prot_buf, unsigned int *maj_dev)
270 char *start_start, *end_start, *prot_start, *maj_dev_start;
271 char *p;
272 char *endp;
274 if (buf_ptr == NULL || *buf_ptr == '\0') {
275 return NULL;
278 p = buf_ptr;
279 while (isspace(*p)) ++p;
280 start_start = p;
281 GC_ASSERT(isxdigit(*start_start));
282 *start = strtoul(start_start, &endp, 16); p = endp;
283 GC_ASSERT(*p=='-');
285 ++p;
286 end_start = p;
287 GC_ASSERT(isxdigit(*end_start));
288 *end = strtoul(end_start, &endp, 16); p = endp;
289 GC_ASSERT(isspace(*p));
291 while (isspace(*p)) ++p;
292 prot_start = p;
293 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
294 memcpy(prot_buf, prot_start, 4);
295 prot_buf[4] = '\0';
296 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
297 /* Skip past protection field to offset field */
298 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
299 GC_ASSERT(isxdigit(*p));
300 /* Skip past offset field, which we ignore */
301 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
302 maj_dev_start = p;
303 GC_ASSERT(isxdigit(*maj_dev_start));
304 *maj_dev = strtoul(maj_dev_start, NULL, 16);
307 while (*p && *p++ != '\n');
309 return p;
312 #endif /* Need to parse /proc/self/maps. */
314 #if defined(SEARCH_FOR_DATA_START)
315 /* The I386 case can be handled without a search. The Alpha case */
316 /* used to be handled differently as well, but the rules changed */
317 /* for recent Linux versions. This seems to be the easiest way to */
318 /* cover all versions. */
320 # ifdef LINUX
321 /* Some Linux distributions arrange to define __data_start. Some */
322 /* define data_start as a weak symbol. The latter is technically */
323 /* broken, since the user program may define data_start, in which */
324 /* case we lose. Nonetheless, we try both, prefering __data_start. */
325 /* We assume gcc-compatible pragmas. */
326 # pragma weak __data_start
327 extern int __data_start[];
328 # pragma weak data_start
329 extern int data_start[];
330 # endif /* LINUX */
331 extern int _end[];
333 ptr_t GC_data_start;
335 void GC_init_linux_data_start()
337 extern ptr_t GC_find_limit();
339 if (GC_no_dls)
341 * Not needed, avoids the SIGSEGV caused by GC_find_limit which
342 * complicates debugging.
344 return;
346 # ifdef LINUX
347 /* Try the easy approaches first: */
348 if ((ptr_t)__data_start != 0) {
349 GC_data_start = (ptr_t)(__data_start);
350 return;
352 if ((ptr_t)data_start != 0) {
353 GC_data_start = (ptr_t)(data_start);
354 return;
356 # endif /* LINUX */
357 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
359 #endif
361 # ifdef ECOS
363 # ifndef ECOS_GC_MEMORY_SIZE
364 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
365 # endif /* ECOS_GC_MEMORY_SIZE */
367 // setjmp() function, as described in ANSI para 7.6.1.1
368 #undef SETJMP
369 #define SETJMP( __env__ ) hal_setjmp( __env__ )
371 // FIXME: This is a simple way of allocating memory which is
372 // compatible with ECOS early releases. Later releases use a more
373 // sophisticated means of allocating memory than this simple static
374 // allocator, but this method is at least bound to work.
375 static char memory[ECOS_GC_MEMORY_SIZE];
376 static char *brk = memory;
378 static void *tiny_sbrk(ptrdiff_t increment)
380 void *p = brk;
382 brk += increment;
384 if (brk > memory + sizeof memory)
386 brk -= increment;
387 return NULL;
390 return p;
392 #define sbrk tiny_sbrk
393 # endif /* ECOS */
395 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
396 ptr_t GC_data_start;
398 void GC_init_netbsd_elf()
400 extern ptr_t GC_find_limit();
401 extern char **environ;
402 /* This may need to be environ, without the underscore, for */
403 /* some versions. */
404 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
406 #endif
408 # ifdef OS2
410 # include <stddef.h>
412 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
414 struct exe_hdr {
415 unsigned short magic_number;
416 unsigned short padding[29];
417 long new_exe_offset;
420 #define E_MAGIC(x) (x).magic_number
421 #define EMAGIC 0x5A4D
422 #define E_LFANEW(x) (x).new_exe_offset
424 struct e32_exe {
425 unsigned char magic_number[2];
426 unsigned char byte_order;
427 unsigned char word_order;
428 unsigned long exe_format_level;
429 unsigned short cpu;
430 unsigned short os;
431 unsigned long padding1[13];
432 unsigned long object_table_offset;
433 unsigned long object_count;
434 unsigned long padding2[31];
437 #define E32_MAGIC1(x) (x).magic_number[0]
438 #define E32MAGIC1 'L'
439 #define E32_MAGIC2(x) (x).magic_number[1]
440 #define E32MAGIC2 'X'
441 #define E32_BORDER(x) (x).byte_order
442 #define E32LEBO 0
443 #define E32_WORDER(x) (x).word_order
444 #define E32LEWO 0
445 #define E32_CPU(x) (x).cpu
446 #define E32CPU286 1
447 #define E32_OBJTAB(x) (x).object_table_offset
448 #define E32_OBJCNT(x) (x).object_count
450 struct o32_obj {
451 unsigned long size;
452 unsigned long base;
453 unsigned long flags;
454 unsigned long pagemap;
455 unsigned long mapsize;
456 unsigned long reserved;
459 #define O32_FLAGS(x) (x).flags
460 #define OBJREAD 0x0001L
461 #define OBJWRITE 0x0002L
462 #define OBJINVALID 0x0080L
463 #define O32_SIZE(x) (x).size
464 #define O32_BASE(x) (x).base
466 # else /* IBM's compiler */
468 /* A kludge to get around what appears to be a header file bug */
469 # ifndef WORD
470 # define WORD unsigned short
471 # endif
472 # ifndef DWORD
473 # define DWORD unsigned long
474 # endif
476 # define EXE386 1
477 # include <newexe.h>
478 # include <exe386.h>
480 # endif /* __IBMC__ */
482 # define INCL_DOSEXCEPTIONS
483 # define INCL_DOSPROCESS
484 # define INCL_DOSERRORS
485 # define INCL_DOSMODULEMGR
486 # define INCL_DOSMEMMGR
487 # include <os2.h>
490 /* Disable and enable signals during nontrivial allocations */
492 void GC_disable_signals(void)
494 ULONG nest;
496 DosEnterMustComplete(&nest);
497 if (nest != 1) ABORT("nested GC_disable_signals");
500 void GC_enable_signals(void)
502 ULONG nest;
504 DosExitMustComplete(&nest);
505 if (nest != 0) ABORT("GC_enable_signals");
509 # else
511 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
512 && !defined(MSWINCE) \
513 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
514 && !defined(NOSYS) && !defined(ECOS) && !defined(SN_TARGET_PS3)
516 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
517 /* Use the traditional BSD interface */
518 # define SIGSET_T int
519 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
520 # define SIG_FILL(set) (set) = 0x7fffffff
521 /* Setting the leading bit appears to provoke a bug in some */
522 /* longjmp implementations. Most systems appear not to have */
523 /* a signal 32. */
524 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
525 # else
526 /* Use POSIX/SYSV interface */
527 # define SIGSET_T sigset_t
528 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
529 # define SIG_FILL(set) sigfillset(&set)
530 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
531 # endif
533 static GC_bool mask_initialized = FALSE;
535 static SIGSET_T new_mask;
537 static SIGSET_T old_mask;
539 static SIGSET_T dummy;
541 #if defined(PRINTSTATS) && !defined(THREADS)
542 # define CHECK_SIGNALS
543 int GC_sig_disabled = 0;
544 #endif
546 void GC_disable_signals()
548 if (!mask_initialized) {
549 SIG_FILL(new_mask);
551 SIG_DEL(new_mask, SIGSEGV);
552 SIG_DEL(new_mask, SIGILL);
553 SIG_DEL(new_mask, SIGQUIT);
554 # ifdef SIGBUS
555 SIG_DEL(new_mask, SIGBUS);
556 # endif
557 # ifdef SIGIOT
558 SIG_DEL(new_mask, SIGIOT);
559 # endif
560 # ifdef SIGEMT
561 SIG_DEL(new_mask, SIGEMT);
562 # endif
563 # ifdef SIGTRAP
564 SIG_DEL(new_mask, SIGTRAP);
565 # endif
566 mask_initialized = TRUE;
568 # ifdef CHECK_SIGNALS
569 if (GC_sig_disabled != 0) ABORT("Nested disables");
570 GC_sig_disabled++;
571 # endif
572 SIGSETMASK(old_mask,new_mask);
575 void GC_enable_signals()
577 # ifdef CHECK_SIGNALS
578 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
579 GC_sig_disabled--;
580 # endif
581 SIGSETMASK(dummy,old_mask);
584 # endif /* !PCR */
586 # endif /*!OS/2 */
588 /* Ivan Demakov: simplest way (to me) */
589 #if defined (DOS4GW)
590 void GC_disable_signals() { }
591 void GC_enable_signals() { }
592 #endif
594 /* Find the page size */
595 word GC_page_size;
597 # if defined(MSWIN32) || defined(MSWINCE)
598 void GC_setpagesize()
600 GetSystemInfo(&GC_sysinfo);
601 GC_page_size = GC_sysinfo.dwPageSize;
604 # else
605 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
606 || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
607 void GC_setpagesize()
609 GC_page_size = GETPAGESIZE();
611 # else
612 /* It's acceptable to fake it. */
613 void GC_setpagesize()
615 GC_page_size = HBLKSIZE;
617 # endif
618 # endif
621 * Find the base of the stack.
622 * Used only in single-threaded environment.
623 * With threads, GC_mark_roots needs to know how to do this.
624 * Called with allocator lock held.
626 # if defined(MSWIN32) || defined(MSWINCE)
627 # define is_writable(prot) ((prot) == PAGE_READWRITE \
628 || (prot) == PAGE_WRITECOPY \
629 || (prot) == PAGE_EXECUTE_READWRITE \
630 || (prot) == PAGE_EXECUTE_WRITECOPY)
631 /* Return the number of bytes that are writable starting at p. */
632 /* The pointer p is assumed to be page aligned. */
633 /* If base is not 0, *base becomes the beginning of the */
634 /* allocation region containing p. */
635 word GC_get_writable_length(ptr_t p, ptr_t *base)
637 MEMORY_BASIC_INFORMATION buf;
638 word result;
639 word protect;
641 result = VirtualQuery(p, &buf, sizeof(buf));
642 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
643 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
644 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
645 if (!is_writable(protect)) {
646 return(0);
648 if (buf.State != MEM_COMMIT) return(0);
649 return(buf.RegionSize);
652 ptr_t GC_get_stack_base()
654 int dummy;
655 ptr_t sp = (ptr_t)(&dummy);
656 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
657 word size = GC_get_writable_length(trunc_sp, 0);
659 return(trunc_sp + size);
663 # endif /* MS Windows */
665 # ifdef BEOS
666 # include <kernel/OS.h>
667 ptr_t GC_get_stack_base(){
668 thread_info th;
669 get_thread_info(find_thread(NULL),&th);
670 return th.stack_end;
672 # endif /* BEOS */
675 # ifdef OS2
677 ptr_t GC_get_stack_base()
679 PTIB ptib;
680 PPIB ppib;
682 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
683 GC_err_printf0("DosGetInfoBlocks failed\n");
684 ABORT("DosGetInfoBlocks failed\n");
686 return((ptr_t)(ptib -> tib_pstacklimit));
689 # endif /* OS2 */
691 # ifdef AMIGA
692 # define GC_AMIGA_SB
693 # include "AmigaOS.c"
694 # undef GC_AMIGA_SB
695 # endif /* AMIGA */
697 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
699 # ifdef __STDC__
700 typedef void (*handler)(int);
701 # else
702 typedef void (*handler)();
703 # endif
705 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
706 || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
707 static struct sigaction old_segv_act;
708 # if defined(IRIX5) || defined(HPUX) \
709 || defined(HURD) || defined(NETBSD)
710 static struct sigaction old_bus_act;
711 # endif
712 # else
713 static handler old_segv_handler, old_bus_handler;
714 # endif
716 # ifdef __STDC__
717 void GC_set_and_save_fault_handler(handler h)
718 # else
719 void GC_set_and_save_fault_handler(h)
720 handler h;
721 # endif
723 # if defined(SUNOS5SIGS) || defined(IRIX5) \
724 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
725 struct sigaction act;
727 act.sa_handler = h;
728 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
729 /* NetBSD bugs. */
730 act.sa_flags = SA_RESTART | SA_NODEFER;
731 # else
732 act.sa_flags = SA_RESTART;
733 # endif
735 (void) sigemptyset(&act.sa_mask);
736 # ifdef GC_IRIX_THREADS
737 /* Older versions have a bug related to retrieving and */
738 /* and setting a handler at the same time. */
739 (void) sigaction(SIGSEGV, 0, &old_segv_act);
740 (void) sigaction(SIGSEGV, &act, 0);
741 (void) sigaction(SIGBUS, 0, &old_bus_act);
742 (void) sigaction(SIGBUS, &act, 0);
743 # else
744 (void) sigaction(SIGSEGV, &act, &old_segv_act);
745 # if defined(IRIX5) \
746 || defined(HPUX) || defined(HURD) || defined(NETBSD)
747 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
748 /* Pthreads doesn't exist under Irix 5.x, so we */
749 /* don't have to worry in the threads case. */
750 (void) sigaction(SIGBUS, &act, &old_bus_act);
751 # endif
752 # endif /* GC_IRIX_THREADS */
753 # else
754 old_segv_handler = signal(SIGSEGV, h);
755 # ifdef SIGBUS
756 old_bus_handler = signal(SIGBUS, h);
757 # endif
758 # endif
760 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
762 # ifdef NEED_FIND_LIMIT
763 /* Some tools to implement HEURISTIC2 */
764 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
765 /* static */ JMP_BUF GC_jmp_buf;
767 /*ARGSUSED*/
768 void GC_fault_handler(sig)
769 int sig;
771 LONGJMP(GC_jmp_buf, 1);
774 void GC_setup_temporary_fault_handler()
776 GC_set_and_save_fault_handler(GC_fault_handler);
779 void GC_reset_fault_handler()
781 # if defined(SUNOS5SIGS) || defined(IRIX5) \
782 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
783 (void) sigaction(SIGSEGV, &old_segv_act, 0);
784 # if defined(IRIX5) \
785 || defined(HPUX) || defined(HURD) || defined(NETBSD)
786 (void) sigaction(SIGBUS, &old_bus_act, 0);
787 # endif
788 # else
789 (void) signal(SIGSEGV, old_segv_handler);
790 # ifdef SIGBUS
791 (void) signal(SIGBUS, old_bus_handler);
792 # endif
793 # endif
796 /* Return the first nonaddressible location > p (up) or */
797 /* the smallest location q s.t. [q,p) is addressable (!up). */
798 /* We assume that p (up) or p-1 (!up) is addressable. */
799 ptr_t GC_find_limit(p, up)
800 ptr_t p;
801 GC_bool up;
803 static VOLATILE ptr_t result;
804 /* Needs to be static, since otherwise it may not be */
805 /* preserved across the longjmp. Can safely be */
806 /* static since it's only called once, with the */
807 /* allocation lock held. */
810 GC_setup_temporary_fault_handler();
811 if (SETJMP(GC_jmp_buf) == 0) {
812 result = (ptr_t)(((word)(p))
813 & ~(MIN_PAGE_SIZE-1));
814 for (;;) {
815 if (up) {
816 result += MIN_PAGE_SIZE;
817 } else {
818 result -= MIN_PAGE_SIZE;
820 GC_noop1((word)(*result));
823 GC_reset_fault_handler();
824 if (!up) {
825 result += MIN_PAGE_SIZE;
827 return(result);
829 # endif
831 #if defined(ECOS) || defined(NOSYS)
832 ptr_t GC_get_stack_base()
834 return STACKBOTTOM;
836 #endif
838 #ifdef HPUX_STACKBOTTOM
840 #include <sys/param.h>
841 #include <sys/pstat.h>
843 ptr_t GC_get_register_stack_base(void)
845 struct pst_vm_status vm_status;
847 int i = 0;
848 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
849 if (vm_status.pst_type == PS_RSESTACK) {
850 return (ptr_t) vm_status.pst_vaddr;
854 /* old way to get the register stackbottom */
855 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
856 & ~(BACKING_STORE_ALIGNMENT - 1));
859 #endif /* HPUX_STACK_BOTTOM */
861 #ifdef LINUX_STACKBOTTOM
863 #include <sys/types.h>
864 #include <sys/stat.h>
866 # define STAT_SKIP 27 /* Number of fields preceding startstack */
867 /* field in /proc/self/stat */
869 #ifdef USE_LIBC_PRIVATES
870 # pragma weak __libc_stack_end
871 extern ptr_t __libc_stack_end;
872 #endif
874 # ifdef IA64
875 /* Try to read the backing store base from /proc/self/maps. */
876 /* We look for the writable mapping with a 0 major device, */
877 /* which is as close to our frame as possible, but below it.*/
878 static word backing_store_base_from_maps(char *maps)
880 char prot_buf[5];
881 char *buf_ptr = maps;
882 word start, end;
883 unsigned int maj_dev;
884 word current_best = 0;
885 word dummy;
887 for (;;) {
888 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
889 if (buf_ptr == NULL) return current_best;
890 if (prot_buf[1] == 'w' && maj_dev == 0) {
891 if (end < (word)(&dummy) && start > current_best) current_best = start;
894 return current_best;
897 static word backing_store_base_from_proc(void)
899 return GC_apply_to_maps(backing_store_base_from_maps);
902 # ifdef USE_LIBC_PRIVATES
903 # pragma weak __libc_ia64_register_backing_store_base
904 extern ptr_t __libc_ia64_register_backing_store_base;
905 # endif
907 ptr_t GC_get_register_stack_base(void)
909 # ifdef USE_LIBC_PRIVATES
910 if (0 != &__libc_ia64_register_backing_store_base
911 && 0 != __libc_ia64_register_backing_store_base) {
912 /* Glibc 2.2.4 has a bug such that for dynamically linked */
913 /* executables __libc_ia64_register_backing_store_base is */
914 /* defined but uninitialized during constructor calls. */
915 /* Hence we check for both nonzero address and value. */
916 return __libc_ia64_register_backing_store_base;
918 # endif
919 word result = backing_store_base_from_proc();
920 if (0 == result) {
921 /* Use dumb heuristics. Works only for default configuration. */
922 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
923 result += BACKING_STORE_ALIGNMENT - 1;
924 result &= ~(BACKING_STORE_ALIGNMENT - 1);
925 /* Verify that it's at least readable. If not, we goofed. */
926 GC_noop1(*(word *)result);
928 return (ptr_t)result;
930 # endif
932 void *GC_set_stackbottom = NULL;
934 ptr_t GC_linux_stack_base(void)
936 /* We read the stack base value from /proc/self/stat. We do this */
937 /* using direct I/O system calls in order to avoid calling malloc */
938 /* in case REDIRECT_MALLOC is defined. */
939 # define STAT_BUF_SIZE 4096
940 # define STAT_READ read
941 /* Should probably call the real read, if read is wrapped. */
942 char stat_buf[STAT_BUF_SIZE];
943 int f;
944 char c;
945 word result = 0;
946 size_t i, buf_offset = 0;
948 /* First try the easy way. This should work for glibc 2.2 */
949 /* This fails in a prelinked ("prelink" command) executable */
950 /* since the correct value of __libc_stack_end never */
951 /* becomes visible to us. The second test works around */
952 /* this. */
953 # ifdef USE_LIBC_PRIVATES
954 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
955 # ifdef IA64
956 /* Some versions of glibc set the address 16 bytes too */
957 /* low while the initialization code is running. */
958 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
959 return __libc_stack_end + 0x10;
960 } /* Otherwise it's not safe to add 16 bytes and we fall */
961 /* back to using /proc. */
962 # else
963 # ifdef SPARC
964 /* Older versions of glibc for 64-bit Sparc do not set
965 * this variable correctly, it gets set to either zero
966 * or one.
968 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
969 return __libc_stack_end;
970 # else
971 return __libc_stack_end;
972 # endif
973 # endif
975 # endif
976 f = open("/proc/self/stat", O_RDONLY);
977 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
978 ABORT("Couldn't read /proc/self/stat");
980 c = stat_buf[buf_offset++];
981 /* Skip the required number of fields. This number is hopefully */
982 /* constant across all Linux implementations. */
983 for (i = 0; i < STAT_SKIP; ++i) {
984 while (isspace(c)) c = stat_buf[buf_offset++];
985 while (!isspace(c)) c = stat_buf[buf_offset++];
987 while (isspace(c)) c = stat_buf[buf_offset++];
988 while (isdigit(c)) {
989 result *= 10;
990 result += c - '0';
991 c = stat_buf[buf_offset++];
993 close(f);
994 if (result < 0x10000000) ABORT("Absurd stack bottom value");
995 return (ptr_t)result;
998 #endif /* LINUX_STACKBOTTOM */
1000 #ifdef FREEBSD_STACKBOTTOM
1002 /* This uses an undocumented sysctl call, but at least one expert */
1003 /* believes it will stay. */
1005 #include <unistd.h>
1006 #include <sys/types.h>
1007 #include <sys/sysctl.h>
1009 ptr_t GC_freebsd_stack_base(void)
1011 int nm[2] = {CTL_KERN, KERN_USRSTACK};
1012 ptr_t base;
1013 size_t len = sizeof(ptr_t);
1014 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1016 if (r) ABORT("Error getting stack base");
1018 return base;
1021 #endif /* FREEBSD_STACKBOTTOM */
1023 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1024 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1026 ptr_t GC_get_stack_base()
1028 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1029 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1030 word dummy;
1031 ptr_t result;
1032 # endif
1034 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1036 # ifdef STACKBOTTOM
1037 return(STACKBOTTOM);
1038 # else
1039 # ifdef HEURISTIC1
1040 # ifdef STACK_GROWS_DOWN
1041 result = (ptr_t)((((word)(&dummy))
1042 + STACKBOTTOM_ALIGNMENT_M1)
1043 & ~STACKBOTTOM_ALIGNMENT_M1);
1044 # else
1045 result = (ptr_t)(((word)(&dummy))
1046 & ~STACKBOTTOM_ALIGNMENT_M1);
1047 # endif
1048 # endif /* HEURISTIC1 */
1049 # ifdef LINUX_STACKBOTTOM
1050 result = GC_linux_stack_base();
1051 # endif
1052 # ifdef FREEBSD_STACKBOTTOM
1053 result = GC_freebsd_stack_base();
1054 # endif
1055 # ifdef HEURISTIC2
1056 # ifdef STACK_GROWS_DOWN
1057 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1058 # ifdef HEURISTIC2_LIMIT
1059 if (result > HEURISTIC2_LIMIT
1060 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1061 result = HEURISTIC2_LIMIT;
1063 # endif
1064 # else
1065 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1066 # ifdef HEURISTIC2_LIMIT
1067 if (result < HEURISTIC2_LIMIT
1068 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1069 result = HEURISTIC2_LIMIT;
1071 # endif
1072 # endif
1074 # endif /* HEURISTIC2 */
1075 # ifdef STACK_GROWS_DOWN
1076 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1077 # endif
1078 return(result);
1079 # endif /* STACKBOTTOM */
1082 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1085 * Register static data segment(s) as roots.
1086 * If more data segments are added later then they need to be registered
1087 * add that point (as we do with SunOS dynamic loading),
1088 * or GC_mark_roots needs to check for them (as we do with PCR).
1089 * Called with allocator lock held.
1092 # ifdef OS2
1094 void GC_register_data_segments()
1096 PTIB ptib;
1097 PPIB ppib;
1098 HMODULE module_handle;
1099 # define PBUFSIZ 512
1100 UCHAR path[PBUFSIZ];
1101 FILE * myexefile;
1102 struct exe_hdr hdrdos; /* MSDOS header. */
1103 struct e32_exe hdr386; /* Real header for my executable */
1104 struct o32_obj seg; /* Currrent segment */
1105 int nsegs;
1108 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1109 GC_err_printf0("DosGetInfoBlocks failed\n");
1110 ABORT("DosGetInfoBlocks failed\n");
1112 module_handle = ppib -> pib_hmte;
1113 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1114 GC_err_printf0("DosQueryModuleName failed\n");
1115 ABORT("DosGetInfoBlocks failed\n");
1117 myexefile = fopen(path, "rb");
1118 if (myexefile == 0) {
1119 GC_err_puts("Couldn't open executable ");
1120 GC_err_puts(path); GC_err_puts("\n");
1121 ABORT("Failed to open executable\n");
1123 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1124 GC_err_puts("Couldn't read MSDOS header from ");
1125 GC_err_puts(path); GC_err_puts("\n");
1126 ABORT("Couldn't read MSDOS header");
1128 if (E_MAGIC(hdrdos) != EMAGIC) {
1129 GC_err_puts("Executable has wrong DOS magic number: ");
1130 GC_err_puts(path); GC_err_puts("\n");
1131 ABORT("Bad DOS magic number");
1133 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1134 GC_err_puts("Seek to new header failed in ");
1135 GC_err_puts(path); GC_err_puts("\n");
1136 ABORT("Bad DOS magic number");
1138 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1139 GC_err_puts("Couldn't read MSDOS header from ");
1140 GC_err_puts(path); GC_err_puts("\n");
1141 ABORT("Couldn't read OS/2 header");
1143 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1144 GC_err_puts("Executable has wrong OS/2 magic number:");
1145 GC_err_puts(path); GC_err_puts("\n");
1146 ABORT("Bad OS/2 magic number");
1148 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1149 GC_err_puts("Executable %s has wrong byte order: ");
1150 GC_err_puts(path); GC_err_puts("\n");
1151 ABORT("Bad byte order");
1153 if ( E32_CPU(hdr386) == E32CPU286) {
1154 GC_err_puts("GC can't handle 80286 executables: ");
1155 GC_err_puts(path); GC_err_puts("\n");
1156 EXIT();
1158 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1159 SEEK_SET) != 0) {
1160 GC_err_puts("Seek to object table failed: ");
1161 GC_err_puts(path); GC_err_puts("\n");
1162 ABORT("Seek to object table failed");
1164 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1165 int flags;
1166 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1167 GC_err_puts("Couldn't read obj table entry from ");
1168 GC_err_puts(path); GC_err_puts("\n");
1169 ABORT("Couldn't read obj table entry");
1171 flags = O32_FLAGS(seg);
1172 if (!(flags & OBJWRITE)) continue;
1173 if (!(flags & OBJREAD)) continue;
1174 if (flags & OBJINVALID) {
1175 GC_err_printf0("Object with invalid pages?\n");
1176 continue;
1178 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1182 # else /* !OS2 */
1184 # if defined(MSWIN32) || defined(MSWINCE)
1186 # ifdef MSWIN32
1187 /* Unfortunately, we have to handle win32s very differently from NT, */
1188 /* Since VirtualQuery has very different semantics. In particular, */
1189 /* under win32s a VirtualQuery call on an unmapped page returns an */
1190 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1191 /* all real work is done by GC_register_dynamic_libraries. Under */
1192 /* win32s, we cannot find the data segments associated with dll's. */
1193 /* We register the main data segment here. */
1194 GC_bool GC_no_win32_dlls = FALSE;
1195 /* This used to be set for gcc, to avoid dealing with */
1196 /* the structured exception handling issues. But we now have */
1197 /* assembly code to do that right. */
1199 void GC_init_win32()
1201 /* if we're running under win32s, assume that no DLLs will be loaded */
1202 DWORD v = GetVersion();
1203 GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1206 /* Return the smallest address a such that VirtualQuery */
1207 /* returns correct results for all addresses between a and start. */
1208 /* Assumes VirtualQuery returns correct information for start. */
1209 ptr_t GC_least_described_address(ptr_t start)
1211 MEMORY_BASIC_INFORMATION buf;
1212 DWORD result;
1213 LPVOID limit;
1214 ptr_t p;
1215 LPVOID q;
1217 limit = GC_sysinfo.lpMinimumApplicationAddress;
1218 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1219 for (;;) {
1220 q = (LPVOID)(p - GC_page_size);
1221 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1222 result = VirtualQuery(q, &buf, sizeof(buf));
1223 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1224 p = (ptr_t)(buf.AllocationBase);
1226 return(p);
1228 # endif
1230 # ifndef REDIRECT_MALLOC
1231 /* We maintain a linked list of AllocationBase values that we know */
1232 /* correspond to malloc heap sections. Currently this is only called */
1233 /* during a GC. But there is some hope that for long running */
1234 /* programs we will eventually see most heap sections. */
1236 /* In the long run, it would be more reliable to occasionally walk */
1237 /* the malloc heap with HeapWalk on the default heap. But that */
1238 /* apparently works only for NT-based Windows. */
1240 /* In the long run, a better data structure would also be nice ... */
1241 struct GC_malloc_heap_list {
1242 void * allocation_base;
1243 struct GC_malloc_heap_list *next;
1244 } *GC_malloc_heap_l = 0;
1246 /* Is p the base of one of the malloc heap sections we already know */
1247 /* about? */
1248 GC_bool GC_is_malloc_heap_base(ptr_t p)
1250 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1252 while (0 != q) {
1253 if (q -> allocation_base == p) return TRUE;
1254 q = q -> next;
1256 return FALSE;
1259 void *GC_get_allocation_base(void *p)
1261 MEMORY_BASIC_INFORMATION buf;
1262 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1263 if (result != sizeof(buf)) {
1264 ABORT("Weird VirtualQuery result");
1266 return buf.AllocationBase;
1269 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1271 void GC_add_current_malloc_heap()
1273 struct GC_malloc_heap_list *new_l =
1274 malloc(sizeof(struct GC_malloc_heap_list));
1275 void * candidate = GC_get_allocation_base(new_l);
1277 if (new_l == 0) return;
1278 if (GC_is_malloc_heap_base(candidate)) {
1279 /* Try a little harder to find malloc heap. */
1280 size_t req_size = 10000;
1281 do {
1282 void *p = malloc(req_size);
1283 if (0 == p) { free(new_l); return; }
1284 candidate = GC_get_allocation_base(p);
1285 free(p);
1286 req_size *= 2;
1287 } while (GC_is_malloc_heap_base(candidate)
1288 && req_size < GC_max_root_size/10 && req_size < 500000);
1289 if (GC_is_malloc_heap_base(candidate)) {
1290 free(new_l); return;
1293 # ifdef CONDPRINT
1294 if (GC_print_stats)
1295 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1296 candidate);
1297 # endif
1298 new_l -> allocation_base = candidate;
1299 new_l -> next = GC_malloc_heap_l;
1300 GC_malloc_heap_l = new_l;
1302 # endif /* REDIRECT_MALLOC */
1304 /* Is p the start of either the malloc heap, or of one of our */
1305 /* heap sections? */
1306 GC_bool GC_is_heap_base (ptr_t p)
1309 unsigned i;
1311 # ifndef REDIRECT_MALLOC
1312 static word last_gc_no = -1;
1314 if (last_gc_no != GC_gc_no) {
1315 GC_add_current_malloc_heap();
1316 last_gc_no = GC_gc_no;
1318 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1319 if (GC_is_malloc_heap_base(p)) return TRUE;
1320 # endif
1321 for (i = 0; i < GC_n_heap_bases; i++) {
1322 if (GC_heap_bases[i] == p) return TRUE;
1324 return FALSE ;
1327 # ifdef MSWIN32
1328 void GC_register_root_section(ptr_t static_root)
1330 MEMORY_BASIC_INFORMATION buf;
1331 DWORD result;
1332 DWORD protect;
1333 LPVOID p;
1334 char * base;
1335 char * limit, * new_limit;
1337 if (!GC_no_win32_dlls) return;
1338 p = base = limit = GC_least_described_address(static_root);
1339 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1340 result = VirtualQuery(p, &buf, sizeof(buf));
1341 if (result != sizeof(buf) || buf.AllocationBase == 0
1342 || GC_is_heap_base(buf.AllocationBase)) break;
1343 new_limit = (char *)p + buf.RegionSize;
1344 protect = buf.Protect;
1345 if (buf.State == MEM_COMMIT
1346 && is_writable(protect)) {
1347 if ((char *)p == limit) {
1348 limit = new_limit;
1349 } else {
1350 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1351 base = p;
1352 limit = new_limit;
1355 if (p > (LPVOID)new_limit /* overflow */) break;
1356 p = (LPVOID)new_limit;
1358 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1360 #endif
1362 void GC_register_data_segments()
1364 # ifdef MSWIN32
1365 static char dummy;
1366 GC_register_root_section((ptr_t)(&dummy));
1367 # endif
1370 # else /* !OS2 && !Windows */
1372 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1373 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1374 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1375 int max_page_size;
1376 int * etext_addr;
1378 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1379 & ~(sizeof(word) - 1);
1380 /* etext rounded to word boundary */
1381 word next_page = ((text_end + (word)max_page_size - 1)
1382 & ~((word)max_page_size - 1));
1383 word page_offset = (text_end & ((word)max_page_size - 1));
1384 VOLATILE char * result = (char *)(next_page + page_offset);
1385 /* Note that this isnt equivalent to just adding */
1386 /* max_page_size to &etext if &etext is at a page boundary */
1388 GC_setup_temporary_fault_handler();
1389 if (SETJMP(GC_jmp_buf) == 0) {
1390 /* Try writing to the address. */
1391 *result = *result;
1392 GC_reset_fault_handler();
1393 } else {
1394 GC_reset_fault_handler();
1395 /* We got here via a longjmp. The address is not readable. */
1396 /* This is known to happen under Solaris 2.4 + gcc, which place */
1397 /* string constants in the text segment, but after etext. */
1398 /* Use plan B. Note that we now know there is a gap between */
1399 /* text and data segments, so plan A bought us something. */
1400 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1402 return((ptr_t)result);
1404 # endif
1406 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__) || defined(__x86_64__)) && !defined(PCR)
1407 /* Its unclear whether this should be identical to the above, or */
1408 /* whether it should apply to non-X86 architectures. */
1409 /* For now we don't assume that there is always an empty page after */
1410 /* etext. But in some cases there actually seems to be slightly more. */
1411 /* This also deals with holes between read-only data and writable data. */
1412 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1413 int max_page_size;
1414 int * etext_addr;
1416 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1417 & ~(sizeof(word) - 1);
1418 /* etext rounded to word boundary */
1419 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1420 & ~((word)max_page_size - 1);
1421 VOLATILE ptr_t result = (ptr_t)text_end;
1422 GC_setup_temporary_fault_handler();
1423 if (SETJMP(GC_jmp_buf) == 0) {
1424 /* Try reading at the address. */
1425 /* This should happen before there is another thread. */
1426 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1427 *(VOLATILE char *)next_page;
1428 GC_reset_fault_handler();
1429 } else {
1430 GC_reset_fault_handler();
1431 /* As above, we go to plan B */
1432 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1434 return(result);
1437 # endif
1440 #ifdef AMIGA
1442 # define GC_AMIGA_DS
1443 # include "AmigaOS.c"
1444 # undef GC_AMIGA_DS
1446 #else /* !OS2 && !Windows && !AMIGA */
1448 void GC_register_data_segments()
1450 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1451 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1452 /* As of Solaris 2.3, the Solaris threads implementation */
1453 /* allocates the data structure for the initial thread with */
1454 /* sbrk at process startup. It needs to be scanned, so that */
1455 /* we don't lose some malloc allocated data structures */
1456 /* hanging from it. We're on thin ice here ... */
1457 extern caddr_t sbrk();
1459 GC_ASSERT(DATASTART);
1460 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1461 # else
1462 GC_ASSERT(DATASTART);
1463 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1464 # if defined(DATASTART2)
1465 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1466 # endif
1467 # endif
1468 # endif
1469 # if defined(MACOS)
1471 # if defined(THINK_C)
1472 extern void* GC_MacGetDataStart(void);
1473 /* globals begin above stack and end at a5. */
1474 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1475 (ptr_t)LMGetCurrentA5(), FALSE);
1476 # else
1477 # if defined(__MWERKS__)
1478 # if !__POWERPC__
1479 extern void* GC_MacGetDataStart(void);
1480 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1481 # if __option(far_data)
1482 extern void* GC_MacGetDataEnd(void);
1483 # endif
1484 /* globals begin above stack and end at a5. */
1485 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1486 (ptr_t)LMGetCurrentA5(), FALSE);
1487 /* MATTHEW: Handle Far Globals */
1488 # if __option(far_data)
1489 /* Far globals follow he QD globals: */
1490 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1491 (ptr_t)GC_MacGetDataEnd(), FALSE);
1492 # endif
1493 # else
1494 extern char __data_start__[], __data_end__[];
1495 GC_add_roots_inner((ptr_t)&__data_start__,
1496 (ptr_t)&__data_end__, FALSE);
1497 # endif /* __POWERPC__ */
1498 # endif /* __MWERKS__ */
1499 # endif /* !THINK_C */
1501 # endif /* MACOS */
1503 /* Dynamic libraries are added at every collection, since they may */
1504 /* change. */
1507 # endif /* ! AMIGA */
1508 # endif /* ! MSWIN32 && ! MSWINCE*/
1509 # endif /* ! OS2 */
1512 * Auxiliary routines for obtaining memory from OS.
1515 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1516 && !defined(MSWIN32) && !defined(MSWINCE) \
1517 && !defined(MACOS) && !defined(DOS4GW) && !defined(SN_TARGET_PS3)
1519 # ifdef SUNOS4
1520 extern caddr_t sbrk();
1521 # endif
1522 # ifdef __STDC__
1523 # define SBRK_ARG_T ptrdiff_t
1524 # else
1525 # define SBRK_ARG_T int
1526 # endif
1529 # if 0 && defined(RS6000) /* We now use mmap */
1530 /* The compiler seems to generate speculative reads one past the end of */
1531 /* an allocated object. Hence we need to make sure that the page */
1532 /* following the last heap page is also mapped. */
1533 ptr_t GC_unix_get_mem(bytes)
1534 word bytes;
1536 caddr_t cur_brk = (caddr_t)sbrk(0);
1537 caddr_t result;
1538 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1539 static caddr_t my_brk_val = 0;
1541 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1542 if (lsbs != 0) {
1543 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1545 if (cur_brk == my_brk_val) {
1546 /* Use the extra block we allocated last time. */
1547 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1548 if (result == (caddr_t)(-1)) return(0);
1549 result -= GC_page_size;
1550 } else {
1551 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1552 if (result == (caddr_t)(-1)) return(0);
1554 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1555 return((ptr_t)result);
1558 #else /* Not RS6000 */
1560 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
1562 #ifdef USE_MMAP_FIXED
1563 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1564 /* Seems to yield better performance on Solaris 2, but can */
1565 /* be unreliable if something is already mapped at the address. */
1566 #else
1567 # define GC_MMAP_FLAGS MAP_PRIVATE
1568 #endif
1570 #ifdef USE_MMAP_ANON
1571 # define zero_fd -1
1572 # if defined(MAP_ANONYMOUS)
1573 # define OPT_MAP_ANON MAP_ANONYMOUS
1574 # else
1575 # define OPT_MAP_ANON MAP_ANON
1576 # endif
1577 #else
1578 static int zero_fd;
1579 # define OPT_MAP_ANON 0
1580 #endif
1582 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1584 #if defined(USE_MMAP) || defined(FALLBACK_TO_MMAP)
1585 /* Tested only under Linux, IRIX5 and Solaris 2 */
1587 #ifndef HEAP_START
1588 # define HEAP_START 0
1589 #endif
1591 #ifdef FALLBACK_TO_MMAP
1592 static ptr_t GC_unix_get_mem_mmap(bytes)
1593 #else
1594 ptr_t GC_unix_get_mem(bytes)
1595 #endif
1596 word bytes;
1598 void *result;
1599 static ptr_t last_addr = HEAP_START;
1601 # ifndef USE_MMAP_ANON
1602 static GC_bool initialized = FALSE;
1604 if (!initialized) {
1605 zero_fd = open("/dev/zero", O_RDONLY);
1606 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1607 initialized = TRUE;
1609 # endif
1611 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1612 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1613 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1614 if (result == MAP_FAILED) return(0);
1615 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1616 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1617 # if !defined(LINUX)
1618 if (last_addr == 0) {
1619 /* Oops. We got the end of the address space. This isn't */
1620 /* usable by arbitrary C code, since one-past-end pointers */
1621 /* don't work, so we discard it and try again. */
1622 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1623 /* Leave last page mapped, so we can't repeat. */
1624 return GC_unix_get_mem(bytes);
1626 # else
1627 GC_ASSERT(last_addr != 0);
1628 # endif
1629 if (((word)result % HBLKSIZE) != 0)
1630 ABORT ("GC_unix_get_mem: Memory returned by mmap is not aligned to HBLKSIZE.");
1631 return((ptr_t)result);
1634 #endif
1636 #ifndef USE_MMAP
1638 ptr_t GC_unix_get_mem(bytes)
1639 word bytes;
1641 ptr_t result;
1642 # ifdef IRIX5
1643 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1644 /* The equivalent may be needed on other systems as well. */
1645 __LOCK_MALLOC();
1646 # endif
1648 ptr_t cur_brk = (ptr_t)sbrk(0);
1649 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1651 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1652 if (lsbs != 0) {
1653 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1655 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1656 if (result == (ptr_t)(-1)) {
1657 #ifdef FALLBACK_TO_MMAP
1658 result = GC_unix_get_mem_mmap (bytes);
1659 #else
1660 result = 0;
1661 #endif
1664 # ifdef IRIX5
1665 __UNLOCK_MALLOC();
1666 # endif
1667 return(result);
1670 #endif /* Not USE_MMAP */
1671 #endif /* Not RS6000 */
1673 # endif /* UN*X */
1675 # ifdef OS2
1677 void * os2_alloc(size_t bytes)
1679 void * result;
1681 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1682 PAG_WRITE | PAG_COMMIT)
1683 != NO_ERROR) {
1684 return(0);
1686 if (result == 0) return(os2_alloc(bytes));
1687 return(result);
1690 # endif /* OS2 */
1693 # if defined(MSWIN32) || defined(MSWINCE)
1694 SYSTEM_INFO GC_sysinfo;
1695 # endif
1697 # ifdef MSWIN32
1699 # ifdef USE_GLOBAL_ALLOC
1700 # define GLOBAL_ALLOC_TEST 1
1701 # else
1702 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1703 # endif
1705 word GC_n_heap_bases = 0;
1707 ptr_t GC_win32_get_mem(bytes)
1708 word bytes;
1710 ptr_t result;
1712 if (GLOBAL_ALLOC_TEST) {
1713 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1714 /* There are also unconfirmed rumors of other */
1715 /* problems, so we dodge the issue. */
1716 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1717 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1718 } else {
1719 /* VirtualProtect only works on regions returned by a */
1720 /* single VirtualAlloc call. Thus we allocate one */
1721 /* extra page, which will prevent merging of blocks */
1722 /* in separate regions, and eliminate any temptation */
1723 /* to call VirtualProtect on a range spanning regions. */
1724 /* This wastes a small amount of memory, and risks */
1725 /* increased fragmentation. But better alternatives */
1726 /* would require effort. */
1727 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1728 MEM_COMMIT | MEM_RESERVE,
1729 PAGE_EXECUTE_READWRITE);
1731 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1732 /* If I read the documentation correctly, this can */
1733 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1734 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1735 GC_heap_bases[GC_n_heap_bases++] = result;
1736 return(result);
1739 void GC_win32_free_heap ()
1741 if (GC_no_win32_dlls) {
1742 while (GC_n_heap_bases > 0) {
1743 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1744 GC_heap_bases[GC_n_heap_bases] = 0;
1748 # endif
1750 #ifdef AMIGA
1751 # define GC_AMIGA_AM
1752 # include "AmigaOS.c"
1753 # undef GC_AMIGA_AM
1754 #endif
1757 # ifdef MSWINCE
1758 word GC_n_heap_bases = 0;
1760 ptr_t GC_wince_get_mem(bytes)
1761 word bytes;
1763 ptr_t result;
1764 word i;
1766 /* Round up allocation size to multiple of page size */
1767 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1769 /* Try to find reserved, uncommitted pages */
1770 for (i = 0; i < GC_n_heap_bases; i++) {
1771 if (((word)(-(signed_word)GC_heap_lengths[i])
1772 & (GC_sysinfo.dwAllocationGranularity-1))
1773 >= bytes) {
1774 result = GC_heap_bases[i] + GC_heap_lengths[i];
1775 break;
1779 if (i == GC_n_heap_bases) {
1780 /* Reserve more pages */
1781 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1782 & ~(GC_sysinfo.dwAllocationGranularity-1);
1783 /* If we ever support MPROTECT_VDB here, we will probably need to */
1784 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1785 /* never spans regions. It seems to be OK for a VirtualFree argument */
1786 /* to span regions, so we should be OK for now. */
1787 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1788 MEM_RESERVE | MEM_TOP_DOWN,
1789 PAGE_EXECUTE_READWRITE);
1790 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1791 /* If I read the documentation correctly, this can */
1792 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1793 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1794 GC_heap_bases[GC_n_heap_bases] = result;
1795 GC_heap_lengths[GC_n_heap_bases] = 0;
1796 GC_n_heap_bases++;
1799 /* Commit pages */
1800 result = (ptr_t) VirtualAlloc(result, bytes,
1801 MEM_COMMIT,
1802 PAGE_EXECUTE_READWRITE);
1803 if (result != NULL) {
1804 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1805 GC_heap_lengths[i] += bytes;
1808 return(result);
1810 # endif
1812 #ifdef USE_MUNMAP
1814 /* For now, this only works on Win32/WinCE and some Unix-like */
1815 /* systems. If you have something else, don't define */
1816 /* USE_MUNMAP. */
1817 /* We assume ANSI C to support this feature. */
1819 #if !defined(MSWIN32) && !defined(MSWINCE)
1821 #include <unistd.h>
1822 #include <sys/mman.h>
1823 #include <sys/stat.h>
1824 #include <sys/types.h>
1826 #endif
1828 /* Compute a page aligned starting address for the unmap */
1829 /* operation on a block of size bytes starting at start. */
1830 /* Return 0 if the block is too small to make this feasible. */
1831 ptr_t GC_unmap_start(ptr_t start, word bytes)
1833 ptr_t result = start;
1834 /* Round start to next page boundary. */
1835 result += GC_page_size - 1;
1836 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1837 if (result + GC_page_size > start + bytes) return 0;
1838 return result;
1841 /* Compute end address for an unmap operation on the indicated */
1842 /* block. */
1843 ptr_t GC_unmap_end(ptr_t start, word bytes)
1845 ptr_t end_addr = start + bytes;
1846 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1847 return end_addr;
1850 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1851 /* memory using VirtualAlloc and VirtualFree. These functions */
1852 /* work on individual allocations of virtual memory, made */
1853 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1854 /* The ranges we need to (de)commit may span several of these */
1855 /* allocations; therefore we use VirtualQuery to check */
1856 /* allocation lengths, and split up the range as necessary. */
1858 /* We assume that GC_remap is called on exactly the same range */
1859 /* as a previous call to GC_unmap. It is safe to consistently */
1860 /* round the endpoints in both places. */
1861 void GC_unmap(ptr_t start, word bytes)
1863 ptr_t start_addr = GC_unmap_start(start, bytes);
1864 ptr_t end_addr = GC_unmap_end(start, bytes);
1865 word len = end_addr - start_addr;
1866 if (0 == start_addr) return;
1867 # if defined(MSWIN32) || defined(MSWINCE)
1868 while (len != 0) {
1869 MEMORY_BASIC_INFORMATION mem_info;
1870 GC_word free_len;
1871 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1872 != sizeof(mem_info))
1873 ABORT("Weird VirtualQuery result");
1874 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1875 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1876 ABORT("VirtualFree failed");
1877 GC_unmapped_bytes += free_len;
1878 start_addr += free_len;
1879 len -= free_len;
1881 # else
1882 /* We immediately remap it to prevent an intervening mmap from */
1883 /* accidentally grabbing the same address space. */
1885 void * result;
1886 result = mmap(start_addr, len, PROT_NONE,
1887 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1888 zero_fd, 0/* offset */);
1889 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1891 GC_unmapped_bytes += len;
1892 # endif
1896 void GC_remap(ptr_t start, word bytes)
1898 ptr_t start_addr = GC_unmap_start(start, bytes);
1899 ptr_t end_addr = GC_unmap_end(start, bytes);
1900 word len = end_addr - start_addr;
1902 # if defined(MSWIN32) || defined(MSWINCE)
1903 ptr_t result;
1905 if (0 == start_addr) return;
1906 while (len != 0) {
1907 MEMORY_BASIC_INFORMATION mem_info;
1908 GC_word alloc_len;
1909 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1910 != sizeof(mem_info))
1911 ABORT("Weird VirtualQuery result");
1912 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1913 result = VirtualAlloc(start_addr, alloc_len,
1914 MEM_COMMIT,
1915 PAGE_EXECUTE_READWRITE);
1916 if (result != start_addr) {
1917 ABORT("VirtualAlloc remapping failed");
1919 GC_unmapped_bytes -= alloc_len;
1920 start_addr += alloc_len;
1921 len -= alloc_len;
1923 # else
1924 /* It was already remapped with PROT_NONE. */
1925 int result;
1927 if (0 == start_addr) return;
1928 result = mprotect(start_addr, len,
1929 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1930 if (result != 0) {
1931 GC_err_printf3(
1932 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1933 start_addr, len, errno);
1934 ABORT("Mprotect remapping failed");
1936 GC_unmapped_bytes -= len;
1937 # endif
1940 /* Two adjacent blocks have already been unmapped and are about to */
1941 /* be merged. Unmap the whole block. This typically requires */
1942 /* that we unmap a small section in the middle that was not previously */
1943 /* unmapped due to alignment constraints. */
1944 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1946 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1947 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1948 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1949 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1950 ptr_t start_addr = end1_addr;
1951 ptr_t end_addr = start2_addr;
1952 word len;
1953 GC_ASSERT(start1 + bytes1 == start2);
1954 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1955 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1956 if (0 == start_addr) return;
1957 len = end_addr - start_addr;
1958 # if defined(MSWIN32) || defined(MSWINCE)
1959 while (len != 0) {
1960 MEMORY_BASIC_INFORMATION mem_info;
1961 GC_word free_len;
1962 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1963 != sizeof(mem_info))
1964 ABORT("Weird VirtualQuery result");
1965 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1966 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1967 ABORT("VirtualFree failed");
1968 GC_unmapped_bytes += free_len;
1969 start_addr += free_len;
1970 len -= free_len;
1972 # else
1973 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1974 GC_unmapped_bytes += len;
1975 # endif
1978 #endif /* USE_MUNMAP */
1980 /* Routine for pushing any additional roots. In THREADS */
1981 /* environment, this is also responsible for marking from */
1982 /* thread stacks. */
1983 #ifndef THREADS
1984 void (*GC_push_other_roots)() = 0;
1985 #else /* THREADS */
1987 # ifdef PCR
1988 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1990 struct PCR_ThCtl_TInfoRep info;
1991 PCR_ERes result;
1993 info.ti_stkLow = info.ti_stkHi = 0;
1994 result = PCR_ThCtl_GetInfo(t, &info);
1995 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1996 return(result);
1999 /* Push the contents of an old object. We treat this as stack */
2000 /* data only becasue that makes it robust against mark stack */
2001 /* overflow. */
2002 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
2004 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
2005 return(PCR_ERes_okay);
2009 void GC_default_push_other_roots GC_PROTO((void))
2011 /* Traverse data allocated by previous memory managers. */
2013 extern struct PCR_MM_ProcsRep * GC_old_allocator;
2015 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2016 GC_push_old_obj, 0)
2017 != PCR_ERes_okay) {
2018 ABORT("Old object enumeration failed");
2021 /* Traverse all thread stacks. */
2022 if (PCR_ERes_IsErr(
2023 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2024 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2025 ABORT("Thread stack marking failed\n");
2029 # endif /* PCR */
2031 # ifdef SRC_M3
2033 # ifdef ALL_INTERIOR_POINTERS
2034 --> misconfigured
2035 # endif
2037 void GC_push_thread_structures GC_PROTO((void))
2039 /* Not our responsibibility. */
2042 extern void ThreadF__ProcessStacks();
2044 void GC_push_thread_stack(start, stop)
2045 word start, stop;
2047 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2050 /* Push routine with M3 specific calling convention. */
2051 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2052 word *p;
2053 ptr_t dummy1, dummy2;
2054 int dummy3;
2056 word q = *p;
2058 GC_PUSH_ONE_STACK(q, p);
2061 /* M3 set equivalent to RTHeap.TracedRefTypes */
2062 typedef struct { int elts[1]; } RefTypeSet;
2063 RefTypeSet GC_TracedRefTypes = {{0x1}};
2065 void GC_default_push_other_roots GC_PROTO((void))
2067 /* Use the M3 provided routine for finding static roots. */
2068 /* This is a bit dubious, since it presumes no C roots. */
2069 /* We handle the collector roots explicitly in GC_push_roots */
2070 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2071 if (GC_words_allocd > 0) {
2072 ThreadF__ProcessStacks(GC_push_thread_stack);
2074 /* Otherwise this isn't absolutely necessary, and we have */
2075 /* startup ordering problems. */
2078 # endif /* SRC_M3 */
2080 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2081 defined(GC_WIN32_THREADS)
2083 extern void GC_push_all_stacks();
2085 void GC_default_push_other_roots GC_PROTO((void))
2087 GC_push_all_stacks();
2090 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2091 #ifdef SN_TARGET_PS3
2092 void GC_default_push_other_roots GC_PROTO((void))
2094 printf ("WARNING WARNING WARNING\nGC_default_push_other_roots is not implemented\n");
2096 void GC_push_thread_structures GC_PROTO((void))
2098 printf ("WARNING WARNING WARNING\nGC_default_push_thread_structures is not implemented\n");
2100 #endif
2102 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2104 #endif /* THREADS */
2107 * Routines for accessing dirty bits on virtual pages.
2108 * We plan to eventually implement four strategies for doing so:
2109 * DEFAULT_VDB: A simple dummy implementation that treats every page
2110 * as possibly dirty. This makes incremental collection
2111 * useless, but the implementation is still correct.
2112 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2113 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2114 * works under some SVR4 variants. Even then, it may be
2115 * too slow to be entirely satisfactory. Requires reading
2116 * dirty bits for entire address space. Implementations tend
2117 * to assume that the client is a (slow) debugger.
2118 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2119 * dirtied pages. The implementation (and implementability)
2120 * is highly system dependent. This usually fails when system
2121 * calls write to a protected page. We prevent the read system
2122 * call from doing so. It is the clients responsibility to
2123 * make sure that other system calls are similarly protected
2124 * or write only to the stack.
2126 GC_bool GC_dirty_maintained = FALSE;
2128 # ifdef DEFAULT_VDB
2130 /* All of the following assume the allocation lock is held, and */
2131 /* signals are disabled. */
2133 /* The client asserts that unallocated pages in the heap are never */
2134 /* written. */
2136 /* Initialize virtual dirty bit implementation. */
2137 void GC_dirty_init()
2139 # ifdef PRINTSTATS
2140 GC_printf0("Initializing DEFAULT_VDB...\n");
2141 # endif
2142 GC_dirty_maintained = TRUE;
2145 /* Retrieve system dirty bits for heap to a local buffer. */
2146 /* Restore the systems notion of which pages are dirty. */
2147 void GC_read_dirty()
2150 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2151 /* If the actual page size is different, this returns TRUE if any */
2152 /* of the pages overlapping h are dirty. This routine may err on the */
2153 /* side of labelling pages as dirty (and this implementation does). */
2154 /*ARGSUSED*/
2155 GC_bool GC_page_was_dirty(h)
2156 struct hblk *h;
2158 return(TRUE);
2162 * The following two routines are typically less crucial. They matter
2163 * most with large dynamic libraries, or if we can't accurately identify
2164 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2165 * versions are adequate.
2168 /* Could any valid GC heap pointer ever have been written to this page? */
2169 /*ARGSUSED*/
2170 GC_bool GC_page_was_ever_dirty(h)
2171 struct hblk *h;
2173 return(TRUE);
2176 /* Reset the n pages starting at h to "was never dirty" status. */
2177 void GC_is_fresh(h, n)
2178 struct hblk *h;
2179 word n;
2183 /* A call that: */
2184 /* I) hints that [h, h+nblocks) is about to be written. */
2185 /* II) guarantees that protection is removed. */
2186 /* (I) may speed up some dirty bit implementations. */
2187 /* (II) may be essential if we need to ensure that */
2188 /* pointer-free system call buffers in the heap are */
2189 /* not protected. */
2190 /*ARGSUSED*/
2191 void GC_remove_protection(h, nblocks, is_ptrfree)
2192 struct hblk *h;
2193 word nblocks;
2194 GC_bool is_ptrfree;
2198 # endif /* DEFAULT_VDB */
2201 # ifdef MPROTECT_VDB
2204 * See DEFAULT_VDB for interface descriptions.
2208 * This implementation maintains dirty bits itself by catching write
2209 * faults and keeping track of them. We assume nobody else catches
2210 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2211 * This means that clients must ensure that system calls don't write
2212 * to the write-protected heap. Probably the best way to do this is to
2213 * ensure that system calls write at most to POINTERFREE objects in the
2214 * heap, and do even that only if we are on a platform on which those
2215 * are not protected. Another alternative is to wrap system calls
2216 * (see example for read below), but the current implementation holds
2217 * a lock across blocking calls, making it problematic for multithreaded
2218 * applications.
2219 * We assume the page size is a multiple of HBLKSIZE.
2220 * We prefer them to be the same. We avoid protecting POINTERFREE
2221 * objects only if they are the same.
2224 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2226 # include <sys/mman.h>
2227 # include <signal.h>
2228 # include <sys/syscall.h>
2230 # define PROTECT(addr, len) \
2231 if (mprotect((caddr_t)(addr), (size_t)(len), \
2232 PROT_READ | OPT_PROT_EXEC) < 0) { \
2233 ABORT("mprotect failed"); \
2235 # define UNPROTECT(addr, len) \
2236 if (mprotect((caddr_t)(addr), (size_t)(len), \
2237 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2238 ABORT("un-mprotect failed"); \
2241 # else
2243 # ifdef DARWIN
2244 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2245 decrease the likelihood of some of the problems described below. */
2246 #include <mach/vm_map.h>
2247 static mach_port_t GC_task_self;
2248 #define PROTECT(addr,len) \
2249 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2250 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2251 ABORT("vm_portect failed"); \
2253 #define UNPROTECT(addr,len) \
2254 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2255 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2256 ABORT("vm_portect failed"); \
2258 # else
2260 # ifndef MSWINCE
2261 # include <signal.h>
2262 # endif
2264 static DWORD protect_junk;
2265 # define PROTECT(addr, len) \
2266 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2267 &protect_junk)) { \
2268 DWORD last_error = GetLastError(); \
2269 GC_printf1("Last error code: %lx\n", last_error); \
2270 ABORT("VirtualProtect failed"); \
2272 # define UNPROTECT(addr, len) \
2273 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2274 &protect_junk)) { \
2275 ABORT("un-VirtualProtect failed"); \
2277 # endif /* !DARWIN */
2278 # endif /* MSWIN32 || MSWINCE || DARWIN */
2280 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2281 typedef void (* SIG_PF)();
2282 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2284 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2285 || defined(HURD)
2286 # ifdef __STDC__
2287 typedef void (* SIG_PF)(int);
2288 # else
2289 typedef void (* SIG_PF)();
2290 # endif
2291 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2293 #if defined(MSWIN32)
2294 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2295 # undef SIG_DFL
2296 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2297 #endif
2298 #if defined(MSWINCE)
2299 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2300 # undef SIG_DFL
2301 # define SIG_DFL (SIG_PF) (-1)
2302 #endif
2304 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2305 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2306 #endif /* IRIX5 || OSF1 || HURD */
2308 #if defined(SUNOS5SIGS)
2309 # if defined(HPUX) || defined(FREEBSD)
2310 # define SIGINFO_T siginfo_t
2311 # else
2312 # define SIGINFO_T struct siginfo
2313 # endif
2314 # ifdef __STDC__
2315 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2316 # else
2317 typedef void (* REAL_SIG_PF)();
2318 # endif
2319 #endif /* SUNOS5SIGS */
2321 #if defined(LINUX)
2322 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2323 typedef struct sigcontext s_c;
2324 # else /* glibc < 2.2 */
2325 # include <linux/version.h>
2326 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2327 typedef struct sigcontext s_c;
2328 # else
2329 typedef struct sigcontext_struct s_c;
2330 # endif
2331 # endif /* glibc < 2.2 */
2332 # if defined(ALPHA) || defined(M68K)
2333 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2334 # else
2335 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2336 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2337 /* FIXME: */
2338 /* According to SUSV3, the last argument should have type */
2339 /* void * or ucontext_t * */
2340 # else
2341 typedef void (* REAL_SIG_PF)(int, s_c);
2342 # endif
2343 # endif
2344 # ifdef ALPHA
2345 /* Retrieve fault address from sigcontext structure by decoding */
2346 /* instruction. */
2347 char * get_fault_addr(s_c *sc) {
2348 unsigned instr;
2349 word faultaddr;
2351 instr = *((unsigned *)(sc->sc_pc));
2352 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2353 faultaddr += (word) (((int)instr << 16) >> 16);
2354 return (char *)faultaddr;
2356 # endif /* !ALPHA */
2357 # endif /* LINUX */
2359 #ifndef DARWIN
2360 SIG_PF GC_old_bus_handler;
2361 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2362 #endif /* !DARWIN */
2364 #if defined(THREADS)
2365 /* We need to lock around the bitmap update in the write fault handler */
2366 /* in order to avoid the risk of losing a bit. We do this with a */
2367 /* test-and-set spin lock if we know how to do that. Otherwise we */
2368 /* check whether we are already in the handler and use the dumb but */
2369 /* safe fallback algorithm of setting all bits in the word. */
2370 /* Contention should be very rare, so we do the minimum to handle it */
2371 /* correctly. */
2372 #ifdef GC_TEST_AND_SET_DEFINED
2373 static VOLATILE unsigned int fault_handler_lock = 0;
2374 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2375 while (GC_test_and_set(&fault_handler_lock)) {}
2376 /* Could also revert to set_pht_entry_from_index_safe if initial */
2377 /* GC_test_and_set fails. */
2378 set_pht_entry_from_index(db, index);
2379 GC_clear(&fault_handler_lock);
2381 #else /* !GC_TEST_AND_SET_DEFINED */
2382 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2383 /* just before we notice the conflict and correct it. We may end up */
2384 /* looking at it while it's wrong. But this requires contention */
2385 /* exactly when a GC is triggered, which seems far less likely to */
2386 /* fail than the old code, which had no reported failures. Thus we */
2387 /* leave it this way while we think of something better, or support */
2388 /* GC_test_and_set on the remaining platforms. */
2389 static VOLATILE word currently_updating = 0;
2390 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2391 unsigned int update_dummy;
2392 currently_updating = (word)(&update_dummy);
2393 set_pht_entry_from_index(db, index);
2394 /* If we get contention in the 10 or so instruction window here, */
2395 /* and we get stopped by a GC between the two updates, we lose! */
2396 if (currently_updating != (word)(&update_dummy)) {
2397 set_pht_entry_from_index_safe(db, index);
2398 /* We claim that if two threads concurrently try to update the */
2399 /* dirty bit vector, the first one to execute UPDATE_START */
2400 /* will see it changed when UPDATE_END is executed. (Note that */
2401 /* &update_dummy must differ in two distinct threads.) It */
2402 /* will then execute set_pht_entry_from_index_safe, thus */
2403 /* returning us to a safe state, though not soon enough. */
2406 #endif /* !GC_TEST_AND_SET_DEFINED */
2407 #else /* !THREADS */
2408 # define async_set_pht_entry_from_index(db, index) \
2409 set_pht_entry_from_index(db, index)
2410 #endif /* !THREADS */
2412 /*ARGSUSED*/
2413 #if !defined(DARWIN)
2414 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2415 void GC_write_fault_handler(sig, code, scp, addr)
2416 int sig, code;
2417 struct sigcontext *scp;
2418 char * addr;
2419 # ifdef SUNOS4
2420 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2421 # define CODE_OK (FC_CODE(code) == FC_PROT \
2422 || (FC_CODE(code) == FC_OBJERR \
2423 && FC_ERRNO(code) == FC_PROT))
2424 # endif
2425 # ifdef FREEBSD
2426 # define SIG_OK (sig == SIGBUS)
2427 # define CODE_OK TRUE
2428 # endif
2429 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2431 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2432 # include <errno.h>
2433 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2434 # ifdef OSF1
2435 # define SIG_OK (sig == SIGSEGV)
2436 # define CODE_OK (code == 2 /* experimentally determined */)
2437 # endif
2438 # ifdef IRIX5
2439 # define SIG_OK (sig == SIGSEGV)
2440 # define CODE_OK (code == EACCES)
2441 # endif
2442 # ifdef HURD
2443 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2444 # define CODE_OK TRUE
2445 # endif
2446 # endif /* IRIX5 || OSF1 || HURD */
2448 # if defined(LINUX)
2449 # if defined(ALPHA) || defined(M68K)
2450 void GC_write_fault_handler(int sig, int code, s_c * sc)
2451 # else
2452 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2453 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2454 # else
2455 # if defined(ARM32)
2456 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2457 # else
2458 void GC_write_fault_handler(int sig, s_c sc)
2459 # endif
2460 # endif
2461 # endif
2462 # define SIG_OK (sig == SIGSEGV)
2463 # define CODE_OK TRUE
2464 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2465 /* Should probably consider alignment issues on other */
2466 /* architectures. */
2467 # endif /* LINUX */
2469 # if defined(SUNOS5SIGS)
2470 # ifdef __STDC__
2471 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2472 # else
2473 void GC_write_fault_handler(sig, scp, context)
2474 int sig;
2475 SIGINFO_T *scp;
2476 void * context;
2477 # endif
2478 # ifdef HPUX
2479 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2480 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2481 || (scp -> si_code == BUS_ADRERR) \
2482 || (scp -> si_code == BUS_UNKNOWN) \
2483 || (scp -> si_code == SEGV_UNKNOWN) \
2484 || (scp -> si_code == BUS_OBJERR)
2485 # else
2486 # ifdef FREEBSD
2487 # define SIG_OK (sig == SIGBUS)
2488 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2489 # else
2490 # define SIG_OK (sig == SIGSEGV)
2491 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2492 # endif
2493 # endif
2494 # endif /* SUNOS5SIGS */
2496 # if defined(MSWIN32) || defined(MSWINCE)
2497 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2498 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2499 STATUS_ACCESS_VIOLATION)
2500 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2501 /* Write fault */
2502 # endif /* MSWIN32 || MSWINCE */
2504 register unsigned i;
2505 # if defined(HURD)
2506 char *addr = (char *) code;
2507 # endif
2508 # ifdef IRIX5
2509 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2510 # endif
2511 # if defined(OSF1) && defined(ALPHA)
2512 char * addr = (char *) (scp -> sc_traparg_a0);
2513 # endif
2514 # ifdef SUNOS5SIGS
2515 char * addr = (char *) (scp -> si_addr);
2516 # endif
2517 # ifdef LINUX
2518 # if defined(I386)
2519 char * addr = (char *) (sc.cr2);
2520 # else
2521 # if defined(M68K)
2522 char * addr = NULL;
2524 struct sigcontext *scp = (struct sigcontext *)(sc);
2526 int format = (scp->sc_formatvec >> 12) & 0xf;
2527 unsigned long *framedata = (unsigned long *)(scp + 1);
2528 unsigned long ea;
2530 if (format == 0xa || format == 0xb) {
2531 /* 68020/030 */
2532 ea = framedata[2];
2533 } else if (format == 7) {
2534 /* 68040 */
2535 ea = framedata[3];
2536 if (framedata[1] & 0x08000000) {
2537 /* correct addr on misaligned access */
2538 ea = (ea+4095)&(~4095);
2540 } else if (format == 4) {
2541 /* 68060 */
2542 ea = framedata[0];
2543 if (framedata[1] & 0x08000000) {
2544 /* correct addr on misaligned access */
2545 ea = (ea+4095)&(~4095);
2548 addr = (char *)ea;
2549 # else
2550 # ifdef ALPHA
2551 char * addr = get_fault_addr(sc);
2552 # else
2553 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2554 char * addr = si -> si_addr;
2555 /* I believe this is claimed to work on all platforms for */
2556 /* Linux 2.3.47 and later. Hopefully we don't have to */
2557 /* worry about earlier kernels on IA64. */
2558 # else
2559 # if defined(POWERPC)
2560 char * addr = (char *) (sc.regs->dar);
2561 # else
2562 # if defined(ARM32)
2563 char * addr = (char *)sc.fault_address;
2564 # else
2565 # if defined(CRIS)
2566 char * addr = (char *)sc.regs.csraddr;
2567 # else
2568 --> architecture not supported
2569 # endif
2570 # endif
2571 # endif
2572 # endif
2573 # endif
2574 # endif
2575 # endif
2576 # endif
2577 # if defined(MSWIN32) || defined(MSWINCE)
2578 char * addr = (char *) (exc_info -> ExceptionRecord
2579 -> ExceptionInformation[1]);
2580 # define sig SIGSEGV
2581 # endif
2583 if (SIG_OK && CODE_OK) {
2584 register struct hblk * h =
2585 (struct hblk *)((word)addr & ~(GC_page_size-1));
2586 GC_bool in_allocd_block;
2588 # ifdef SUNOS5SIGS
2589 /* Address is only within the correct physical page. */
2590 in_allocd_block = FALSE;
2591 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2592 if (HDR(h+i) != 0) {
2593 in_allocd_block = TRUE;
2596 # else
2597 in_allocd_block = (HDR(addr) != 0);
2598 # endif
2599 if (!in_allocd_block) {
2600 /* FIXME - We should make sure that we invoke the */
2601 /* old handler with the appropriate calling */
2602 /* sequence, which often depends on SA_SIGINFO. */
2604 /* Heap blocks now begin and end on page boundaries */
2605 SIG_PF old_handler;
2607 if (sig == SIGSEGV) {
2608 old_handler = GC_old_segv_handler;
2609 } else {
2610 old_handler = GC_old_bus_handler;
2612 if (old_handler == SIG_DFL) {
2613 # if !defined(MSWIN32) && !defined(MSWINCE)
2614 GC_err_printf1("Segfault at 0x%lx\n", addr);
2615 ABORT("Unexpected bus error or segmentation fault");
2616 # else
2617 return(EXCEPTION_CONTINUE_SEARCH);
2618 # endif
2619 } else {
2620 # if defined (SUNOS4) \
2621 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2622 (*old_handler) (sig, code, scp, addr);
2623 return;
2624 # endif
2625 # if defined (SUNOS5SIGS)
2627 * FIXME: For FreeBSD, this code should check if the
2628 * old signal handler used the traditional BSD style and
2629 * if so call it using that style.
2631 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2632 return;
2633 # endif
2634 # if defined (LINUX)
2635 # if defined(ALPHA) || defined(M68K)
2636 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2637 # else
2638 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2639 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2640 # else
2641 (*(REAL_SIG_PF)old_handler) (sig, sc);
2642 # endif
2643 # endif
2644 return;
2645 # endif
2646 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2647 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2648 return;
2649 # endif
2650 # ifdef MSWIN32
2651 return((*old_handler)(exc_info));
2652 # endif
2655 UNPROTECT(h, GC_page_size);
2656 /* We need to make sure that no collection occurs between */
2657 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2658 /* a write by a third thread might go unnoticed. Reversing */
2659 /* the order is just as bad, since we would end up unprotecting */
2660 /* a page in a GC cycle during which it's not marked. */
2661 /* Currently we do this by disabling the thread stopping */
2662 /* signals while this handler is running. An alternative might */
2663 /* be to record the fact that we're about to unprotect, or */
2664 /* have just unprotected a page in the GC's thread structure, */
2665 /* and then to have the thread stopping code set the dirty */
2666 /* flag, if necessary. */
2667 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2668 register int index = PHT_HASH(h+i);
2670 async_set_pht_entry_from_index(GC_dirty_pages, index);
2672 # if defined(OSF1)
2673 /* These reset the signal handler each time by default. */
2674 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2675 # endif
2676 /* The write may not take place before dirty bits are read. */
2677 /* But then we'll fault again ... */
2678 # if defined(MSWIN32) || defined(MSWINCE)
2679 return(EXCEPTION_CONTINUE_EXECUTION);
2680 # else
2681 return;
2682 # endif
2684 #if defined(MSWIN32) || defined(MSWINCE)
2685 return EXCEPTION_CONTINUE_SEARCH;
2686 #else
2687 GC_err_printf1("Segfault at 0x%lx\n", addr);
2688 ABORT("Unexpected bus error or segmentation fault");
2689 #endif
2691 #endif /* !DARWIN */
2694 * We hold the allocation lock. We expect block h to be written
2695 * shortly. Ensure that all pages containing any part of the n hblks
2696 * starting at h are no longer protected. If is_ptrfree is false,
2697 * also ensure that they will subsequently appear to be dirty.
2699 void GC_remove_protection(h, nblocks, is_ptrfree)
2700 struct hblk *h;
2701 word nblocks;
2702 GC_bool is_ptrfree;
2704 struct hblk * h_trunc; /* Truncated to page boundary */
2705 struct hblk * h_end; /* Page boundary following block end */
2706 struct hblk * current;
2707 GC_bool found_clean;
2709 if (!GC_dirty_maintained) return;
2710 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2711 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2712 & ~(GC_page_size-1));
2713 found_clean = FALSE;
2714 for (current = h_trunc; current < h_end; ++current) {
2715 int index = PHT_HASH(current);
2717 if (!is_ptrfree || current < h || current >= h + nblocks) {
2718 async_set_pht_entry_from_index(GC_dirty_pages, index);
2721 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2724 #if !defined(DARWIN)
2725 void GC_dirty_init()
2727 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2728 defined(OSF1) || defined(HURD)
2729 struct sigaction act, oldact;
2730 /* We should probably specify SA_SIGINFO for Linux, and handle */
2731 /* the different architectures more uniformly. */
2732 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2733 || defined(OSF1) || defined(HURD)
2734 act.sa_flags = SA_RESTART;
2735 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2736 # else
2737 act.sa_flags = SA_RESTART | SA_SIGINFO;
2738 act.sa_sigaction = GC_write_fault_handler;
2739 # endif
2740 (void)sigemptyset(&act.sa_mask);
2741 # ifdef SIG_SUSPEND
2742 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2743 /* handler. This effectively makes the handler atomic w.r.t. */
2744 /* stopping the world for GC. */
2745 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2746 # endif /* SIG_SUSPEND */
2747 # endif
2748 # ifdef PRINTSTATS
2749 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2750 # endif
2751 GC_dirty_maintained = TRUE;
2752 if (GC_page_size % HBLKSIZE != 0) {
2753 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2754 ABORT("Page size not multiple of HBLKSIZE");
2756 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2757 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2758 if (GC_old_bus_handler == SIG_IGN) {
2759 GC_err_printf0("Previously ignored bus error!?");
2760 GC_old_bus_handler = SIG_DFL;
2762 if (GC_old_bus_handler != SIG_DFL) {
2763 # ifdef PRINTSTATS
2764 GC_err_printf0("Replaced other SIGBUS handler\n");
2765 # endif
2767 # endif
2768 # if defined(SUNOS4)
2769 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2770 if (GC_old_segv_handler == SIG_IGN) {
2771 GC_err_printf0("Previously ignored segmentation violation!?");
2772 GC_old_segv_handler = SIG_DFL;
2774 if (GC_old_segv_handler != SIG_DFL) {
2775 # ifdef PRINTSTATS
2776 GC_err_printf0("Replaced other SIGSEGV handler\n");
2777 # endif
2779 # endif
2780 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2781 || defined(LINUX) || defined(OSF1) || defined(HURD)
2782 /* SUNOS5SIGS includes HPUX */
2783 # if defined(GC_IRIX_THREADS)
2784 sigaction(SIGSEGV, 0, &oldact);
2785 sigaction(SIGSEGV, &act, 0);
2786 # else
2788 int res = sigaction(SIGSEGV, &act, &oldact);
2789 if (res != 0) ABORT("Sigaction failed");
2791 # endif
2792 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2793 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2794 /* sa_sigaction. */
2795 GC_old_segv_handler = oldact.sa_handler;
2796 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2797 if (oldact.sa_flags & SA_SIGINFO) {
2798 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2799 } else {
2800 GC_old_segv_handler = oldact.sa_handler;
2802 # endif
2803 if (GC_old_segv_handler == SIG_IGN) {
2804 GC_err_printf0("Previously ignored segmentation violation!?");
2805 GC_old_segv_handler = SIG_DFL;
2807 if (GC_old_segv_handler != SIG_DFL) {
2808 # ifdef PRINTSTATS
2809 GC_err_printf0("Replaced other SIGSEGV handler\n");
2810 # endif
2812 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2813 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2814 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2815 sigaction(SIGBUS, &act, &oldact);
2816 GC_old_bus_handler = oldact.sa_handler;
2817 if (GC_old_bus_handler == SIG_IGN) {
2818 GC_err_printf0("Previously ignored bus error!?");
2819 GC_old_bus_handler = SIG_DFL;
2821 if (GC_old_bus_handler != SIG_DFL) {
2822 # ifdef PRINTSTATS
2823 GC_err_printf0("Replaced other SIGBUS handler\n");
2824 # endif
2826 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2827 # if defined(MSWIN32)
2828 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2829 if (GC_old_segv_handler != NULL) {
2830 # ifdef PRINTSTATS
2831 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2832 # endif
2833 } else {
2834 GC_old_segv_handler = SIG_DFL;
2836 # endif
2838 #endif /* !DARWIN */
2840 int GC_incremental_protection_needs()
2842 if (GC_page_size == HBLKSIZE) {
2843 return GC_PROTECTS_POINTER_HEAP;
2844 } else {
2845 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2849 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2851 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2853 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2854 void GC_protect_heap()
2856 ptr_t start;
2857 word len;
2858 struct hblk * current;
2859 struct hblk * current_start; /* Start of block to be protected. */
2860 struct hblk * limit;
2861 unsigned i;
2862 GC_bool protect_all =
2863 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2864 for (i = 0; i < GC_n_heap_sects; i++) {
2865 start = GC_heap_sects[i].hs_start;
2866 len = GC_heap_sects[i].hs_bytes;
2867 if (protect_all) {
2868 PROTECT(start, len);
2869 } else {
2870 GC_ASSERT(PAGE_ALIGNED(len))
2871 GC_ASSERT(PAGE_ALIGNED(start))
2872 current_start = current = (struct hblk *)start;
2873 limit = (struct hblk *)(start + len);
2874 while (current < limit) {
2875 hdr * hhdr;
2876 word nhblks;
2877 GC_bool is_ptrfree;
2879 GC_ASSERT(PAGE_ALIGNED(current));
2880 GET_HDR(current, hhdr);
2881 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2882 /* This can happen only if we're at the beginning of a */
2883 /* heap segment, and a block spans heap segments. */
2884 /* We will handle that block as part of the preceding */
2885 /* segment. */
2886 GC_ASSERT(current_start == current);
2887 current_start = ++current;
2888 continue;
2890 if (HBLK_IS_FREE(hhdr)) {
2891 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2892 nhblks = divHBLKSZ(hhdr -> hb_sz);
2893 is_ptrfree = TRUE; /* dirty on alloc */
2894 } else {
2895 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2896 is_ptrfree = IS_PTRFREE(hhdr);
2898 if (is_ptrfree) {
2899 if (current_start < current) {
2900 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2902 current_start = (current += nhblks);
2903 } else {
2904 current += nhblks;
2907 if (current_start < current) {
2908 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2914 /* We assume that either the world is stopped or its OK to lose dirty */
2915 /* bits while this is happenning (as in GC_enable_incremental). */
2916 void GC_read_dirty()
2918 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2919 (sizeof GC_dirty_pages));
2920 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2921 GC_protect_heap();
2924 GC_bool GC_page_was_dirty(h)
2925 struct hblk * h;
2927 register word index = PHT_HASH(h);
2929 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2933 * Acquiring the allocation lock here is dangerous, since this
2934 * can be called from within GC_call_with_alloc_lock, and the cord
2935 * package does so. On systems that allow nested lock acquisition, this
2936 * happens to work.
2937 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2940 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2942 void GC_begin_syscall()
2944 if (!I_HOLD_LOCK()) {
2945 LOCK();
2946 syscall_acquired_lock = TRUE;
2950 void GC_end_syscall()
2952 if (syscall_acquired_lock) {
2953 syscall_acquired_lock = FALSE;
2954 UNLOCK();
2958 void GC_unprotect_range(addr, len)
2959 ptr_t addr;
2960 word len;
2962 struct hblk * start_block;
2963 struct hblk * end_block;
2964 register struct hblk *h;
2965 ptr_t obj_start;
2967 if (!GC_dirty_maintained) return;
2968 obj_start = GC_base(addr);
2969 if (obj_start == 0) return;
2970 if (GC_base(addr + len - 1) != obj_start) {
2971 ABORT("GC_unprotect_range(range bigger than object)");
2973 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2974 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2975 end_block += GC_page_size/HBLKSIZE - 1;
2976 for (h = start_block; h <= end_block; h++) {
2977 register word index = PHT_HASH(h);
2979 async_set_pht_entry_from_index(GC_dirty_pages, index);
2981 UNPROTECT(start_block,
2982 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2985 #if 0
2987 /* We no longer wrap read by default, since that was causing too many */
2988 /* problems. It is preferred that the client instead avoids writing */
2989 /* to the write-protected heap with a system call. */
2990 /* This still serves as sample code if you do want to wrap system calls.*/
2992 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2993 /* Replacement for UNIX system call. */
2994 /* Other calls that write to the heap should be handled similarly. */
2995 /* Note that this doesn't work well for blocking reads: It will hold */
2996 /* the allocation lock for the entire duration of the call. Multithreaded */
2997 /* clients should really ensure that it won't block, either by setting */
2998 /* the descriptor nonblocking, or by calling select or poll first, to */
2999 /* make sure that input is available. */
3000 /* Another, preferred alternative is to ensure that system calls never */
3001 /* write to the protected heap (see above). */
3002 # if defined(__STDC__) && !defined(SUNOS4)
3003 # include <unistd.h>
3004 # include <sys/uio.h>
3005 ssize_t read(int fd, void *buf, size_t nbyte)
3006 # else
3007 # ifndef LINT
3008 int read(fd, buf, nbyte)
3009 # else
3010 int GC_read(fd, buf, nbyte)
3011 # endif
3012 int fd;
3013 char *buf;
3014 int nbyte;
3015 # endif
3017 int result;
3019 GC_begin_syscall();
3020 GC_unprotect_range(buf, (word)nbyte);
3021 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
3022 /* Indirect system call may not always be easily available. */
3023 /* We could call _read, but that would interfere with the */
3024 /* libpthread interception of read. */
3025 /* On Linux, we have to be careful with the linuxthreads */
3026 /* read interception. */
3028 struct iovec iov;
3030 iov.iov_base = buf;
3031 iov.iov_len = nbyte;
3032 result = readv(fd, &iov, 1);
3034 # else
3035 # if defined(HURD)
3036 result = __read(fd, buf, nbyte);
3037 # else
3038 /* The two zero args at the end of this list are because one
3039 IA-64 syscall() implementation actually requires six args
3040 to be passed, even though they aren't always used. */
3041 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3042 # endif /* !HURD */
3043 # endif
3044 GC_end_syscall();
3045 return(result);
3047 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3049 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3050 /* We use the GNU ld call wrapping facility. */
3051 /* This requires that the linker be invoked with "--wrap read". */
3052 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3053 /* I'm not sure that this actually wraps whatever version of read */
3054 /* is called by stdio. That code also mentions __read. */
3055 # include <unistd.h>
3056 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3058 int result;
3060 GC_begin_syscall();
3061 GC_unprotect_range(buf, (word)nbyte);
3062 result = __real_read(fd, buf, nbyte);
3063 GC_end_syscall();
3064 return(result);
3067 /* We should probably also do this for __read, or whatever stdio */
3068 /* actually calls. */
3069 #endif
3071 #endif /* 0 */
3073 /*ARGSUSED*/
3074 GC_bool GC_page_was_ever_dirty(h)
3075 struct hblk *h;
3077 return(TRUE);
3080 /* Reset the n pages starting at h to "was never dirty" status. */
3081 /*ARGSUSED*/
3082 void GC_is_fresh(h, n)
3083 struct hblk *h;
3084 word n;
3088 # endif /* MPROTECT_VDB */
3090 # ifdef PROC_VDB
3093 * See DEFAULT_VDB for interface descriptions.
3097 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3098 * from which we can read page modified bits. This facility is far from
3099 * optimal (e.g. we would like to get the info for only some of the
3100 * address space), but it avoids intercepting system calls.
3103 #include <errno.h>
3104 #include <sys/types.h>
3105 #include <sys/signal.h>
3106 #include <sys/fault.h>
3107 #include <sys/syscall.h>
3108 #include <sys/procfs.h>
3109 #include <sys/stat.h>
3111 #define INITIAL_BUF_SZ 16384
3112 word GC_proc_buf_size = INITIAL_BUF_SZ;
3113 char *GC_proc_buf;
3115 #ifdef GC_SOLARIS_THREADS
3116 /* We don't have exact sp values for threads. So we count on */
3117 /* occasionally declaring stack pages to be fresh. Thus we */
3118 /* need a real implementation of GC_is_fresh. We can't clear */
3119 /* entries in GC_written_pages, since that would declare all */
3120 /* pages with the given hash address to be fresh. */
3121 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3122 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3123 /* Collisions are dropped. */
3125 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3126 # define ADD_FRESH_PAGE(h) \
3127 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3128 # define PAGE_IS_FRESH(h) \
3129 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3130 #endif
3132 /* Add all pages in pht2 to pht1 */
3133 void GC_or_pages(pht1, pht2)
3134 page_hash_table pht1, pht2;
3136 register int i;
3138 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3141 int GC_proc_fd;
3143 void GC_dirty_init()
3145 int fd;
3146 char buf[30];
3148 GC_dirty_maintained = TRUE;
3149 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3150 register int i;
3152 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3153 # ifdef PRINTSTATS
3154 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3155 (unsigned long)
3156 (GC_words_allocd + GC_words_allocd_before_gc));
3157 # endif
3159 sprintf(buf, "/proc/%d", getpid());
3160 fd = open(buf, O_RDONLY);
3161 if (fd < 0) {
3162 ABORT("/proc open failed");
3164 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3165 close(fd);
3166 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3167 if (GC_proc_fd < 0) {
3168 ABORT("/proc ioctl failed");
3170 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3171 # ifdef GC_SOLARIS_THREADS
3172 GC_fresh_pages = (struct hblk **)
3173 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3174 if (GC_fresh_pages == 0) {
3175 GC_err_printf0("No space for fresh pages\n");
3176 EXIT();
3178 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3179 # endif
3182 /* Ignore write hints. They don't help us here. */
3183 /*ARGSUSED*/
3184 void GC_remove_protection(h, nblocks, is_ptrfree)
3185 struct hblk *h;
3186 word nblocks;
3187 GC_bool is_ptrfree;
3191 #ifdef GC_SOLARIS_THREADS
3192 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3193 #else
3194 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3195 #endif
3197 void GC_read_dirty()
3199 unsigned long ps, np;
3200 int nmaps;
3201 ptr_t vaddr;
3202 struct prasmap * map;
3203 char * bufp;
3204 ptr_t current_addr, limit;
3205 int i;
3206 int dummy;
3208 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3210 bufp = GC_proc_buf;
3211 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3212 # ifdef PRINTSTATS
3213 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3214 GC_proc_buf_size);
3215 # endif
3217 /* Retry with larger buffer. */
3218 word new_size = 2 * GC_proc_buf_size;
3219 char * new_buf = GC_scratch_alloc(new_size);
3221 if (new_buf != 0) {
3222 GC_proc_buf = bufp = new_buf;
3223 GC_proc_buf_size = new_size;
3225 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3226 WARN("Insufficient space for /proc read\n", 0);
3227 /* Punt: */
3228 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3229 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3230 # ifdef GC_SOLARIS_THREADS
3231 BZERO(GC_fresh_pages,
3232 MAX_FRESH_PAGES * sizeof (struct hblk *));
3233 # endif
3234 return;
3238 /* Copy dirty bits into GC_grungy_pages */
3239 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3240 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3241 nmaps, PG_REFERENCED, PG_MODIFIED); */
3242 bufp = bufp + sizeof(struct prpageheader);
3243 for (i = 0; i < nmaps; i++) {
3244 map = (struct prasmap *)bufp;
3245 vaddr = (ptr_t)(map -> pr_vaddr);
3246 ps = map -> pr_pagesize;
3247 np = map -> pr_npage;
3248 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3249 limit = vaddr + ps * np;
3250 bufp += sizeof (struct prasmap);
3251 for (current_addr = vaddr;
3252 current_addr < limit; current_addr += ps){
3253 if ((*bufp++) & PG_MODIFIED) {
3254 register struct hblk * h = (struct hblk *) current_addr;
3256 while ((ptr_t)h < current_addr + ps) {
3257 register word index = PHT_HASH(h);
3259 set_pht_entry_from_index(GC_grungy_pages, index);
3260 # ifdef GC_SOLARIS_THREADS
3262 register int slot = FRESH_PAGE_SLOT(h);
3264 if (GC_fresh_pages[slot] == h) {
3265 GC_fresh_pages[slot] = 0;
3268 # endif
3269 h++;
3273 bufp += sizeof(long) - 1;
3274 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3276 /* Update GC_written_pages. */
3277 GC_or_pages(GC_written_pages, GC_grungy_pages);
3278 # ifdef GC_SOLARIS_THREADS
3279 /* Make sure that old stacks are considered completely clean */
3280 /* unless written again. */
3281 GC_old_stacks_are_fresh();
3282 # endif
3285 #undef READ
3287 GC_bool GC_page_was_dirty(h)
3288 struct hblk *h;
3290 register word index = PHT_HASH(h);
3291 register GC_bool result;
3293 result = get_pht_entry_from_index(GC_grungy_pages, index);
3294 # ifdef GC_SOLARIS_THREADS
3295 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3296 /* This happens only if page was declared fresh since */
3297 /* the read_dirty call, e.g. because it's in an unused */
3298 /* thread stack. It's OK to treat it as clean, in */
3299 /* that case. And it's consistent with */
3300 /* GC_page_was_ever_dirty. */
3301 # endif
3302 return(result);
3305 GC_bool GC_page_was_ever_dirty(h)
3306 struct hblk *h;
3308 register word index = PHT_HASH(h);
3309 register GC_bool result;
3311 result = get_pht_entry_from_index(GC_written_pages, index);
3312 # ifdef GC_SOLARIS_THREADS
3313 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3314 # endif
3315 return(result);
3318 /* Caller holds allocation lock. */
3319 void GC_is_fresh(h, n)
3320 struct hblk *h;
3321 word n;
3324 register word index;
3326 # ifdef GC_SOLARIS_THREADS
3327 register word i;
3329 if (GC_fresh_pages != 0) {
3330 for (i = 0; i < n; i++) {
3331 ADD_FRESH_PAGE(h + i);
3334 # endif
3337 # endif /* PROC_VDB */
3340 # ifdef PCR_VDB
3342 # include "vd/PCR_VD.h"
3344 # define NPAGES (32*1024) /* 128 MB */
3346 PCR_VD_DB GC_grungy_bits[NPAGES];
3348 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3349 /* HBLKSIZE aligned. */
3351 void GC_dirty_init()
3353 GC_dirty_maintained = TRUE;
3354 /* For the time being, we assume the heap generally grows up */
3355 GC_vd_base = GC_heap_sects[0].hs_start;
3356 if (GC_vd_base == 0) {
3357 ABORT("Bad initial heap segment");
3359 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3360 != PCR_ERes_okay) {
3361 ABORT("dirty bit initialization failed");
3365 void GC_read_dirty()
3367 /* lazily enable dirty bits on newly added heap sects */
3369 static int onhs = 0;
3370 int nhs = GC_n_heap_sects;
3371 for( ; onhs < nhs; onhs++ ) {
3372 PCR_VD_WriteProtectEnable(
3373 GC_heap_sects[onhs].hs_start,
3374 GC_heap_sects[onhs].hs_bytes );
3379 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3380 != PCR_ERes_okay) {
3381 ABORT("dirty bit read failed");
3385 GC_bool GC_page_was_dirty(h)
3386 struct hblk *h;
3388 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3389 return(TRUE);
3391 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3394 /*ARGSUSED*/
3395 void GC_remove_protection(h, nblocks, is_ptrfree)
3396 struct hblk *h;
3397 word nblocks;
3398 GC_bool is_ptrfree;
3400 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3401 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3404 # endif /* PCR_VDB */
3406 #if defined(MPROTECT_VDB) && defined(DARWIN)
3407 /* The following sources were used as a *reference* for this exception handling
3408 code:
3409 1. Apple's mach/xnu documentation
3410 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3411 omnigroup's macosx-dev list.
3412 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3413 3. macosx-nat.c from Apple's GDB source code.
3416 /* The bug that caused all this trouble should now be fixed. This should
3417 eventually be removed if all goes well. */
3418 /* define BROKEN_EXCEPTION_HANDLING */
3420 #include <mach/mach.h>
3421 #include <mach/mach_error.h>
3422 #include <mach/thread_status.h>
3423 #include <mach/exception.h>
3424 #include <mach/task.h>
3425 #include <pthread.h>
3427 /* These are not defined in any header, although they are documented */
3428 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3429 extern kern_return_t exception_raise(
3430 mach_port_t,mach_port_t,mach_port_t,
3431 exception_type_t,exception_data_t,mach_msg_type_number_t);
3432 extern kern_return_t exception_raise_state(
3433 mach_port_t,mach_port_t,mach_port_t,
3434 exception_type_t,exception_data_t,mach_msg_type_number_t,
3435 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3436 thread_state_t,mach_msg_type_number_t*);
3437 extern kern_return_t exception_raise_state_identity(
3438 mach_port_t,mach_port_t,mach_port_t,
3439 exception_type_t,exception_data_t,mach_msg_type_number_t,
3440 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3441 thread_state_t,mach_msg_type_number_t*);
3444 #define MAX_EXCEPTION_PORTS 16
3446 static struct {
3447 mach_msg_type_number_t count;
3448 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3449 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3450 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3451 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3452 } GC_old_exc_ports;
3454 static struct {
3455 mach_port_t exception;
3456 #if defined(THREADS)
3457 mach_port_t reply;
3458 #endif
3459 } GC_ports;
3461 typedef struct {
3462 mach_msg_header_t head;
3463 } GC_msg_t;
3465 typedef enum {
3466 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3467 } GC_mprotect_state_t;
3469 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3470 but it isn't documented. Use the source and see if they
3471 should be ok. */
3472 #define ID_STOP 1
3473 #define ID_RESUME 2
3475 /* These values are only used on the reply port */
3476 #define ID_ACK 3
3478 #if defined(THREADS)
3480 GC_mprotect_state_t GC_mprotect_state;
3482 /* The following should ONLY be called when the world is stopped */
3483 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3484 struct {
3485 GC_msg_t msg;
3486 mach_msg_trailer_t trailer;
3487 } buf;
3488 mach_msg_return_t r;
3489 /* remote, local */
3490 buf.msg.head.msgh_bits =
3491 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3492 buf.msg.head.msgh_size = sizeof(buf.msg);
3493 buf.msg.head.msgh_remote_port = GC_ports.exception;
3494 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3495 buf.msg.head.msgh_id = id;
3497 r = mach_msg(
3498 &buf.msg.head,
3499 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3500 sizeof(buf.msg),
3501 sizeof(buf),
3502 GC_ports.reply,
3503 MACH_MSG_TIMEOUT_NONE,
3504 MACH_PORT_NULL);
3505 if(r != MACH_MSG_SUCCESS)
3506 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3507 if(buf.msg.head.msgh_id != ID_ACK)
3508 ABORT("invalid ack in GC_mprotect_thread_notify");
3511 /* Should only be called by the mprotect thread */
3512 static void GC_mprotect_thread_reply() {
3513 GC_msg_t msg;
3514 mach_msg_return_t r;
3515 /* remote, local */
3516 msg.head.msgh_bits =
3517 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3518 msg.head.msgh_size = sizeof(msg);
3519 msg.head.msgh_remote_port = GC_ports.reply;
3520 msg.head.msgh_local_port = MACH_PORT_NULL;
3521 msg.head.msgh_id = ID_ACK;
3523 r = mach_msg(
3524 &msg.head,
3525 MACH_SEND_MSG,
3526 sizeof(msg),
3528 MACH_PORT_NULL,
3529 MACH_MSG_TIMEOUT_NONE,
3530 MACH_PORT_NULL);
3531 if(r != MACH_MSG_SUCCESS)
3532 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3535 void GC_mprotect_stop() {
3536 GC_mprotect_thread_notify(ID_STOP);
3538 void GC_mprotect_resume() {
3539 GC_mprotect_thread_notify(ID_RESUME);
3542 #else /* !THREADS */
3543 /* The compiler should optimize away any GC_mprotect_state computations */
3544 #define GC_mprotect_state GC_MP_NORMAL
3545 #endif
3547 static void *GC_mprotect_thread(void *arg) {
3548 mach_msg_return_t r;
3549 /* These two structures contain some private kernel data. We don't need to
3550 access any of it so we don't bother defining a proper struct. The
3551 correct definitions are in the xnu source code. */
3552 struct {
3553 mach_msg_header_t head;
3554 char data[256];
3555 } reply;
3556 struct {
3557 mach_msg_header_t head;
3558 mach_msg_body_t msgh_body;
3559 char data[1024];
3560 } msg;
3562 mach_msg_id_t id;
3564 GC_darwin_register_mach_handler_thread(mach_thread_self());
3566 for(;;) {
3567 r = mach_msg(
3568 &msg.head,
3569 MACH_RCV_MSG|MACH_RCV_LARGE|
3570 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3572 sizeof(msg),
3573 GC_ports.exception,
3574 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3575 MACH_PORT_NULL);
3577 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3579 #if defined(THREADS)
3580 if(GC_mprotect_state == GC_MP_DISCARDING) {
3581 if(r == MACH_RCV_TIMED_OUT) {
3582 GC_mprotect_state = GC_MP_STOPPED;
3583 GC_mprotect_thread_reply();
3584 continue;
3586 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3587 ABORT("out of order mprotect thread request");
3589 #endif
3591 if(r != MACH_MSG_SUCCESS) {
3592 GC_err_printf2("mach_msg failed with %d %s\n",
3593 (int)r,mach_error_string(r));
3594 ABORT("mach_msg failed");
3597 switch(id) {
3598 #if defined(THREADS)
3599 case ID_STOP:
3600 if(GC_mprotect_state != GC_MP_NORMAL)
3601 ABORT("Called mprotect_stop when state wasn't normal");
3602 GC_mprotect_state = GC_MP_DISCARDING;
3603 break;
3604 case ID_RESUME:
3605 if(GC_mprotect_state != GC_MP_STOPPED)
3606 ABORT("Called mprotect_resume when state wasn't stopped");
3607 GC_mprotect_state = GC_MP_NORMAL;
3608 GC_mprotect_thread_reply();
3609 break;
3610 #endif /* THREADS */
3611 default:
3612 /* Handle the message (calls catch_exception_raise) */
3613 if(!exc_server(&msg.head,&reply.head))
3614 ABORT("exc_server failed");
3615 /* Send the reply */
3616 r = mach_msg(
3617 &reply.head,
3618 MACH_SEND_MSG,
3619 reply.head.msgh_size,
3621 MACH_PORT_NULL,
3622 MACH_MSG_TIMEOUT_NONE,
3623 MACH_PORT_NULL);
3624 if(r != MACH_MSG_SUCCESS) {
3625 /* This will fail if the thread dies, but the thread shouldn't
3626 die... */
3627 #ifdef BROKEN_EXCEPTION_HANDLING
3628 GC_err_printf2(
3629 "mach_msg failed with %d %s while sending exc reply\n",
3630 (int)r,mach_error_string(r));
3631 #else
3632 ABORT("mach_msg failed while sending exception reply");
3633 #endif
3635 } /* switch */
3636 } /* for(;;) */
3637 /* NOT REACHED */
3638 return NULL;
3641 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3642 be going throught the mach exception handler. However, it seems a SIGBUS is
3643 occasionally sent for some unknown reason. Even more odd, it seems to be
3644 meaningless and safe to ignore. */
3645 #ifdef BROKEN_EXCEPTION_HANDLING
3647 typedef void (* SIG_PF)();
3648 static SIG_PF GC_old_bus_handler;
3650 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3651 Even if this doesn't get updated property, it isn't really a problem */
3652 static int GC_sigbus_count;
3654 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3655 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3657 /* Ugh... some seem safe to ignore, but too many in a row probably means
3658 trouble. GC_sigbus_count is reset for each mach exception that is
3659 handled */
3660 if(GC_sigbus_count >= 8) {
3661 ABORT("Got more than 8 SIGBUSs in a row!");
3662 } else {
3663 GC_sigbus_count++;
3664 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3667 #endif /* BROKEN_EXCEPTION_HANDLING */
3669 void GC_dirty_init() {
3670 kern_return_t r;
3671 mach_port_t me;
3672 pthread_t thread;
3673 pthread_attr_t attr;
3674 exception_mask_t mask;
3676 # ifdef PRINTSTATS
3677 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3678 "implementation\n");
3679 # endif
3680 # ifdef BROKEN_EXCEPTION_HANDLING
3681 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3682 "exception handling bugs.\n");
3683 # endif
3684 GC_dirty_maintained = TRUE;
3685 if (GC_page_size % HBLKSIZE != 0) {
3686 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3687 ABORT("Page size not multiple of HBLKSIZE");
3690 GC_task_self = me = mach_task_self();
3692 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3693 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3695 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3696 MACH_MSG_TYPE_MAKE_SEND);
3697 if(r != KERN_SUCCESS)
3698 ABORT("mach_port_insert_right failed (exception port)");
3700 #if defined(THREADS)
3701 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3702 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3703 #endif
3705 /* The exceptions we want to catch */
3706 mask = EXC_MASK_BAD_ACCESS;
3708 r = task_get_exception_ports(
3710 mask,
3711 GC_old_exc_ports.masks,
3712 &GC_old_exc_ports.count,
3713 GC_old_exc_ports.ports,
3714 GC_old_exc_ports.behaviors,
3715 GC_old_exc_ports.flavors
3717 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3719 r = task_set_exception_ports(
3721 mask,
3722 GC_ports.exception,
3723 EXCEPTION_DEFAULT,
3724 GC_MACH_THREAD_STATE_FLAVOR
3726 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3728 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3729 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3730 ABORT("pthread_attr_setdetachedstate failed");
3732 # undef pthread_create
3733 /* This will call the real pthread function, not our wrapper */
3734 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3735 ABORT("pthread_create failed");
3736 pthread_attr_destroy(&attr);
3738 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3739 #ifdef BROKEN_EXCEPTION_HANDLING
3741 struct sigaction sa, oldsa;
3742 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3743 sigemptyset(&sa.sa_mask);
3744 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3745 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3746 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3747 if (GC_old_bus_handler != SIG_DFL) {
3748 # ifdef PRINTSTATS
3749 GC_err_printf0("Replaced other SIGBUS handler\n");
3750 # endif
3753 #endif /* BROKEN_EXCEPTION_HANDLING */
3756 /* The source code for Apple's GDB was used as a reference for the exception
3757 forwarding code. This code is similar to be GDB code only because there is
3758 only one way to do it. */
3759 static kern_return_t GC_forward_exception(
3760 mach_port_t thread,
3761 mach_port_t task,
3762 exception_type_t exception,
3763 exception_data_t data,
3764 mach_msg_type_number_t data_count
3766 int i;
3767 kern_return_t r;
3768 mach_port_t port;
3769 exception_behavior_t behavior;
3770 thread_state_flavor_t flavor;
3772 thread_state_t thread_state;
3773 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3775 for(i=0;i<GC_old_exc_ports.count;i++)
3776 if(GC_old_exc_ports.masks[i] & (1 << exception))
3777 break;
3778 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3780 port = GC_old_exc_ports.ports[i];
3781 behavior = GC_old_exc_ports.behaviors[i];
3782 flavor = GC_old_exc_ports.flavors[i];
3784 if(behavior != EXCEPTION_DEFAULT) {
3785 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3786 if(r != KERN_SUCCESS)
3787 ABORT("thread_get_state failed in forward_exception");
3790 switch(behavior) {
3791 case EXCEPTION_DEFAULT:
3792 r = exception_raise(port,thread,task,exception,data,data_count);
3793 break;
3794 case EXCEPTION_STATE:
3795 r = exception_raise_state(port,thread,task,exception,data,
3796 data_count,&flavor,thread_state,thread_state_count,
3797 thread_state,&thread_state_count);
3798 break;
3799 case EXCEPTION_STATE_IDENTITY:
3800 r = exception_raise_state_identity(port,thread,task,exception,data,
3801 data_count,&flavor,thread_state,thread_state_count,
3802 thread_state,&thread_state_count);
3803 break;
3804 default:
3805 r = KERN_FAILURE; /* make gcc happy */
3806 ABORT("forward_exception: unknown behavior");
3807 break;
3810 if(behavior != EXCEPTION_DEFAULT) {
3811 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3812 if(r != KERN_SUCCESS)
3813 ABORT("thread_set_state failed in forward_exception");
3816 return r;
3819 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3821 /* This violates the namespace rules but there isn't anything that can be done
3822 about it. The exception handling stuff is hard coded to call this */
3823 kern_return_t
3824 catch_exception_raise(
3825 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3826 exception_type_t exception,exception_data_t code,
3827 mach_msg_type_number_t code_count
3829 kern_return_t r;
3830 char *addr;
3831 struct hblk *h;
3832 int i;
3833 # if defined(POWERPC)
3834 # if CPP_WORDSZ == 32
3835 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3836 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3837 ppc_exception_state_t exc_state;
3838 # else
3839 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3840 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3841 ppc_exception_state64_t exc_state;
3842 # endif
3843 # elif defined(I386)
3844 thread_state_flavor_t flavor = i386_EXCEPTION_STATE;
3845 mach_msg_type_number_t exc_state_count = i386_EXCEPTION_STATE_COUNT;
3846 i386_exception_state_t exc_state;
3847 # else
3848 # error FIXME for non-ppc darwin
3849 # endif
3852 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3853 #ifdef DEBUG_EXCEPTION_HANDLING
3854 /* We aren't interested, pass it on to the old handler */
3855 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3856 exception,
3857 code_count > 0 ? code[0] : -1,
3858 code_count > 1 ? code[1] : -1);
3859 #endif
3860 return FWD();
3863 r = thread_get_state(thread,flavor,
3864 (natural_t*)&exc_state,&exc_state_count);
3865 if(r != KERN_SUCCESS) {
3866 /* The thread is supposed to be suspended while the exception handler
3867 is called. This shouldn't fail. */
3868 #ifdef BROKEN_EXCEPTION_HANDLING
3869 GC_err_printf0("thread_get_state failed in "
3870 "catch_exception_raise\n");
3871 return KERN_SUCCESS;
3872 #else
3873 ABORT("thread_get_state failed in catch_exception_raise");
3874 #endif
3877 /* This is the address that caused the fault */
3878 #if defined(POWERPC)
3879 addr = (char*) exc_state.dar;
3880 #elif defined (I386)
3881 addr = (char*) exc_state.faultvaddr;
3882 #else
3883 # error FIXME for non POWERPC/I386
3884 #endif
3886 if((HDR(addr)) == 0) {
3887 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3888 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3889 a bunch in a row before doing anything about it. If a "real" fault
3890 ever occurres it'll just keep faulting over and over and we'll hit
3891 the limit pretty quickly. */
3892 #ifdef BROKEN_EXCEPTION_HANDLING
3893 static char *last_fault;
3894 static int last_fault_count;
3896 if(addr != last_fault) {
3897 last_fault = addr;
3898 last_fault_count = 0;
3900 if(++last_fault_count < 32) {
3901 if(last_fault_count == 1)
3902 GC_err_printf1(
3903 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3904 addr);
3905 return KERN_SUCCESS;
3908 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3909 /* Can't pass it along to the signal handler because that is
3910 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3911 signals don't always work too well from the exception handler. */
3912 GC_err_printf0("Aborting\n");
3913 exit(EXIT_FAILURE);
3914 #else /* BROKEN_EXCEPTION_HANDLING */
3915 /* Pass it along to the next exception handler
3916 (which should call SIGBUS/SIGSEGV) */
3917 return FWD();
3918 #endif /* !BROKEN_EXCEPTION_HANDLING */
3921 #ifdef BROKEN_EXCEPTION_HANDLING
3922 /* Reset the number of consecutive SIGBUSs */
3923 GC_sigbus_count = 0;
3924 #endif
3926 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3927 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3928 UNPROTECT(h, GC_page_size);
3929 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3930 register int index = PHT_HASH(h+i);
3931 async_set_pht_entry_from_index(GC_dirty_pages, index);
3933 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3934 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3935 when we're just going to PROTECT() it again later. The thread
3936 will just fault again once it resumes */
3937 } else {
3938 /* Shouldn't happen, i don't think */
3939 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3940 return FWD();
3942 return KERN_SUCCESS;
3944 #undef FWD
3946 /* These should never be called, but just in case... */
3947 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3948 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3949 int flavor, thread_state_t old_state, int old_stateCnt,
3950 thread_state_t new_state, int new_stateCnt)
3952 ABORT("catch_exception_raise_state");
3953 return(KERN_INVALID_ARGUMENT);
3955 kern_return_t catch_exception_raise_state_identity(
3956 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3957 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3958 int flavor, thread_state_t old_state, int old_stateCnt,
3959 thread_state_t new_state, int new_stateCnt)
3961 ABORT("catch_exception_raise_state_identity");
3962 return(KERN_INVALID_ARGUMENT);
3966 #endif /* DARWIN && MPROTECT_VDB */
3968 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3969 int GC_incremental_protection_needs()
3971 return GC_PROTECTS_NONE;
3973 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3976 * Call stack save code for debugging.
3977 * Should probably be in mach_dep.c, but that requires reorganization.
3980 /* I suspect the following works for most X86 *nix variants, so */
3981 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3982 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3983 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3984 # include <features.h>
3986 struct frame {
3987 struct frame *fr_savfp;
3988 long fr_savpc;
3989 long fr_arg[NARGS]; /* All the arguments go here. */
3991 #endif
3993 #if defined(SPARC)
3994 # if defined(LINUX)
3995 # include <features.h>
3997 struct frame {
3998 long fr_local[8];
3999 long fr_arg[6];
4000 struct frame *fr_savfp;
4001 long fr_savpc;
4002 # ifndef __arch64__
4003 char *fr_stret;
4004 # endif
4005 long fr_argd[6];
4006 long fr_argx[0];
4008 # else
4009 # if defined(SUNOS4)
4010 # include <machine/frame.h>
4011 # else
4012 # if defined (DRSNX)
4013 # include <sys/sparc/frame.h>
4014 # else
4015 # if defined(OPENBSD)
4016 # include <frame.h>
4017 # else
4018 # if defined(FREEBSD) || defined(NETBSD)
4019 # include <machine/frame.h>
4020 # else
4021 # include <sys/frame.h>
4022 # endif
4023 # endif
4024 # endif
4025 # endif
4026 # endif
4027 # if NARGS > 6
4028 --> We only know how to to get the first 6 arguments
4029 # endif
4030 #endif /* SPARC */
4032 #ifdef NEED_CALLINFO
4033 /* Fill in the pc and argument information for up to NFRAMES of my */
4034 /* callers. Ignore my frame and my callers frame. */
4036 #ifdef LINUX
4037 # include <unistd.h>
4038 #endif
4040 #endif /* NEED_CALLINFO */
4042 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4043 # include <execinfo.h>
4044 #endif
4046 #ifdef SAVE_CALL_CHAIN
4048 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4049 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4051 #ifdef REDIRECT_MALLOC
4052 /* Deal with possible malloc calls in backtrace by omitting */
4053 /* the infinitely recursing backtrace. */
4054 # ifdef THREADS
4055 __thread /* If your compiler doesn't understand this */
4056 /* you could use something like pthread_getspecific. */
4057 # endif
4058 GC_in_save_callers = FALSE;
4059 #endif
4061 void GC_save_callers (info)
4062 struct callinfo info[NFRAMES];
4064 void * tmp_info[NFRAMES + 1];
4065 int npcs, i;
4066 # define IGNORE_FRAMES 1
4068 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4069 /* points to our own frame. */
4070 # ifdef REDIRECT_MALLOC
4071 if (GC_in_save_callers) {
4072 info[0].ci_pc = (word)(&GC_save_callers);
4073 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4074 return;
4076 GC_in_save_callers = TRUE;
4077 # endif
4078 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4079 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4080 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4081 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4082 # ifdef REDIRECT_MALLOC
4083 GC_in_save_callers = FALSE;
4084 # endif
4087 #else /* No builtin backtrace; do it ourselves */
4089 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4090 # define FR_SAVFP fr_fp
4091 # define FR_SAVPC fr_pc
4092 #else
4093 # define FR_SAVFP fr_savfp
4094 # define FR_SAVPC fr_savpc
4095 #endif
4097 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4098 # define BIAS 2047
4099 #else
4100 # define BIAS 0
4101 #endif
4103 void GC_save_callers (info)
4104 struct callinfo info[NFRAMES];
4106 struct frame *frame;
4107 struct frame *fp;
4108 int nframes = 0;
4109 # ifdef I386
4110 /* We assume this is turned on only with gcc as the compiler. */
4111 asm("movl %%ebp,%0" : "=r"(frame));
4112 fp = frame;
4113 # else
4114 frame = (struct frame *) GC_save_regs_in_stack ();
4115 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4116 #endif
4118 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4119 && (nframes < NFRAMES));
4120 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4121 register int i;
4123 info[nframes].ci_pc = fp->FR_SAVPC;
4124 # if NARGS > 0
4125 for (i = 0; i < NARGS; i++) {
4126 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4128 # endif /* NARGS > 0 */
4130 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4133 #endif /* No builtin backtrace */
4135 #endif /* SAVE_CALL_CHAIN */
4137 #ifdef NEED_CALLINFO
4139 /* Print info to stderr. We do NOT hold the allocation lock */
4140 void GC_print_callers (info)
4141 struct callinfo info[NFRAMES];
4143 register int i;
4144 static int reentry_count = 0;
4145 GC_bool stop = FALSE;
4147 /* FIXME: This should probably use a different lock, so that we */
4148 /* become callable with or without the allocation lock. */
4149 LOCK();
4150 ++reentry_count;
4151 UNLOCK();
4153 # if NFRAMES == 1
4154 GC_err_printf0("\tCaller at allocation:\n");
4155 # else
4156 GC_err_printf0("\tCall chain at allocation:\n");
4157 # endif
4158 for (i = 0; i < NFRAMES && !stop ; i++) {
4159 if (info[i].ci_pc == 0) break;
4160 # if NARGS > 0
4162 int j;
4164 GC_err_printf0("\t\targs: ");
4165 for (j = 0; j < NARGS; j++) {
4166 if (j != 0) GC_err_printf0(", ");
4167 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4168 ~(info[i].ci_arg[j]));
4170 GC_err_printf0("\n");
4172 # endif
4173 if (reentry_count > 1) {
4174 /* We were called during an allocation during */
4175 /* a previous GC_print_callers call; punt. */
4176 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4177 continue;
4180 # ifdef LINUX
4181 FILE *pipe;
4182 # endif
4183 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4184 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4185 char **sym_name =
4186 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4187 char *name = sym_name[0];
4188 # else
4189 char buf[40];
4190 char *name = buf;
4191 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4192 # endif
4193 # if defined(LINUX) && !defined(SMALL_CONFIG)
4194 /* Try for a line number. */
4196 # define EXE_SZ 100
4197 static char exe_name[EXE_SZ];
4198 # define CMD_SZ 200
4199 char cmd_buf[CMD_SZ];
4200 # define RESULT_SZ 200
4201 static char result_buf[RESULT_SZ];
4202 size_t result_len;
4203 char *old_preload;
4204 # define PRELOAD_SZ 200
4205 char preload_buf[PRELOAD_SZ];
4206 static GC_bool found_exe_name = FALSE;
4207 static GC_bool will_fail = FALSE;
4208 int ret_code;
4209 /* Try to get it via a hairy and expensive scheme. */
4210 /* First we get the name of the executable: */
4211 if (will_fail) goto out;
4212 if (!found_exe_name) {
4213 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4214 if (ret_code < 0 || ret_code >= EXE_SZ
4215 || exe_name[0] != '/') {
4216 will_fail = TRUE; /* Dont try again. */
4217 goto out;
4219 exe_name[ret_code] = '\0';
4220 found_exe_name = TRUE;
4222 /* Then we use popen to start addr2line -e <exe> <addr> */
4223 /* There are faster ways to do this, but hopefully this */
4224 /* isn't time critical. */
4225 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4226 (unsigned long)info[i].ci_pc);
4227 old_preload = getenv ("LD_PRELOAD");
4228 if (0 != old_preload) {
4229 if (strlen (old_preload) >= PRELOAD_SZ) {
4230 will_fail = TRUE;
4231 goto out;
4233 strcpy (preload_buf, old_preload);
4234 unsetenv ("LD_PRELOAD");
4236 pipe = popen(cmd_buf, "r");
4237 if (0 != old_preload
4238 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4239 WARN("Failed to reset LD_PRELOAD\n", 0);
4241 if (pipe == NULL
4242 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4243 == 0) {
4244 if (pipe != NULL) pclose(pipe);
4245 will_fail = TRUE;
4246 goto out;
4248 if (result_buf[result_len - 1] == '\n') --result_len;
4249 result_buf[result_len] = 0;
4250 if (result_buf[0] == '?'
4251 || result_buf[result_len-2] == ':'
4252 && result_buf[result_len-1] == '0') {
4253 pclose(pipe);
4254 goto out;
4256 /* Get rid of embedded newline, if any. Test for "main" */
4258 char * nl = strchr(result_buf, '\n');
4259 if (nl != NULL && nl < result_buf + result_len) {
4260 *nl = ':';
4262 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4263 stop = TRUE;
4266 if (result_len < RESULT_SZ - 25) {
4267 /* Add in hex address */
4268 sprintf(result_buf + result_len, " [0x%lx]",
4269 (unsigned long)info[i].ci_pc);
4271 name = result_buf;
4272 pclose(pipe);
4273 out:;
4275 # endif /* LINUX */
4276 GC_err_printf1("\t\t%s\n", name);
4277 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4278 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4279 free(sym_name); /* May call GC_free; that's OK */
4280 # endif
4283 LOCK();
4284 --reentry_count;
4285 UNLOCK();
4288 #endif /* NEED_CALLINFO */
4292 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4294 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4295 addresses in FIND_LEAK output. */
4297 static word dump_maps(char *maps)
4299 GC_err_write(maps, strlen(maps));
4300 return 1;
4303 void GC_print_address_map()
4305 GC_err_printf0("---------- Begin address map ----------\n");
4306 GC_apply_to_maps(dump_maps);
4307 GC_err_printf0("---------- End address map ----------\n");
4310 #endif