move the call to mono_gc_base_init into mono_debug_init
[mono-project/dkf.git] / mono / metadata / sgen-gc.h
blob5e99839fdaeae6de33212011802bc51669921c0a
1 /*
2 * Copyright 2001-2003 Ximian, Inc
3 * Copyright 2003-2010 Novell, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * The above copyright notice and this permission notice shall be
14 * included in all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 #ifndef __MONO_SGENGC_H__
25 #define __MONO_SGENGC_H__
27 /* pthread impl */
28 #include "config.h"
29 #include <glib.h>
30 #include <pthread.h>
31 #include <signal.h>
32 #include <mono/utils/mono-compiler.h>
33 #include <mono/metadata/class-internals.h>
34 #include <mono/metadata/object-internals.h>
37 * Turning on heavy statistics will turn off the managed allocator and
38 * the managed write barrier.
40 //#define HEAVY_STATISTICS
43 * If this is set, the nursery is aligned to an address aligned to its size, ie.
44 * a 1MB nursery will be aligned to an address divisible by 1MB. This allows us to
45 * speed up ptr_in_nursery () checks which are very frequent. This requires the
46 * nursery size to be a compile time constant.
48 #define SGEN_ALIGN_NURSERY 1
50 //#define SGEN_BINARY_PROTOCOL
52 #define SGEN_MAX_DEBUG_LEVEL 2
54 #define THREAD_HASH_SIZE 11
56 #define GC_BITS_PER_WORD (sizeof (mword) * 8)
58 #define ARCH_THREAD_TYPE pthread_t
59 #define ARCH_GET_THREAD pthread_self
60 #define ARCH_THREAD_EQUALS(a,b) pthread_equal (a, b)
62 #if SIZEOF_VOID_P == 4
63 typedef guint32 mword;
64 #else
65 typedef guint64 mword;
66 #endif
68 /* for use with write barriers */
69 typedef struct _RememberedSet RememberedSet;
70 struct _RememberedSet {
71 mword *store_next;
72 mword *end_set;
73 RememberedSet *next;
74 mword data [MONO_ZERO_LEN_ARRAY];
77 /* eventually share with MonoThread? */
78 typedef struct _SgenThreadInfo SgenThreadInfo;
80 struct _SgenThreadInfo {
81 SgenThreadInfo *next;
82 ARCH_THREAD_TYPE id;
83 unsigned int stop_count; /* to catch duplicate signals */
84 int signal;
85 int skip;
86 volatile int in_critical_region;
87 void *stack_end;
88 void *stack_start;
89 void *stack_start_limit;
90 char **tlab_next_addr;
91 char **tlab_start_addr;
92 char **tlab_temp_end_addr;
93 char **tlab_real_end_addr;
94 gpointer **store_remset_buffer_addr;
95 long *store_remset_buffer_index_addr;
96 RememberedSet *remset;
97 gpointer runtime_data;
98 gpointer stopped_ip; /* only valid if the thread is stopped */
99 MonoDomain *stopped_domain; /* ditto */
100 gpointer *stopped_regs; /* ditto */
101 #ifndef HAVE_KW_THREAD
102 char *tlab_start;
103 char *tlab_next;
104 char *tlab_temp_end;
105 char *tlab_real_end;
106 gpointer *store_remset_buffer;
107 long store_remset_buffer_index;
108 #endif
111 enum {
112 MEMORY_ROLE_GEN0,
113 MEMORY_ROLE_GEN1,
114 MEMORY_ROLE_PINNED,
115 MEMORY_ROLE_INTERNAL
118 typedef struct _SgenBlock SgenBlock;
119 struct _SgenBlock {
120 void *next;
121 unsigned char role;
125 * The nursery section and the major copying collector's sections use
126 * this struct.
128 typedef struct _GCMemSection GCMemSection;
129 struct _GCMemSection {
130 SgenBlock block;
131 char *data;
132 mword size;
133 /* pointer where more data could be allocated if it fits */
134 char *next_data;
135 char *end_data;
137 * scan starts is an array of pointers to objects equally spaced in the allocation area
138 * They let use quickly find pinned objects from pinning pointers.
140 char **scan_starts;
141 /* in major collections indexes in the pin_queue for objects that pin this section */
142 void **pin_queue_start;
143 int pin_queue_num_entries;
144 unsigned short num_scan_start;
145 gboolean is_to_space;
148 #define SGEN_SIZEOF_GC_MEM_SECTION ((sizeof (GCMemSection) + 7) & ~7)
151 * to quickly find the head of an object pinned by a conservative
152 * address we keep track of the objects allocated for each
153 * SGEN_SCAN_START_SIZE memory chunk in the nursery or other memory
154 * sections. Larger values have less memory overhead and bigger
155 * runtime cost. 4-8 KB are reasonable values.
157 #define SGEN_SCAN_START_SIZE (4096*2)
160 * Objects bigger then this go into the large object space. This size
161 * has a few constraints. It must fit into the major heap, which in
162 * the case of the copying collector means that it must fit into a
163 * pinned chunk. It must also play well with the GC descriptors, some
164 * of which (DESC_TYPE_RUN_LENGTH, DESC_TYPE_SMALL_BITMAP) encode the
165 * object size.
167 #define SGEN_MAX_SMALL_OBJ_SIZE 8000
169 /* This is also the MAJOR_SECTION_SIZE for the copying major
170 collector */
171 #define SGEN_PINNED_CHUNK_SIZE (128 * 1024)
173 #define SGEN_PINNED_CHUNK_FOR_PTR(o) ((SgenBlock*)(((mword)(o)) & ~(SGEN_PINNED_CHUNK_SIZE - 1)))
175 typedef struct _SgenPinnedChunk SgenPinnedChunk;
177 #if defined(__APPLE__) || defined(__OpenBSD__)
178 const static int suspend_signal_num = SIGXFSZ;
179 #else
180 const static int suspend_signal_num = SIGPWR;
181 #endif
182 const static int restart_signal_num = SIGXCPU;
185 * Recursion is not allowed for the thread lock.
187 #define LOCK_DECLARE(name) pthread_mutex_t name = PTHREAD_MUTEX_INITIALIZER
188 /* if changing LOCK_INIT to something that isn't idempotent, look at
189 its use in mono_gc_base_init in sgen-gc.c */
190 #define LOCK_INIT(name)
191 #define LOCK_GC pthread_mutex_lock (&gc_mutex)
192 #define UNLOCK_GC pthread_mutex_unlock (&gc_mutex)
193 #define LOCK_INTERRUPTION pthread_mutex_lock (&interruption_mutex)
194 #define UNLOCK_INTERRUPTION pthread_mutex_unlock (&interruption_mutex)
196 #define SGEN_CAS_PTR InterlockedCompareExchangePointer
197 #define SGEN_ATOMIC_ADD(x,i) do { \
198 int __old_x; \
199 do { \
200 __old_x = (x); \
201 } while (InterlockedCompareExchange (&(x), __old_x + (i), __old_x) != __old_x); \
202 } while (0)
204 /* non-pthread will need to provide their own version of start/stop */
205 #define USE_SIGNAL_BASED_START_STOP_WORLD 1
206 /* we intercept pthread_create calls to know which threads exist */
207 #define USE_PTHREAD_INTERCEPT 1
209 #ifdef HEAVY_STATISTICS
210 #define HEAVY_STAT(x) x
212 extern long long stat_objects_alloced_degraded;
213 extern long long stat_bytes_alloced_degraded;
214 extern long long stat_copy_object_called_major;
215 extern long long stat_objects_copied_major;
216 #else
217 #define HEAVY_STAT(x)
218 #endif
220 #define SGEN_ALLOC_ALIGN 8
221 #define SGEN_ALLOC_ALIGN_BITS 3
223 #define SGEN_ALIGN_UP(s) (((s)+(SGEN_ALLOC_ALIGN-1)) & ~(SGEN_ALLOC_ALIGN-1))
225 #ifdef SGEN_ALIGN_NURSERY
226 #define SGEN_PTR_IN_NURSERY(p,bits,start,end) (((mword)(p) & ~((1 << (bits)) - 1)) == (mword)(start))
227 #else
228 #define SGEN_PTR_IN_NURSERY(p,bits,start,end) ((char*)(p) >= (start) && (char*)(p) < (end))
229 #endif
231 /* Structure that corresponds to a MonoVTable: desc is a mword so requires
232 * no cast from a pointer to an integer
234 typedef struct {
235 MonoClass *klass;
236 mword desc;
237 } GCVTable;
239 /* these bits are set in the object vtable: we could merge them since an object can be
240 * either pinned or forwarded but not both.
241 * We store them in the vtable slot because the bits are used in the sync block for
242 * other purposes: if we merge them and alloc the sync blocks aligned to 8 bytes, we can change
243 * this and use bit 3 in the syncblock (with the lower two bits both set for forwarded, that
244 * would be an invalid combination for the monitor and hash code).
245 * The values are already shifted.
246 * The forwarding address is stored in the sync block.
248 #define SGEN_FORWARDED_BIT 1
249 #define SGEN_PINNED_BIT 2
250 #define SGEN_VTABLE_BITS_MASK 0x3
252 /* returns NULL if not forwarded, or the forwarded address */
253 #define SGEN_OBJECT_IS_FORWARDED(obj) (((mword*)(obj))[0] & SGEN_FORWARDED_BIT ? (void*)(((mword*)(obj))[0] & ~SGEN_VTABLE_BITS_MASK) : NULL)
254 #define SGEN_OBJECT_IS_PINNED(obj) (((mword*)(obj))[0] & SGEN_PINNED_BIT)
256 /* set the forwarded address fw_addr for object obj */
257 #define SGEN_FORWARD_OBJECT(obj,fw_addr) do { \
258 ((mword*)(obj))[0] = (mword)(fw_addr) | SGEN_FORWARDED_BIT; \
259 } while (0)
260 #define SGEN_PIN_OBJECT(obj) do { \
261 ((mword*)(obj))[0] |= SGEN_PINNED_BIT; \
262 } while (0)
263 #define SGEN_UNPIN_OBJECT(obj) do { \
264 ((mword*)(obj))[0] &= ~SGEN_PINNED_BIT; \
265 } while (0)
268 * Since we set bits in the vtable, use the macro to load it from the pointer to
269 * an object that is potentially pinned.
271 #define SGEN_LOAD_VTABLE(addr) ((*(mword*)(addr)) & ~SGEN_VTABLE_BITS_MASK)
274 * ######################################################################
275 * ######## GC descriptors
276 * ######################################################################
277 * Used to quickly get the info the GC needs about an object: size and
278 * where the references are held.
280 #define OBJECT_HEADER_WORDS (sizeof(MonoObject)/sizeof(gpointer))
281 #define LOW_TYPE_BITS 3
282 #define SMALL_BITMAP_SHIFT 16
283 #define SMALL_BITMAP_SIZE (GC_BITS_PER_WORD - SMALL_BITMAP_SHIFT)
284 #define VECTOR_INFO_SHIFT 14
285 #define VECTOR_ELSIZE_SHIFT 3
286 #define LARGE_BITMAP_SIZE (GC_BITS_PER_WORD - LOW_TYPE_BITS)
287 #define MAX_ELEMENT_SIZE 0x3ff
288 #define VECTOR_SUBTYPE_PTRFREE (DESC_TYPE_V_PTRFREE << VECTOR_INFO_SHIFT)
289 #define VECTOR_SUBTYPE_REFS (DESC_TYPE_V_REFS << VECTOR_INFO_SHIFT)
290 #define VECTOR_SUBTYPE_RUN_LEN (DESC_TYPE_V_RUN_LEN << VECTOR_INFO_SHIFT)
291 #define VECTOR_SUBTYPE_BITMAP (DESC_TYPE_V_BITMAP << VECTOR_INFO_SHIFT)
293 /* objects are aligned to 8 bytes boundaries
294 * A descriptor is a pointer in MonoVTable, so 32 or 64 bits of size.
295 * The low 3 bits define the type of the descriptor. The other bits
296 * depend on the type.
297 * As a general rule the 13 remaining low bits define the size, either
298 * of the whole object or of the elements in the arrays. While for objects
299 * the size is already in bytes, for arrays we need to shift, because
300 * array elements might be smaller than 8 bytes. In case of arrays, we
301 * use two bits to describe what the additional high bits represents,
302 * so the default behaviour can handle element sizes less than 2048 bytes.
303 * The high 16 bits, if 0 it means the object is pointer-free.
304 * This design should make it easy and fast to skip over ptr-free data.
305 * The first 4 types should cover >95% of the objects.
306 * Note that since the size of objects is limited to 64K, larger objects
307 * will be allocated in the large object heap.
308 * If we want 4-bytes alignment, we need to put vector and small bitmap
309 * inside complex.
311 enum {
313 * We don't use 0 so that 0 isn't a valid GC descriptor. No
314 * deep reason for this other than to be able to identify a
315 * non-inited descriptor for debugging.
317 * If an object contains no references, its GC descriptor is
318 * always DESC_TYPE_RUN_LENGTH, without a size, no exceptions.
319 * This is so that we can quickly check for that in
320 * copy_object_no_checks(), without having to fetch the
321 * object's class.
323 DESC_TYPE_RUN_LENGTH = 1, /* 15 bits aligned byte size | 1-3 (offset, numptr) bytes tuples */
324 DESC_TYPE_SMALL_BITMAP, /* 15 bits aligned byte size | 16-48 bit bitmap */
325 DESC_TYPE_COMPLEX, /* index for bitmap into complex_descriptors */
326 DESC_TYPE_VECTOR, /* 10 bits element size | 1 bit array | 2 bits desc | element desc */
327 DESC_TYPE_ARRAY, /* 10 bits element size | 1 bit array | 2 bits desc | element desc */
328 DESC_TYPE_LARGE_BITMAP, /* | 29-61 bitmap bits */
329 DESC_TYPE_COMPLEX_ARR, /* index for bitmap into complex_descriptors */
330 /* subtypes for arrays and vectors */
331 DESC_TYPE_V_PTRFREE = 0,/* there are no refs: keep first so it has a zero value */
332 DESC_TYPE_V_REFS, /* all the array elements are refs */
333 DESC_TYPE_V_RUN_LEN, /* elements are run-length encoded as DESC_TYPE_RUN_LENGTH */
334 DESC_TYPE_V_BITMAP /* elements are as the bitmap in DESC_TYPE_SMALL_BITMAP */
337 #define SGEN_VTABLE_HAS_REFERENCES(vt) (((MonoVTable*)(vt))->gc_descr != (void*)DESC_TYPE_RUN_LENGTH)
339 /* helper macros to scan and traverse objects, macros because we resue them in many functions */
340 #define OBJ_RUN_LEN_SIZE(size,desc,obj) do { \
341 (size) = ((desc) & 0xfff8) >> 1; \
342 } while (0)
344 #define OBJ_BITMAP_SIZE(size,desc,obj) do { \
345 (size) = ((desc) & 0xfff8) >> 1; \
346 } while (0)
348 //#define PREFETCH(addr) __asm__ __volatile__ (" prefetchnta %0": : "m"(*(char *)(addr)))
349 #define PREFETCH(addr)
351 /* code using these macros must define a HANDLE_PTR(ptr) macro that does the work */
352 #define OBJ_RUN_LEN_FOREACH_PTR(desc,obj) do { \
353 if ((desc) & 0xffff0000) { \
354 /* there are pointers */ \
355 void **_objptr_end; \
356 void **_objptr = (void**)(obj); \
357 _objptr += ((desc) >> 16) & 0xff; \
358 _objptr_end = _objptr + (((desc) >> 24) & 0xff); \
359 while (_objptr < _objptr_end) { \
360 HANDLE_PTR (_objptr, (obj)); \
361 _objptr++; \
364 } while (0)
366 /* a bitmap desc means that there are pointer references or we'd have
367 * choosen run-length, instead: add an assert to check.
369 #define OBJ_BITMAP_FOREACH_PTR(desc,obj) do { \
370 /* there are pointers */ \
371 void **_objptr = (void**)(obj); \
372 gsize _bmap = (desc) >> 16; \
373 _objptr += OBJECT_HEADER_WORDS; \
374 while (_bmap) { \
375 if ((_bmap & 1)) { \
376 HANDLE_PTR (_objptr, (obj)); \
378 _bmap >>= 1; \
379 ++_objptr; \
381 } while (0)
383 #define OBJ_LARGE_BITMAP_FOREACH_PTR(vt,obj) do { \
384 /* there are pointers */ \
385 void **_objptr = (void**)(obj); \
386 gsize _bmap = (vt)->desc >> LOW_TYPE_BITS; \
387 _objptr += OBJECT_HEADER_WORDS; \
388 while (_bmap) { \
389 if ((_bmap & 1)) { \
390 HANDLE_PTR (_objptr, (obj)); \
392 _bmap >>= 1; \
393 ++_objptr; \
395 } while (0)
397 gsize* mono_sgen_get_complex_descriptor (GCVTable *vt) MONO_INTERNAL;
399 #define OBJ_COMPLEX_FOREACH_PTR(vt,obj) do { \
400 /* there are pointers */ \
401 void **_objptr = (void**)(obj); \
402 gsize *bitmap_data = mono_sgen_get_complex_descriptor ((vt)); \
403 int bwords = (*bitmap_data) - 1; \
404 void **start_run = _objptr; \
405 bitmap_data++; \
406 if (0) { \
407 MonoObject *myobj = (MonoObject*)obj; \
408 g_print ("found %d at %p (0x%zx): %s.%s\n", bwords, (obj), (vt)->desc, myobj->vtable->klass->name_space, myobj->vtable->klass->name); \
410 while (bwords-- > 0) { \
411 gsize _bmap = *bitmap_data++; \
412 _objptr = start_run; \
413 /*g_print ("bitmap: 0x%x/%d at %p\n", _bmap, bwords, _objptr);*/ \
414 while (_bmap) { \
415 if ((_bmap & 1)) { \
416 HANDLE_PTR (_objptr, (obj)); \
418 _bmap >>= 1; \
419 ++_objptr; \
421 start_run += GC_BITS_PER_WORD; \
423 } while (0)
425 /* this one is untested */
426 #define OBJ_COMPLEX_ARR_FOREACH_PTR(vt,obj) do { \
427 /* there are pointers */ \
428 gsize *mbitmap_data = mono_sgen_get_complex_descriptor ((vt)); \
429 int mbwords = (*mbitmap_data++) - 1; \
430 int el_size = mono_array_element_size (vt->klass); \
431 char *e_start = (char*)(obj) + G_STRUCT_OFFSET (MonoArray, vector); \
432 char *e_end = e_start + el_size * mono_array_length_fast ((MonoArray*)(obj)); \
433 if (0) \
434 g_print ("found %d at %p (0x%zx): %s.%s\n", mbwords, (obj), (vt)->desc, vt->klass->name_space, vt->klass->name); \
435 while (e_start < e_end) { \
436 void **_objptr = (void**)e_start; \
437 gsize *bitmap_data = mbitmap_data; \
438 unsigned int bwords = mbwords; \
439 while (bwords-- > 0) { \
440 gsize _bmap = *bitmap_data++; \
441 void **start_run = _objptr; \
442 /*g_print ("bitmap: 0x%x\n", _bmap);*/ \
443 while (_bmap) { \
444 if ((_bmap & 1)) { \
445 HANDLE_PTR (_objptr, (obj)); \
447 _bmap >>= 1; \
448 ++_objptr; \
450 _objptr = start_run + GC_BITS_PER_WORD; \
452 e_start += el_size; \
454 } while (0)
456 #define OBJ_VECTOR_FOREACH_PTR(vt,obj) do { \
457 /* note: 0xffffc000 excludes DESC_TYPE_V_PTRFREE */ \
458 if ((vt)->desc & 0xffffc000) { \
459 int el_size = ((vt)->desc >> 3) & MAX_ELEMENT_SIZE; \
460 /* there are pointers */ \
461 int etype = (vt)->desc & 0xc000; \
462 if (etype == (DESC_TYPE_V_REFS << 14)) { \
463 void **p = (void**)((char*)(obj) + G_STRUCT_OFFSET (MonoArray, vector)); \
464 void **end_refs = (void**)((char*)p + el_size * mono_array_length_fast ((MonoArray*)(obj))); \
465 /* Note: this code can handle also arrays of struct with only references in them */ \
466 while (p < end_refs) { \
467 HANDLE_PTR (p, (obj)); \
468 ++p; \
470 } else if (etype == DESC_TYPE_V_RUN_LEN << 14) { \
471 int offset = ((vt)->desc >> 16) & 0xff; \
472 int num_refs = ((vt)->desc >> 24) & 0xff; \
473 char *e_start = (char*)(obj) + G_STRUCT_OFFSET (MonoArray, vector); \
474 char *e_end = e_start + el_size * mono_array_length_fast ((MonoArray*)(obj)); \
475 while (e_start < e_end) { \
476 void **p = (void**)e_start; \
477 int i; \
478 p += offset; \
479 for (i = 0; i < num_refs; ++i) { \
480 HANDLE_PTR (p + i, (obj)); \
482 e_start += el_size; \
484 } else if (etype == DESC_TYPE_V_BITMAP << 14) { \
485 char *e_start = (char*)(obj) + G_STRUCT_OFFSET (MonoArray, vector); \
486 char *e_end = e_start + el_size * mono_array_length_fast ((MonoArray*)(obj)); \
487 while (e_start < e_end) { \
488 void **p = (void**)e_start; \
489 gsize _bmap = (vt)->desc >> 16; \
490 /* Note: there is no object header here to skip */ \
491 while (_bmap) { \
492 if ((_bmap & 1)) { \
493 HANDLE_PTR (p, (obj)); \
495 _bmap >>= 1; \
496 ++p; \
498 e_start += el_size; \
502 } while (0)
504 typedef struct _SgenInternalAllocator SgenInternalAllocator;
506 #define SGEN_GRAY_QUEUE_SECTION_SIZE (128 - 3)
509 * This is a stack now instead of a queue, so the most recently added items are removed
510 * first, improving cache locality, and keeping the stack size manageable.
512 typedef struct _GrayQueueSection GrayQueueSection;
513 struct _GrayQueueSection {
514 int end;
515 GrayQueueSection *next;
516 char *objects [SGEN_GRAY_QUEUE_SECTION_SIZE];
519 typedef struct _SgenGrayQueue SgenGrayQueue;
521 typedef void (*GrayQueueAllocPrepareFunc) (SgenGrayQueue*);
523 struct _SgenGrayQueue {
524 SgenInternalAllocator *allocator;
525 GrayQueueSection *first;
526 GrayQueueSection *free_list;
527 int balance;
528 GrayQueueAllocPrepareFunc alloc_prepare_func;
529 void *alloc_prepare_data;
532 #if SGEN_MAX_DEBUG_LEVEL >= 9
533 #define GRAY_OBJECT_ENQUEUE gray_object_enqueue
534 #define GRAY_OBJECT_DEQUEUE(queue,o) ((o) = gray_object_dequeue ((queue)))
535 #else
536 #define GRAY_OBJECT_ENQUEUE(queue,o) do { \
537 if (G_UNLIKELY (!(queue)->first || (queue)->first->end == SGEN_GRAY_QUEUE_SECTION_SIZE)) \
538 mono_sgen_gray_object_enqueue ((queue), (o)); \
539 else \
540 (queue)->first->objects [(queue)->first->end++] = (o); \
541 } while (0)
542 #define GRAY_OBJECT_DEQUEUE(queue,o) do { \
543 if (!(queue)->first) \
544 (o) = NULL; \
545 else if (G_UNLIKELY ((queue)->first->end == 1)) \
546 (o) = mono_sgen_gray_object_dequeue ((queue)); \
547 else \
548 (o) = (queue)->first->objects [--(queue)->first->end]; \
549 } while (0)
550 #endif
552 void mono_sgen_gray_object_enqueue (SgenGrayQueue *queue, char *obj) MONO_INTERNAL;
553 char* mono_sgen_gray_object_dequeue (SgenGrayQueue *queue) MONO_INTERNAL;
555 typedef void (*IterateObjectCallbackFunc) (char*, size_t, void*);
557 void* mono_sgen_alloc_os_memory (size_t size, int activate) MONO_INTERNAL;
558 void* mono_sgen_alloc_os_memory_aligned (mword size, mword alignment, gboolean activate) MONO_INTERNAL;
559 void mono_sgen_free_os_memory (void *addr, size_t size) MONO_INTERNAL;
561 int mono_sgen_thread_handshake (int signum) MONO_INTERNAL;
562 SgenThreadInfo* mono_sgen_thread_info_lookup (ARCH_THREAD_TYPE id) MONO_INTERNAL;
563 SgenThreadInfo** mono_sgen_get_thread_table (void) MONO_INTERNAL;
564 void mono_sgen_wait_for_suspend_ack (int count) MONO_INTERNAL;
566 gboolean mono_sgen_is_worker_thread (pthread_t thread) MONO_INTERNAL;
568 void mono_sgen_update_heap_boundaries (mword low, mword high) MONO_INTERNAL;
570 void mono_sgen_register_major_sections_alloced (int num_sections) MONO_INTERNAL;
571 mword mono_sgen_get_minor_collection_allowance (void) MONO_INTERNAL;
573 void mono_sgen_scan_area_with_callback (char *start, char *end, IterateObjectCallbackFunc callback, void *data) MONO_INTERNAL;
574 void mono_sgen_check_section_scan_starts (GCMemSection *section) MONO_INTERNAL;
576 /* Keep in sync with mono_sgen_dump_internal_mem_usage() in dump_heap()! */
577 enum {
578 INTERNAL_MEM_MANAGED,
579 INTERNAL_MEM_PIN_QUEUE,
580 INTERNAL_MEM_FRAGMENT,
581 INTERNAL_MEM_SECTION,
582 INTERNAL_MEM_SCAN_STARTS,
583 INTERNAL_MEM_FIN_TABLE,
584 INTERNAL_MEM_FINALIZE_ENTRY,
585 INTERNAL_MEM_DISLINK_TABLE,
586 INTERNAL_MEM_DISLINK,
587 INTERNAL_MEM_ROOTS_TABLE,
588 INTERNAL_MEM_ROOT_RECORD,
589 INTERNAL_MEM_STATISTICS,
590 INTERNAL_MEM_REMSET,
591 INTERNAL_MEM_GRAY_QUEUE,
592 INTERNAL_MEM_STORE_REMSET,
593 INTERNAL_MEM_MS_TABLES,
594 INTERNAL_MEM_MS_BLOCK_INFO,
595 INTERNAL_MEM_EPHEMERON_LINK,
596 INTERNAL_MEM_WORKER_DATA,
597 INTERNAL_MEM_MAX
600 #define SGEN_INTERNAL_FREELIST_NUM_SLOTS 30
602 struct _SgenInternalAllocator {
603 SgenPinnedChunk *chunk_list;
604 SgenPinnedChunk *free_lists [SGEN_INTERNAL_FREELIST_NUM_SLOTS];
605 void *delayed_free_lists [SGEN_INTERNAL_FREELIST_NUM_SLOTS];
606 long small_internal_mem_bytes [INTERNAL_MEM_MAX];
609 void mono_sgen_init_internal_allocator (void) MONO_INTERNAL;
611 SgenInternalAllocator* mono_sgen_get_unmanaged_allocator (void) MONO_INTERNAL;
613 const char* mono_sgen_internal_mem_type_name (int type) MONO_INTERNAL;
614 void mono_sgen_report_internal_mem_usage (void) MONO_INTERNAL;
615 void mono_sgen_report_internal_mem_usage_full (SgenInternalAllocator *alc) MONO_INTERNAL;
616 void mono_sgen_dump_internal_mem_usage (FILE *heap_dump_file) MONO_INTERNAL;
617 void mono_sgen_dump_section (GCMemSection *section, const char *type) MONO_INTERNAL;
618 void mono_sgen_dump_occupied (char *start, char *end, char *section_start) MONO_INTERNAL;
620 void mono_sgen_register_moved_object (void *obj, void *destination) MONO_INTERNAL;
622 void mono_sgen_register_fixed_internal_mem_type (int type, size_t size) MONO_INTERNAL;
624 void* mono_sgen_alloc_internal (int type) MONO_INTERNAL;
625 void mono_sgen_free_internal (void *addr, int type) MONO_INTERNAL;
627 void* mono_sgen_alloc_internal_dynamic (size_t size, int type) MONO_INTERNAL;
628 void mono_sgen_free_internal_dynamic (void *addr, size_t size, int type) MONO_INTERNAL;
630 void* mono_sgen_alloc_internal_fixed (SgenInternalAllocator *allocator, int type) MONO_INTERNAL;
631 void mono_sgen_free_internal_fixed (SgenInternalAllocator *allocator, void *addr, int type) MONO_INTERNAL;
633 void* mono_sgen_alloc_internal_full (SgenInternalAllocator *allocator, size_t size, int type) MONO_INTERNAL;
634 void mono_sgen_free_internal_full (SgenInternalAllocator *allocator, void *addr, size_t size, int type) MONO_INTERNAL;
636 void mono_sgen_free_internal_delayed (void *addr, int type, SgenInternalAllocator *thread_allocator) MONO_INTERNAL;
638 void mono_sgen_debug_printf (int level, const char *format, ...) MONO_INTERNAL;
640 gboolean mono_sgen_parse_environment_string_extract_number (const char *str, glong *out) MONO_INTERNAL;
642 void mono_sgen_internal_scan_objects (SgenInternalAllocator *alc, IterateObjectCallbackFunc callback, void *callback_data) MONO_INTERNAL;
643 void mono_sgen_internal_scan_pinned_objects (SgenInternalAllocator *alc, IterateObjectCallbackFunc callback, void *callback_data) MONO_INTERNAL;
645 void** mono_sgen_find_optimized_pin_queue_area (void *start, void *end, int *num) MONO_INTERNAL;
646 void mono_sgen_find_section_pin_queue_start_end (GCMemSection *section) MONO_INTERNAL;
647 void mono_sgen_pin_objects_in_section (GCMemSection *section, SgenGrayQueue *queue) MONO_INTERNAL;
649 void mono_sgen_pin_stats_register_object (char *obj, size_t size);
651 void mono_sgen_add_to_global_remset (gpointer ptr) MONO_INTERNAL;
654 typedef struct _SgenMajorCollector SgenMajorCollector;
655 struct _SgenMajorCollector {
656 size_t section_size;
657 gboolean is_parallel;
658 gboolean supports_cardtable;
660 void* (*alloc_heap) (mword nursery_size, mword nursery_align, int nursery_bits);
661 gboolean (*is_object_live) (char *obj);
662 void* (*alloc_small_pinned_obj) (size_t size, gboolean has_references);
663 void* (*alloc_degraded) (MonoVTable *vtable, size_t size);
664 void (*copy_or_mark_object) (void **obj_slot, SgenGrayQueue *queue);
665 void (*minor_scan_object) (char *start, SgenGrayQueue *queue);
666 char* (*minor_scan_vtype) (char *start, mword desc, char* from_start, char* from_end, SgenGrayQueue *queue);
667 void (*major_scan_object) (char *start, SgenGrayQueue *queue);
668 void (*copy_object) (void **obj_slot, SgenGrayQueue *queue);
669 void* (*alloc_object) (int size, gboolean has_references);
670 void (*free_pinned_object) (char *obj, size_t size);
671 void (*iterate_objects) (gboolean non_pinned, gboolean pinned, IterateObjectCallbackFunc callback, void *data);
672 void (*free_non_pinned_object) (char *obj, size_t size);
673 void (*find_pin_queue_start_ends) (SgenGrayQueue *queue);
674 void (*pin_objects) (SgenGrayQueue *queue);
675 void (*scan_card_table) (SgenGrayQueue *queue);
676 void (*iterate_live_block_ranges) (void *callback);
677 void (*init_to_space) (void);
678 void (*sweep) (void);
679 void (*check_scan_starts) (void);
680 void (*dump_heap) (FILE *heap_dump_file);
681 gint64 (*get_used_size) (void);
682 void (*start_nursery_collection) (void);
683 void (*finish_nursery_collection) (void);
684 void (*finish_major_collection) (void);
685 gboolean (*ptr_is_in_non_pinned_space) (char *ptr);
686 gboolean (*obj_is_from_pinned_alloc) (char *obj);
687 void (*report_pinned_memory_usage) (void);
688 int (*get_num_major_sections) (void);
689 gboolean (*handle_gc_param) (const char *opt);
690 void (*print_gc_param_usage) (void);
693 void mono_sgen_marksweep_init (SgenMajorCollector *collector) MONO_INTERNAL;
694 void mono_sgen_marksweep_fixed_init (SgenMajorCollector *collector) MONO_INTERNAL;
695 void mono_sgen_marksweep_par_init (SgenMajorCollector *collector) MONO_INTERNAL;
696 void mono_sgen_marksweep_fixed_par_init (SgenMajorCollector *collector) MONO_INTERNAL;
697 void mono_sgen_copying_init (SgenMajorCollector *collector) MONO_INTERNAL;
700 * This function can be called on an object whose first word, the
701 * vtable field, is not intact. This is necessary for the parallel
702 * collector.
704 static inline guint
705 mono_sgen_par_object_get_size (MonoVTable *vtable, MonoObject* o)
707 MonoClass *klass = vtable->klass;
709 * We depend on mono_string_length_fast and
710 * mono_array_length_fast not using the object's vtable.
712 if (klass == mono_defaults.string_class) {
713 return sizeof (MonoString) + 2 * mono_string_length_fast ((MonoString*) o) + 2;
714 } else if (klass->rank) {
715 MonoArray *array = (MonoArray*)o;
716 size_t size = sizeof (MonoArray) + klass->sizes.element_size * mono_array_length_fast (array);
717 if (G_UNLIKELY (array->bounds)) {
718 size += sizeof (mono_array_size_t) - 1;
719 size &= ~(sizeof (mono_array_size_t) - 1);
720 size += sizeof (MonoArrayBounds) * klass->rank;
722 return size;
723 } else {
724 /* from a created object: the class must be inited already */
725 return klass->instance_size;
729 #define mono_sgen_safe_object_get_size(o) mono_sgen_par_object_get_size ((MonoVTable*)SGEN_LOAD_VTABLE ((o)), (o))
731 #endif /* __MONO_SGENGC_H__ */