2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
27 # include <asm/signal.h>
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
58 # define SIGSEGV 0 /* value is irrelevant */
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
90 # define NEED_FIND_LIMIT
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
100 #ifdef NEED_FIND_LIMIT
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
113 # include <windows.h>
117 # include <Processes.h>
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
124 #if defined(USE_MUNMAP)
126 --> USE_MUNMAP requires USE_MMAP
129 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
130 # include <sys/types.h>
131 # include <sys/mman.h>
132 # include <sys/stat.h>
140 #if (defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX) || defined(NETBSD)) && !defined(FREEBSD)
142 # include <sys/siginfo.h>
144 /* Define SETJMP and friends to be the version that restores */
145 /* the signal mask. */
146 # define SETJMP(env) sigsetjmp(env, 1)
147 # define LONGJMP(env, val) siglongjmp(env, val)
148 # define JMP_BUF sigjmp_buf
150 # define SETJMP(env) setjmp(env)
151 # define LONGJMP(env, val) longjmp(env, val)
152 # define JMP_BUF jmp_buf
156 /* for get_etext and friends */
157 #include <mach-o/getsect.h>
161 /* Apparently necessary for djgpp 2.01. May cause problems with */
162 /* other versions. */
163 typedef long unsigned int caddr_t
;
167 # include "il/PCR_IL.h"
168 # include "th/PCR_ThCtl.h"
169 # include "mm/PCR_MM.h"
172 #if !defined(NO_EXECUTE_PERMISSION)
173 # define OPT_PROT_EXEC PROT_EXEC
175 # define OPT_PROT_EXEC 0
178 #if defined(LINUX) && \
179 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
181 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
182 /* and/or to find the register backing store base (IA64). Do it once */
187 /* Repeatedly perform a read call until the buffer is filled or */
188 /* we encounter EOF. */
189 ssize_t
GC_repeat_read(int fd
, char *buf
, size_t count
)
191 ssize_t num_read
= 0;
194 while (num_read
< count
) {
195 result
= READ(fd
, buf
+ num_read
, count
- num_read
);
196 if (result
< 0) return result
;
197 if (result
== 0) break;
204 * Apply fn to a buffer containing the contents of /proc/self/maps.
205 * Return the result of fn or, if we failed, 0.
206 * We currently do nothing to /proc/self/maps other than simply read
207 * it. This code could be simplified if we could determine its size
211 word
GC_apply_to_maps(word (*fn
)(char *))
215 size_t maps_size
= 4000; /* Initial guess. */
216 static char init_buf
[1];
217 static char *maps_buf
= init_buf
;
218 static size_t maps_buf_sz
= 1;
220 /* Read /proc/self/maps, growing maps_buf as necessary. */
221 /* Note that we may not allocate conventionally, and */
222 /* thus can't use stdio. */
224 if (maps_size
>= maps_buf_sz
) {
225 /* Grow only by powers of 2, since we leak "too small" buffers. */
226 while (maps_size
>= maps_buf_sz
) maps_buf_sz
*= 2;
227 maps_buf
= GC_scratch_alloc(maps_buf_sz
);
228 if (maps_buf
== 0) return 0;
230 f
= open("/proc/self/maps", O_RDONLY
);
231 if (-1 == f
) return 0;
234 result
= GC_repeat_read(f
, maps_buf
, maps_buf_sz
-1);
235 if (result
<= 0) return 0;
237 } while (result
== maps_buf_sz
-1);
239 } while (maps_size
>= maps_buf_sz
);
240 maps_buf
[maps_size
] = '\0';
242 /* Apply fn to result. */
246 #endif /* Need GC_apply_to_maps */
248 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
250 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
251 // locate all writable data segments that belong to shared libraries.
252 // The format of one of these entries and the fields we care about
254 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
255 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
256 // start end prot maj_dev
258 // Note that since about auguat 2003 kernels, the columns no longer have
259 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
260 // anywhere, which is safer anyway.
264 * Assign various fields of the first line in buf_ptr to *start, *end,
265 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
267 char *GC_parse_map_entry(char *buf_ptr
, word
*start
, word
*end
,
268 char *prot_buf
, unsigned int *maj_dev
)
270 char *start_start
, *end_start
, *prot_start
, *maj_dev_start
;
274 if (buf_ptr
== NULL
|| *buf_ptr
== '\0') {
279 while (isspace(*p
)) ++p
;
281 GC_ASSERT(isxdigit(*start_start
));
282 *start
= strtoul(start_start
, &endp
, 16); p
= endp
;
287 GC_ASSERT(isxdigit(*end_start
));
288 *end
= strtoul(end_start
, &endp
, 16); p
= endp
;
289 GC_ASSERT(isspace(*p
));
291 while (isspace(*p
)) ++p
;
293 GC_ASSERT(*prot_start
== 'r' || *prot_start
== '-');
294 memcpy(prot_buf
, prot_start
, 4);
296 if (prot_buf
[1] == 'w') {/* we can skip the rest if it's not writable. */
297 /* Skip past protection field to offset field */
298 while (!isspace(*p
)) ++p
; while (isspace(*p
)) ++p
;
299 GC_ASSERT(isxdigit(*p
));
300 /* Skip past offset field, which we ignore */
301 while (!isspace(*p
)) ++p
; while (isspace(*p
)) ++p
;
303 GC_ASSERT(isxdigit(*maj_dev_start
));
304 *maj_dev
= strtoul(maj_dev_start
, NULL
, 16);
307 while (*p
&& *p
++ != '\n');
312 #endif /* Need to parse /proc/self/maps. */
314 #if defined(SEARCH_FOR_DATA_START)
315 /* The I386 case can be handled without a search. The Alpha case */
316 /* used to be handled differently as well, but the rules changed */
317 /* for recent Linux versions. This seems to be the easiest way to */
318 /* cover all versions. */
321 /* Some Linux distributions arrange to define __data_start. Some */
322 /* define data_start as a weak symbol. The latter is technically */
323 /* broken, since the user program may define data_start, in which */
324 /* case we lose. Nonetheless, we try both, prefering __data_start. */
325 /* We assume gcc-compatible pragmas. */
326 # pragma weak __data_start
327 extern int __data_start
[];
328 # pragma weak data_start
329 extern int data_start
[];
335 void GC_init_linux_data_start()
337 extern ptr_t
GC_find_limit();
340 /* Try the easy approaches first: */
341 if ((ptr_t
)__data_start
!= 0) {
342 GC_data_start
= (ptr_t
)(__data_start
);
345 if ((ptr_t
)data_start
!= 0) {
346 GC_data_start
= (ptr_t
)(data_start
);
350 GC_data_start
= GC_find_limit((ptr_t
)(_end
), FALSE
);
356 # ifndef ECOS_GC_MEMORY_SIZE
357 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
358 # endif /* ECOS_GC_MEMORY_SIZE */
360 // setjmp() function, as described in ANSI para 7.6.1.1
362 #define SETJMP( __env__ ) hal_setjmp( __env__ )
364 // FIXME: This is a simple way of allocating memory which is
365 // compatible with ECOS early releases. Later releases use a more
366 // sophisticated means of allocating memory than this simple static
367 // allocator, but this method is at least bound to work.
368 static char memory
[ECOS_GC_MEMORY_SIZE
];
369 static char *brk
= memory
;
371 static void *tiny_sbrk(ptrdiff_t increment
)
377 if (brk
> memory
+ sizeof memory
)
385 #define sbrk tiny_sbrk
388 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
391 void GC_init_netbsd_elf()
393 extern ptr_t
GC_find_limit();
394 extern char **environ
;
395 /* This may need to be environ, without the underscore, for */
397 GC_data_start
= GC_find_limit((ptr_t
)&environ
, FALSE
);
405 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
408 unsigned short magic_number
;
409 unsigned short padding
[29];
413 #define E_MAGIC(x) (x).magic_number
414 #define EMAGIC 0x5A4D
415 #define E_LFANEW(x) (x).new_exe_offset
418 unsigned char magic_number
[2];
419 unsigned char byte_order
;
420 unsigned char word_order
;
421 unsigned long exe_format_level
;
424 unsigned long padding1
[13];
425 unsigned long object_table_offset
;
426 unsigned long object_count
;
427 unsigned long padding2
[31];
430 #define E32_MAGIC1(x) (x).magic_number[0]
431 #define E32MAGIC1 'L'
432 #define E32_MAGIC2(x) (x).magic_number[1]
433 #define E32MAGIC2 'X'
434 #define E32_BORDER(x) (x).byte_order
436 #define E32_WORDER(x) (x).word_order
438 #define E32_CPU(x) (x).cpu
440 #define E32_OBJTAB(x) (x).object_table_offset
441 #define E32_OBJCNT(x) (x).object_count
447 unsigned long pagemap
;
448 unsigned long mapsize
;
449 unsigned long reserved
;
452 #define O32_FLAGS(x) (x).flags
453 #define OBJREAD 0x0001L
454 #define OBJWRITE 0x0002L
455 #define OBJINVALID 0x0080L
456 #define O32_SIZE(x) (x).size
457 #define O32_BASE(x) (x).base
459 # else /* IBM's compiler */
461 /* A kludge to get around what appears to be a header file bug */
463 # define WORD unsigned short
466 # define DWORD unsigned long
473 # endif /* __IBMC__ */
475 # define INCL_DOSEXCEPTIONS
476 # define INCL_DOSPROCESS
477 # define INCL_DOSERRORS
478 # define INCL_DOSMODULEMGR
479 # define INCL_DOSMEMMGR
483 /* Disable and enable signals during nontrivial allocations */
485 void GC_disable_signals(void)
489 DosEnterMustComplete(&nest
);
490 if (nest
!= 1) ABORT("nested GC_disable_signals");
493 void GC_enable_signals(void)
497 DosExitMustComplete(&nest
);
498 if (nest
!= 0) ABORT("GC_enable_signals");
504 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
505 && !defined(MSWINCE) \
506 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
507 && !defined(NOSYS) && !defined(ECOS)
509 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
510 /* Use the traditional BSD interface */
511 # define SIGSET_T int
512 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
513 # define SIG_FILL(set) (set) = 0x7fffffff
514 /* Setting the leading bit appears to provoke a bug in some */
515 /* longjmp implementations. Most systems appear not to have */
517 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
519 /* Use POSIX/SYSV interface */
520 # define SIGSET_T sigset_t
521 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
522 # define SIG_FILL(set) sigfillset(&set)
523 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
526 static GC_bool mask_initialized
= FALSE
;
528 static SIGSET_T new_mask
;
530 static SIGSET_T old_mask
;
532 static SIGSET_T dummy
;
534 #if defined(PRINTSTATS) && !defined(THREADS)
535 # define CHECK_SIGNALS
536 int GC_sig_disabled
= 0;
539 void GC_disable_signals()
541 if (!mask_initialized
) {
544 SIG_DEL(new_mask
, SIGSEGV
);
545 SIG_DEL(new_mask
, SIGILL
);
546 SIG_DEL(new_mask
, SIGQUIT
);
548 SIG_DEL(new_mask
, SIGBUS
);
551 SIG_DEL(new_mask
, SIGIOT
);
554 SIG_DEL(new_mask
, SIGEMT
);
557 SIG_DEL(new_mask
, SIGTRAP
);
559 mask_initialized
= TRUE
;
561 # ifdef CHECK_SIGNALS
562 if (GC_sig_disabled
!= 0) ABORT("Nested disables");
565 SIGSETMASK(old_mask
,new_mask
);
568 void GC_enable_signals()
570 # ifdef CHECK_SIGNALS
571 if (GC_sig_disabled
!= 1) ABORT("Unmatched enable");
574 SIGSETMASK(dummy
,old_mask
);
581 /* Ivan Demakov: simplest way (to me) */
583 void GC_disable_signals() { }
584 void GC_enable_signals() { }
587 /* Find the page size */
590 # if defined(MSWIN32) || defined(MSWINCE)
591 void GC_setpagesize()
593 GetSystemInfo(&GC_sysinfo
);
594 GC_page_size
= GC_sysinfo
.dwPageSize
;
598 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
599 || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
600 void GC_setpagesize()
602 GC_page_size
= GETPAGESIZE();
605 /* It's acceptable to fake it. */
606 void GC_setpagesize()
608 GC_page_size
= HBLKSIZE
;
614 * Find the base of the stack.
615 * Used only in single-threaded environment.
616 * With threads, GC_mark_roots needs to know how to do this.
617 * Called with allocator lock held.
619 # if defined(MSWIN32) || defined(MSWINCE)
620 # define is_writable(prot) ((prot) == PAGE_READWRITE \
621 || (prot) == PAGE_WRITECOPY \
622 || (prot) == PAGE_EXECUTE_READWRITE \
623 || (prot) == PAGE_EXECUTE_WRITECOPY)
624 /* Return the number of bytes that are writable starting at p. */
625 /* The pointer p is assumed to be page aligned. */
626 /* If base is not 0, *base becomes the beginning of the */
627 /* allocation region containing p. */
628 word
GC_get_writable_length(ptr_t p
, ptr_t
*base
)
630 MEMORY_BASIC_INFORMATION buf
;
634 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
635 if (result
!= sizeof(buf
)) ABORT("Weird VirtualQuery result");
636 if (base
!= 0) *base
= (ptr_t
)(buf
.AllocationBase
);
637 protect
= (buf
.Protect
& ~(PAGE_GUARD
| PAGE_NOCACHE
));
638 if (!is_writable(protect
)) {
641 if (buf
.State
!= MEM_COMMIT
) return(0);
642 return(buf
.RegionSize
);
645 ptr_t
GC_get_stack_base()
648 ptr_t sp
= (ptr_t
)(&dummy
);
649 ptr_t trunc_sp
= (ptr_t
)((word
)sp
& ~(GC_page_size
- 1));
650 word size
= GC_get_writable_length(trunc_sp
, 0);
652 return(trunc_sp
+ size
);
656 # endif /* MS Windows */
659 # include <kernel/OS.h>
660 ptr_t
GC_get_stack_base(){
662 get_thread_info(find_thread(NULL
),&th
);
670 ptr_t
GC_get_stack_base()
675 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
676 GC_err_printf0("DosGetInfoBlocks failed\n");
677 ABORT("DosGetInfoBlocks failed\n");
679 return((ptr_t
)(ptib
-> tib_pstacklimit
));
686 # include "AmigaOS.c"
690 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
693 typedef void (*handler
)(int);
695 typedef void (*handler
)();
698 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
699 || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
700 static struct sigaction old_segv_act
;
701 # if defined(IRIX5) || defined(HPUX) \
702 || defined(HURD) || defined(NETBSD)
703 static struct sigaction old_bus_act
;
706 static handler old_segv_handler
, old_bus_handler
;
710 void GC_set_and_save_fault_handler(handler h
)
712 void GC_set_and_save_fault_handler(h
)
716 # if defined(SUNOS5SIGS) || defined(IRIX5) \
717 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
718 struct sigaction act
;
721 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
723 act
.sa_flags
= SA_RESTART
| SA_NODEFER
;
725 act
.sa_flags
= SA_RESTART
;
728 (void) sigemptyset(&act
.sa_mask
);
729 # ifdef GC_IRIX_THREADS
730 /* Older versions have a bug related to retrieving and */
731 /* and setting a handler at the same time. */
732 (void) sigaction(SIGSEGV
, 0, &old_segv_act
);
733 (void) sigaction(SIGSEGV
, &act
, 0);
734 (void) sigaction(SIGBUS
, 0, &old_bus_act
);
735 (void) sigaction(SIGBUS
, &act
, 0);
737 (void) sigaction(SIGSEGV
, &act
, &old_segv_act
);
738 # if defined(IRIX5) \
739 || defined(HPUX) || defined(HURD) || defined(NETBSD)
740 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
741 /* Pthreads doesn't exist under Irix 5.x, so we */
742 /* don't have to worry in the threads case. */
743 (void) sigaction(SIGBUS
, &act
, &old_bus_act
);
745 # endif /* GC_IRIX_THREADS */
747 old_segv_handler
= signal(SIGSEGV
, h
);
749 old_bus_handler
= signal(SIGBUS
, h
);
753 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
755 # ifdef NEED_FIND_LIMIT
756 /* Some tools to implement HEURISTIC2 */
757 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
758 /* static */ JMP_BUF GC_jmp_buf
;
761 void GC_fault_handler(sig
)
764 LONGJMP(GC_jmp_buf
, 1);
767 void GC_setup_temporary_fault_handler()
769 GC_set_and_save_fault_handler(GC_fault_handler
);
772 void GC_reset_fault_handler()
774 # if defined(SUNOS5SIGS) || defined(IRIX5) \
775 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
776 (void) sigaction(SIGSEGV
, &old_segv_act
, 0);
777 # if defined(IRIX5) \
778 || defined(HPUX) || defined(HURD) || defined(NETBSD)
779 (void) sigaction(SIGBUS
, &old_bus_act
, 0);
782 (void) signal(SIGSEGV
, old_segv_handler
);
784 (void) signal(SIGBUS
, old_bus_handler
);
789 /* Return the first nonaddressible location > p (up) or */
790 /* the smallest location q s.t. [q,p) is addressable (!up). */
791 /* We assume that p (up) or p-1 (!up) is addressable. */
792 ptr_t
GC_find_limit(p
, up
)
796 static VOLATILE ptr_t result
;
797 /* Needs to be static, since otherwise it may not be */
798 /* preserved across the longjmp. Can safely be */
799 /* static since it's only called once, with the */
800 /* allocation lock held. */
803 GC_setup_temporary_fault_handler();
804 if (SETJMP(GC_jmp_buf
) == 0) {
805 result
= (ptr_t
)(((word
)(p
))
806 & ~(MIN_PAGE_SIZE
-1));
809 result
+= MIN_PAGE_SIZE
;
811 result
-= MIN_PAGE_SIZE
;
813 GC_noop1((word
)(*result
));
816 GC_reset_fault_handler();
818 result
+= MIN_PAGE_SIZE
;
824 #if defined(ECOS) || defined(NOSYS)
825 ptr_t
GC_get_stack_base()
831 #ifdef HPUX_STACKBOTTOM
833 #include <sys/param.h>
834 #include <sys/pstat.h>
836 ptr_t
GC_get_register_stack_base(void)
838 struct pst_vm_status vm_status
;
841 while (pstat_getprocvm(&vm_status
, sizeof(vm_status
), 0, i
++) == 1) {
842 if (vm_status
.pst_type
== PS_RSESTACK
) {
843 return (ptr_t
) vm_status
.pst_vaddr
;
847 /* old way to get the register stackbottom */
848 return (ptr_t
)(((word
)GC_stackbottom
- BACKING_STORE_DISPLACEMENT
- 1)
849 & ~(BACKING_STORE_ALIGNMENT
- 1));
852 #endif /* HPUX_STACK_BOTTOM */
854 #ifdef LINUX_STACKBOTTOM
856 #include <sys/types.h>
857 #include <sys/stat.h>
859 # define STAT_SKIP 27 /* Number of fields preceding startstack */
860 /* field in /proc/self/stat */
862 #ifdef USE_LIBC_PRIVATES
863 # pragma weak __libc_stack_end
864 extern ptr_t __libc_stack_end
;
868 /* Try to read the backing store base from /proc/self/maps. */
869 /* We look for the writable mapping with a 0 major device, */
870 /* which is as close to our frame as possible, but below it.*/
871 static word
backing_store_base_from_maps(char *maps
)
874 char *buf_ptr
= maps
;
876 unsigned int maj_dev
;
877 word current_best
= 0;
881 buf_ptr
= GC_parse_map_entry(buf_ptr
, &start
, &end
, prot_buf
, &maj_dev
);
882 if (buf_ptr
== NULL
) return current_best
;
883 if (prot_buf
[1] == 'w' && maj_dev
== 0) {
884 if (end
< (word
)(&dummy
) && start
> current_best
) current_best
= start
;
890 static word
backing_store_base_from_proc(void)
892 return GC_apply_to_maps(backing_store_base_from_maps
);
895 # ifdef USE_LIBC_PRIVATES
896 # pragma weak __libc_ia64_register_backing_store_base
897 extern ptr_t __libc_ia64_register_backing_store_base
;
900 ptr_t
GC_get_register_stack_base(void)
902 # ifdef USE_LIBC_PRIVATES
903 if (0 != &__libc_ia64_register_backing_store_base
904 && 0 != __libc_ia64_register_backing_store_base
) {
905 /* Glibc 2.2.4 has a bug such that for dynamically linked */
906 /* executables __libc_ia64_register_backing_store_base is */
907 /* defined but uninitialized during constructor calls. */
908 /* Hence we check for both nonzero address and value. */
909 return __libc_ia64_register_backing_store_base
;
912 word result
= backing_store_base_from_proc();
914 /* Use dumb heuristics. Works only for default configuration. */
915 result
= (word
)GC_stackbottom
- BACKING_STORE_DISPLACEMENT
;
916 result
+= BACKING_STORE_ALIGNMENT
- 1;
917 result
&= ~(BACKING_STORE_ALIGNMENT
- 1);
918 /* Verify that it's at least readable. If not, we goofed. */
919 GC_noop1(*(word
*)result
);
921 return (ptr_t
)result
;
925 void *GC_set_stackbottom
= NULL
;
927 ptr_t
GC_linux_stack_base(void)
929 /* We read the stack base value from /proc/self/stat. We do this */
930 /* using direct I/O system calls in order to avoid calling malloc */
931 /* in case REDIRECT_MALLOC is defined. */
932 # define STAT_BUF_SIZE 4096
933 # define STAT_READ read
934 /* Should probably call the real read, if read is wrapped. */
935 char stat_buf
[STAT_BUF_SIZE
];
939 size_t i
, buf_offset
= 0;
941 /* First try the easy way. This should work for glibc 2.2 */
942 /* This fails in a prelinked ("prelink" command) executable */
943 /* since the correct value of __libc_stack_end never */
944 /* becomes visible to us. The second test works around */
946 # ifdef USE_LIBC_PRIVATES
947 if (0 != &__libc_stack_end
&& 0 != __libc_stack_end
) {
949 /* Some versions of glibc set the address 16 bytes too */
950 /* low while the initialization code is running. */
951 if (((word
)__libc_stack_end
& 0xfff) + 0x10 < 0x1000) {
952 return __libc_stack_end
+ 0x10;
953 } /* Otherwise it's not safe to add 16 bytes and we fall */
954 /* back to using /proc. */
957 /* Older versions of glibc for 64-bit Sparc do not set
958 * this variable correctly, it gets set to either zero
961 if (__libc_stack_end
!= (ptr_t
) (unsigned long)0x1)
962 return __libc_stack_end
;
964 return __libc_stack_end
;
969 f
= open("/proc/self/stat", O_RDONLY
);
970 if (f
< 0 || STAT_READ(f
, stat_buf
, STAT_BUF_SIZE
) < 2 * STAT_SKIP
) {
971 ABORT("Couldn't read /proc/self/stat");
973 c
= stat_buf
[buf_offset
++];
974 /* Skip the required number of fields. This number is hopefully */
975 /* constant across all Linux implementations. */
976 for (i
= 0; i
< STAT_SKIP
; ++i
) {
977 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
978 while (!isspace(c
)) c
= stat_buf
[buf_offset
++];
980 while (isspace(c
)) c
= stat_buf
[buf_offset
++];
984 c
= stat_buf
[buf_offset
++];
987 if (result
< 0x10000000) ABORT("Absurd stack bottom value");
988 return (ptr_t
)result
;
991 #endif /* LINUX_STACKBOTTOM */
993 #ifdef FREEBSD_STACKBOTTOM
995 /* This uses an undocumented sysctl call, but at least one expert */
996 /* believes it will stay. */
999 #include <sys/types.h>
1000 #include <sys/sysctl.h>
1002 ptr_t
GC_freebsd_stack_base(void)
1004 int nm
[2] = {CTL_KERN
, KERN_USRSTACK
};
1006 size_t len
= sizeof(ptr_t
);
1007 int r
= sysctl(nm
, 2, &base
, &len
, NULL
, 0);
1009 if (r
) ABORT("Error getting stack base");
1014 #endif /* FREEBSD_STACKBOTTOM */
1016 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1017 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1019 ptr_t
GC_get_stack_base()
1021 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1022 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1027 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1030 return(STACKBOTTOM
);
1033 # ifdef STACK_GROWS_DOWN
1034 result
= (ptr_t
)((((word
)(&dummy
))
1035 + STACKBOTTOM_ALIGNMENT_M1
)
1036 & ~STACKBOTTOM_ALIGNMENT_M1
);
1038 result
= (ptr_t
)(((word
)(&dummy
))
1039 & ~STACKBOTTOM_ALIGNMENT_M1
);
1041 # endif /* HEURISTIC1 */
1042 # ifdef LINUX_STACKBOTTOM
1043 result
= GC_linux_stack_base();
1045 # ifdef FREEBSD_STACKBOTTOM
1046 result
= GC_freebsd_stack_base();
1049 # ifdef STACK_GROWS_DOWN
1050 result
= GC_find_limit((ptr_t
)(&dummy
), TRUE
);
1051 # ifdef HEURISTIC2_LIMIT
1052 if (result
> HEURISTIC2_LIMIT
1053 && (ptr_t
)(&dummy
) < HEURISTIC2_LIMIT
) {
1054 result
= HEURISTIC2_LIMIT
;
1058 result
= GC_find_limit((ptr_t
)(&dummy
), FALSE
);
1059 # ifdef HEURISTIC2_LIMIT
1060 if (result
< HEURISTIC2_LIMIT
1061 && (ptr_t
)(&dummy
) > HEURISTIC2_LIMIT
) {
1062 result
= HEURISTIC2_LIMIT
;
1067 # endif /* HEURISTIC2 */
1068 # ifdef STACK_GROWS_DOWN
1069 if (result
== 0) result
= (ptr_t
)(signed_word
)(-sizeof(ptr_t
));
1072 # endif /* STACKBOTTOM */
1075 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1078 * Register static data segment(s) as roots.
1079 * If more data segments are added later then they need to be registered
1080 * add that point (as we do with SunOS dynamic loading),
1081 * or GC_mark_roots needs to check for them (as we do with PCR).
1082 * Called with allocator lock held.
1087 void GC_register_data_segments()
1091 HMODULE module_handle
;
1092 # define PBUFSIZ 512
1093 UCHAR path
[PBUFSIZ
];
1095 struct exe_hdr hdrdos
; /* MSDOS header. */
1096 struct e32_exe hdr386
; /* Real header for my executable */
1097 struct o32_obj seg
; /* Currrent segment */
1101 if (DosGetInfoBlocks(&ptib
, &ppib
) != NO_ERROR
) {
1102 GC_err_printf0("DosGetInfoBlocks failed\n");
1103 ABORT("DosGetInfoBlocks failed\n");
1105 module_handle
= ppib
-> pib_hmte
;
1106 if (DosQueryModuleName(module_handle
, PBUFSIZ
, path
) != NO_ERROR
) {
1107 GC_err_printf0("DosQueryModuleName failed\n");
1108 ABORT("DosGetInfoBlocks failed\n");
1110 myexefile
= fopen(path
, "rb");
1111 if (myexefile
== 0) {
1112 GC_err_puts("Couldn't open executable ");
1113 GC_err_puts(path
); GC_err_puts("\n");
1114 ABORT("Failed to open executable\n");
1116 if (fread((char *)(&hdrdos
), 1, sizeof hdrdos
, myexefile
) < sizeof hdrdos
) {
1117 GC_err_puts("Couldn't read MSDOS header from ");
1118 GC_err_puts(path
); GC_err_puts("\n");
1119 ABORT("Couldn't read MSDOS header");
1121 if (E_MAGIC(hdrdos
) != EMAGIC
) {
1122 GC_err_puts("Executable has wrong DOS magic number: ");
1123 GC_err_puts(path
); GC_err_puts("\n");
1124 ABORT("Bad DOS magic number");
1126 if (fseek(myexefile
, E_LFANEW(hdrdos
), SEEK_SET
) != 0) {
1127 GC_err_puts("Seek to new header failed in ");
1128 GC_err_puts(path
); GC_err_puts("\n");
1129 ABORT("Bad DOS magic number");
1131 if (fread((char *)(&hdr386
), 1, sizeof hdr386
, myexefile
) < sizeof hdr386
) {
1132 GC_err_puts("Couldn't read MSDOS header from ");
1133 GC_err_puts(path
); GC_err_puts("\n");
1134 ABORT("Couldn't read OS/2 header");
1136 if (E32_MAGIC1(hdr386
) != E32MAGIC1
|| E32_MAGIC2(hdr386
) != E32MAGIC2
) {
1137 GC_err_puts("Executable has wrong OS/2 magic number:");
1138 GC_err_puts(path
); GC_err_puts("\n");
1139 ABORT("Bad OS/2 magic number");
1141 if ( E32_BORDER(hdr386
) != E32LEBO
|| E32_WORDER(hdr386
) != E32LEWO
) {
1142 GC_err_puts("Executable %s has wrong byte order: ");
1143 GC_err_puts(path
); GC_err_puts("\n");
1144 ABORT("Bad byte order");
1146 if ( E32_CPU(hdr386
) == E32CPU286
) {
1147 GC_err_puts("GC can't handle 80286 executables: ");
1148 GC_err_puts(path
); GC_err_puts("\n");
1151 if (fseek(myexefile
, E_LFANEW(hdrdos
) + E32_OBJTAB(hdr386
),
1153 GC_err_puts("Seek to object table failed: ");
1154 GC_err_puts(path
); GC_err_puts("\n");
1155 ABORT("Seek to object table failed");
1157 for (nsegs
= E32_OBJCNT(hdr386
); nsegs
> 0; nsegs
--) {
1159 if (fread((char *)(&seg
), 1, sizeof seg
, myexefile
) < sizeof seg
) {
1160 GC_err_puts("Couldn't read obj table entry from ");
1161 GC_err_puts(path
); GC_err_puts("\n");
1162 ABORT("Couldn't read obj table entry");
1164 flags
= O32_FLAGS(seg
);
1165 if (!(flags
& OBJWRITE
)) continue;
1166 if (!(flags
& OBJREAD
)) continue;
1167 if (flags
& OBJINVALID
) {
1168 GC_err_printf0("Object with invalid pages?\n");
1171 GC_add_roots_inner(O32_BASE(seg
), O32_BASE(seg
)+O32_SIZE(seg
), FALSE
);
1177 # if defined(MSWIN32) || defined(MSWINCE)
1180 /* Unfortunately, we have to handle win32s very differently from NT, */
1181 /* Since VirtualQuery has very different semantics. In particular, */
1182 /* under win32s a VirtualQuery call on an unmapped page returns an */
1183 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1184 /* all real work is done by GC_register_dynamic_libraries. Under */
1185 /* win32s, we cannot find the data segments associated with dll's. */
1186 /* We register the main data segment here. */
1187 GC_bool GC_no_win32_dlls
= FALSE
;
1188 /* This used to be set for gcc, to avoid dealing with */
1189 /* the structured exception handling issues. But we now have */
1190 /* assembly code to do that right. */
1192 void GC_init_win32()
1194 /* if we're running under win32s, assume that no DLLs will be loaded */
1195 DWORD v
= GetVersion();
1196 GC_no_win32_dlls
|= ((v
& 0x80000000) && (v
& 0xff) <= 3);
1199 /* Return the smallest address a such that VirtualQuery */
1200 /* returns correct results for all addresses between a and start. */
1201 /* Assumes VirtualQuery returns correct information for start. */
1202 ptr_t
GC_least_described_address(ptr_t start
)
1204 MEMORY_BASIC_INFORMATION buf
;
1210 limit
= GC_sysinfo
.lpMinimumApplicationAddress
;
1211 p
= (ptr_t
)((word
)start
& ~(GC_page_size
- 1));
1213 q
= (LPVOID
)(p
- GC_page_size
);
1214 if ((ptr_t
)q
> (ptr_t
)p
/* underflow */ || q
< limit
) break;
1215 result
= VirtualQuery(q
, &buf
, sizeof(buf
));
1216 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0) break;
1217 p
= (ptr_t
)(buf
.AllocationBase
);
1223 # ifndef REDIRECT_MALLOC
1224 /* We maintain a linked list of AllocationBase values that we know */
1225 /* correspond to malloc heap sections. Currently this is only called */
1226 /* during a GC. But there is some hope that for long running */
1227 /* programs we will eventually see most heap sections. */
1229 /* In the long run, it would be more reliable to occasionally walk */
1230 /* the malloc heap with HeapWalk on the default heap. But that */
1231 /* apparently works only for NT-based Windows. */
1233 /* In the long run, a better data structure would also be nice ... */
1234 struct GC_malloc_heap_list
{
1235 void * allocation_base
;
1236 struct GC_malloc_heap_list
*next
;
1237 } *GC_malloc_heap_l
= 0;
1239 /* Is p the base of one of the malloc heap sections we already know */
1241 GC_bool
GC_is_malloc_heap_base(ptr_t p
)
1243 struct GC_malloc_heap_list
*q
= GC_malloc_heap_l
;
1246 if (q
-> allocation_base
== p
) return TRUE
;
1252 void *GC_get_allocation_base(void *p
)
1254 MEMORY_BASIC_INFORMATION buf
;
1255 DWORD result
= VirtualQuery(p
, &buf
, sizeof(buf
));
1256 if (result
!= sizeof(buf
)) {
1257 ABORT("Weird VirtualQuery result");
1259 return buf
.AllocationBase
;
1262 size_t GC_max_root_size
= 100000; /* Appr. largest root size. */
1264 void GC_add_current_malloc_heap()
1266 struct GC_malloc_heap_list
*new_l
=
1267 malloc(sizeof(struct GC_malloc_heap_list
));
1268 void * candidate
= GC_get_allocation_base(new_l
);
1270 if (new_l
== 0) return;
1271 if (GC_is_malloc_heap_base(candidate
)) {
1272 /* Try a little harder to find malloc heap. */
1273 size_t req_size
= 10000;
1275 void *p
= malloc(req_size
);
1276 if (0 == p
) { free(new_l
); return; }
1277 candidate
= GC_get_allocation_base(p
);
1280 } while (GC_is_malloc_heap_base(candidate
)
1281 && req_size
< GC_max_root_size
/10 && req_size
< 500000);
1282 if (GC_is_malloc_heap_base(candidate
)) {
1283 free(new_l
); return;
1288 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1291 new_l
-> allocation_base
= candidate
;
1292 new_l
-> next
= GC_malloc_heap_l
;
1293 GC_malloc_heap_l
= new_l
;
1295 # endif /* REDIRECT_MALLOC */
1297 /* Is p the start of either the malloc heap, or of one of our */
1298 /* heap sections? */
1299 GC_bool
GC_is_heap_base (ptr_t p
)
1304 # ifndef REDIRECT_MALLOC
1305 static word last_gc_no
= -1;
1307 if (last_gc_no
!= GC_gc_no
) {
1308 GC_add_current_malloc_heap();
1309 last_gc_no
= GC_gc_no
;
1311 if (GC_root_size
> GC_max_root_size
) GC_max_root_size
= GC_root_size
;
1312 if (GC_is_malloc_heap_base(p
)) return TRUE
;
1314 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
1315 if (GC_heap_bases
[i
] == p
) return TRUE
;
1321 void GC_register_root_section(ptr_t static_root
)
1323 MEMORY_BASIC_INFORMATION buf
;
1328 char * limit
, * new_limit
;
1330 if (!GC_no_win32_dlls
) return;
1331 p
= base
= limit
= GC_least_described_address(static_root
);
1332 while (p
< GC_sysinfo
.lpMaximumApplicationAddress
) {
1333 result
= VirtualQuery(p
, &buf
, sizeof(buf
));
1334 if (result
!= sizeof(buf
) || buf
.AllocationBase
== 0
1335 || GC_is_heap_base(buf
.AllocationBase
)) break;
1336 new_limit
= (char *)p
+ buf
.RegionSize
;
1337 protect
= buf
.Protect
;
1338 if (buf
.State
== MEM_COMMIT
1339 && is_writable(protect
)) {
1340 if ((char *)p
== limit
) {
1343 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1348 if (p
> (LPVOID
)new_limit
/* overflow */) break;
1349 p
= (LPVOID
)new_limit
;
1351 if (base
!= limit
) GC_add_roots_inner(base
, limit
, FALSE
);
1355 void GC_register_data_segments()
1359 GC_register_root_section((ptr_t
)(&dummy
));
1363 # else /* !OS2 && !Windows */
1365 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1366 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1367 ptr_t
GC_SysVGetDataStart(max_page_size
, etext_addr
)
1371 word text_end
= ((word
)(etext_addr
) + sizeof(word
) - 1)
1372 & ~(sizeof(word
) - 1);
1373 /* etext rounded to word boundary */
1374 word next_page
= ((text_end
+ (word
)max_page_size
- 1)
1375 & ~((word
)max_page_size
- 1));
1376 word page_offset
= (text_end
& ((word
)max_page_size
- 1));
1377 VOLATILE
char * result
= (char *)(next_page
+ page_offset
);
1378 /* Note that this isnt equivalent to just adding */
1379 /* max_page_size to &etext if &etext is at a page boundary */
1381 GC_setup_temporary_fault_handler();
1382 if (SETJMP(GC_jmp_buf
) == 0) {
1383 /* Try writing to the address. */
1385 GC_reset_fault_handler();
1387 GC_reset_fault_handler();
1388 /* We got here via a longjmp. The address is not readable. */
1389 /* This is known to happen under Solaris 2.4 + gcc, which place */
1390 /* string constants in the text segment, but after etext. */
1391 /* Use plan B. Note that we now know there is a gap between */
1392 /* text and data segments, so plan A bought us something. */
1393 result
= (char *)GC_find_limit((ptr_t
)(DATAEND
), FALSE
);
1395 return((ptr_t
)result
);
1399 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1400 /* Its unclear whether this should be identical to the above, or */
1401 /* whether it should apply to non-X86 architectures. */
1402 /* For now we don't assume that there is always an empty page after */
1403 /* etext. But in some cases there actually seems to be slightly more. */
1404 /* This also deals with holes between read-only data and writable data. */
1405 ptr_t
GC_FreeBSDGetDataStart(max_page_size
, etext_addr
)
1409 word text_end
= ((word
)(etext_addr
) + sizeof(word
) - 1)
1410 & ~(sizeof(word
) - 1);
1411 /* etext rounded to word boundary */
1412 VOLATILE word next_page
= (text_end
+ (word
)max_page_size
- 1)
1413 & ~((word
)max_page_size
- 1);
1414 VOLATILE ptr_t result
= (ptr_t
)text_end
;
1415 GC_setup_temporary_fault_handler();
1416 if (SETJMP(GC_jmp_buf
) == 0) {
1417 /* Try reading at the address. */
1418 /* This should happen before there is another thread. */
1419 for (; next_page
< (word
)(DATAEND
); next_page
+= (word
)max_page_size
)
1420 *(VOLATILE
char *)next_page
;
1421 GC_reset_fault_handler();
1423 GC_reset_fault_handler();
1424 /* As above, we go to plan B */
1425 result
= GC_find_limit((ptr_t
)(DATAEND
), FALSE
);
1435 # define GC_AMIGA_DS
1436 # include "AmigaOS.c"
1439 #else /* !OS2 && !Windows && !AMIGA */
1441 void GC_register_data_segments()
1443 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1444 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1445 /* As of Solaris 2.3, the Solaris threads implementation */
1446 /* allocates the data structure for the initial thread with */
1447 /* sbrk at process startup. It needs to be scanned, so that */
1448 /* we don't lose some malloc allocated data structures */
1449 /* hanging from it. We're on thin ice here ... */
1450 extern caddr_t
sbrk();
1452 GC_add_roots_inner(DATASTART
, (char *)sbrk(0), FALSE
);
1454 GC_add_roots_inner(DATASTART
, (char *)(DATAEND
), FALSE
);
1455 # if defined(DATASTART2)
1456 GC_add_roots_inner(DATASTART2
, (char *)(DATAEND2
), FALSE
);
1462 # if defined(THINK_C)
1463 extern void* GC_MacGetDataStart(void);
1464 /* globals begin above stack and end at a5. */
1465 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1466 (ptr_t
)LMGetCurrentA5(), FALSE
);
1468 # if defined(__MWERKS__)
1470 extern void* GC_MacGetDataStart(void);
1471 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1472 # if __option(far_data)
1473 extern void* GC_MacGetDataEnd(void);
1475 /* globals begin above stack and end at a5. */
1476 GC_add_roots_inner((ptr_t
)GC_MacGetDataStart(),
1477 (ptr_t
)LMGetCurrentA5(), FALSE
);
1478 /* MATTHEW: Handle Far Globals */
1479 # if __option(far_data)
1480 /* Far globals follow he QD globals: */
1481 GC_add_roots_inner((ptr_t
)LMGetCurrentA5(),
1482 (ptr_t
)GC_MacGetDataEnd(), FALSE
);
1485 extern char __data_start__
[], __data_end__
[];
1486 GC_add_roots_inner((ptr_t
)&__data_start__
,
1487 (ptr_t
)&__data_end__
, FALSE
);
1488 # endif /* __POWERPC__ */
1489 # endif /* __MWERKS__ */
1490 # endif /* !THINK_C */
1494 /* Dynamic libraries are added at every collection, since they may */
1498 # endif /* ! AMIGA */
1499 # endif /* ! MSWIN32 && ! MSWINCE*/
1503 * Auxiliary routines for obtaining memory from OS.
1506 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1507 && !defined(MSWIN32) && !defined(MSWINCE) \
1508 && !defined(MACOS) && !defined(DOS4GW)
1511 extern caddr_t
sbrk();
1514 # define SBRK_ARG_T ptrdiff_t
1516 # define SBRK_ARG_T int
1520 # if 0 && defined(RS6000) /* We now use mmap */
1521 /* The compiler seems to generate speculative reads one past the end of */
1522 /* an allocated object. Hence we need to make sure that the page */
1523 /* following the last heap page is also mapped. */
1524 ptr_t
GC_unix_get_mem(bytes
)
1527 caddr_t cur_brk
= (caddr_t
)sbrk(0);
1529 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1530 static caddr_t my_brk_val
= 0;
1532 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1534 if((caddr_t
)(sbrk(GC_page_size
- lsbs
)) == (caddr_t
)(-1)) return(0);
1536 if (cur_brk
== my_brk_val
) {
1537 /* Use the extra block we allocated last time. */
1538 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1539 if (result
== (caddr_t
)(-1)) return(0);
1540 result
-= GC_page_size
;
1542 result
= (ptr_t
)sbrk(GC_page_size
+ (SBRK_ARG_T
)bytes
);
1543 if (result
== (caddr_t
)(-1)) return(0);
1545 my_brk_val
= result
+ bytes
+ GC_page_size
; /* Always page aligned */
1546 return((ptr_t
)result
);
1549 #else /* Not RS6000 */
1551 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
1553 #ifdef USE_MMAP_FIXED
1554 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1555 /* Seems to yield better performance on Solaris 2, but can */
1556 /* be unreliable if something is already mapped at the address. */
1558 # define GC_MMAP_FLAGS MAP_PRIVATE
1561 #ifdef USE_MMAP_ANON
1563 # if defined(MAP_ANONYMOUS)
1564 # define OPT_MAP_ANON MAP_ANONYMOUS
1566 # define OPT_MAP_ANON MAP_ANON
1570 # define OPT_MAP_ANON 0
1573 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1575 #if defined(USE_MMAP) || defined(FALLBACK_TO_MMAP)
1576 /* Tested only under Linux, IRIX5 and Solaris 2 */
1579 # define HEAP_START 0
1582 #ifdef FALLBACK_TO_MMAP
1583 static ptr_t
GC_unix_get_mem_mmap(bytes
)
1585 ptr_t
GC_unix_get_mem(bytes
)
1590 static ptr_t last_addr
= HEAP_START
;
1592 # ifndef USE_MMAP_ANON
1593 static GC_bool initialized
= FALSE
;
1596 zero_fd
= open("/dev/zero", O_RDONLY
);
1597 fcntl(zero_fd
, F_SETFD
, FD_CLOEXEC
);
1602 if (bytes
& (GC_page_size
-1)) ABORT("Bad GET_MEM arg");
1603 result
= mmap(last_addr
, bytes
, PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
,
1604 GC_MMAP_FLAGS
| OPT_MAP_ANON
, zero_fd
, 0/* offset */);
1605 if (result
== MAP_FAILED
) return(0);
1606 last_addr
= (ptr_t
)result
+ bytes
+ GC_page_size
- 1;
1607 last_addr
= (ptr_t
)((word
)last_addr
& ~(GC_page_size
- 1));
1608 # if !defined(LINUX)
1609 if (last_addr
== 0) {
1610 /* Oops. We got the end of the address space. This isn't */
1611 /* usable by arbitrary C code, since one-past-end pointers */
1612 /* don't work, so we discard it and try again. */
1613 munmap(result
, (size_t)(-GC_page_size
) - (size_t)result
);
1614 /* Leave last page mapped, so we can't repeat. */
1615 return GC_unix_get_mem(bytes
);
1618 GC_ASSERT(last_addr
!= 0);
1620 if (((word
)result
% HBLKSIZE
) != 0)
1621 ABORT ("GC_unix_get_mem: Memory returned by mmap is not aligned to HBLKSIZE.");
1622 return((ptr_t
)result
);
1629 ptr_t
GC_unix_get_mem(bytes
)
1634 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1635 /* The equivalent may be needed on other systems as well. */
1639 ptr_t cur_brk
= (ptr_t
)sbrk(0);
1640 SBRK_ARG_T lsbs
= (word
)cur_brk
& (GC_page_size
-1);
1642 if ((SBRK_ARG_T
)bytes
< 0) return(0); /* too big */
1644 if((ptr_t
)sbrk(GC_page_size
- lsbs
) == (ptr_t
)(-1)) return(0);
1646 result
= (ptr_t
)sbrk((SBRK_ARG_T
)bytes
);
1647 if (result
== (ptr_t
)(-1)) {
1648 #ifdef FALLBACK_TO_MMAP
1649 result
= GC_unix_get_mem_mmap (bytes
);
1661 #endif /* Not USE_MMAP */
1662 #endif /* Not RS6000 */
1668 void * os2_alloc(size_t bytes
)
1672 if (DosAllocMem(&result
, bytes
, PAG_EXECUTE
| PAG_READ
|
1673 PAG_WRITE
| PAG_COMMIT
)
1677 if (result
== 0) return(os2_alloc(bytes
));
1684 # if defined(MSWIN32) || defined(MSWINCE)
1685 SYSTEM_INFO GC_sysinfo
;
1690 # ifdef USE_GLOBAL_ALLOC
1691 # define GLOBAL_ALLOC_TEST 1
1693 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1696 word GC_n_heap_bases
= 0;
1698 ptr_t
GC_win32_get_mem(bytes
)
1703 if (GLOBAL_ALLOC_TEST
) {
1704 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1705 /* There are also unconfirmed rumors of other */
1706 /* problems, so we dodge the issue. */
1707 result
= (ptr_t
) GlobalAlloc(0, bytes
+ HBLKSIZE
);
1708 result
= (ptr_t
)(((word
)result
+ HBLKSIZE
) & ~(HBLKSIZE
-1));
1710 /* VirtualProtect only works on regions returned by a */
1711 /* single VirtualAlloc call. Thus we allocate one */
1712 /* extra page, which will prevent merging of blocks */
1713 /* in separate regions, and eliminate any temptation */
1714 /* to call VirtualProtect on a range spanning regions. */
1715 /* This wastes a small amount of memory, and risks */
1716 /* increased fragmentation. But better alternatives */
1717 /* would require effort. */
1718 result
= (ptr_t
) VirtualAlloc(NULL
, bytes
+ 1,
1719 MEM_COMMIT
| MEM_RESERVE
,
1720 PAGE_EXECUTE_READWRITE
);
1722 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1723 /* If I read the documentation correctly, this can */
1724 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1725 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1726 GC_heap_bases
[GC_n_heap_bases
++] = result
;
1730 void GC_win32_free_heap ()
1732 if (GC_no_win32_dlls
) {
1733 while (GC_n_heap_bases
> 0) {
1734 GlobalFree (GC_heap_bases
[--GC_n_heap_bases
]);
1735 GC_heap_bases
[GC_n_heap_bases
] = 0;
1742 # define GC_AMIGA_AM
1743 # include "AmigaOS.c"
1749 word GC_n_heap_bases
= 0;
1751 ptr_t
GC_wince_get_mem(bytes
)
1757 /* Round up allocation size to multiple of page size */
1758 bytes
= (bytes
+ GC_page_size
-1) & ~(GC_page_size
-1);
1760 /* Try to find reserved, uncommitted pages */
1761 for (i
= 0; i
< GC_n_heap_bases
; i
++) {
1762 if (((word
)(-(signed_word
)GC_heap_lengths
[i
])
1763 & (GC_sysinfo
.dwAllocationGranularity
-1))
1765 result
= GC_heap_bases
[i
] + GC_heap_lengths
[i
];
1770 if (i
== GC_n_heap_bases
) {
1771 /* Reserve more pages */
1772 word res_bytes
= (bytes
+ GC_sysinfo
.dwAllocationGranularity
-1)
1773 & ~(GC_sysinfo
.dwAllocationGranularity
-1);
1774 /* If we ever support MPROTECT_VDB here, we will probably need to */
1775 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1776 /* never spans regions. It seems to be OK for a VirtualFree argument */
1777 /* to span regions, so we should be OK for now. */
1778 result
= (ptr_t
) VirtualAlloc(NULL
, res_bytes
,
1779 MEM_RESERVE
| MEM_TOP_DOWN
,
1780 PAGE_EXECUTE_READWRITE
);
1781 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1782 /* If I read the documentation correctly, this can */
1783 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1784 if (GC_n_heap_bases
>= MAX_HEAP_SECTS
) ABORT("Too many heap sections");
1785 GC_heap_bases
[GC_n_heap_bases
] = result
;
1786 GC_heap_lengths
[GC_n_heap_bases
] = 0;
1791 result
= (ptr_t
) VirtualAlloc(result
, bytes
,
1793 PAGE_EXECUTE_READWRITE
);
1794 if (result
!= NULL
) {
1795 if (HBLKDISPL(result
) != 0) ABORT("Bad VirtualAlloc result");
1796 GC_heap_lengths
[i
] += bytes
;
1805 /* For now, this only works on Win32/WinCE and some Unix-like */
1806 /* systems. If you have something else, don't define */
1808 /* We assume ANSI C to support this feature. */
1810 #if !defined(MSWIN32) && !defined(MSWINCE)
1813 #include <sys/mman.h>
1814 #include <sys/stat.h>
1815 #include <sys/types.h>
1819 /* Compute a page aligned starting address for the unmap */
1820 /* operation on a block of size bytes starting at start. */
1821 /* Return 0 if the block is too small to make this feasible. */
1822 ptr_t
GC_unmap_start(ptr_t start
, word bytes
)
1824 ptr_t result
= start
;
1825 /* Round start to next page boundary. */
1826 result
+= GC_page_size
- 1;
1827 result
= (ptr_t
)((word
)result
& ~(GC_page_size
- 1));
1828 if (result
+ GC_page_size
> start
+ bytes
) return 0;
1832 /* Compute end address for an unmap operation on the indicated */
1834 ptr_t
GC_unmap_end(ptr_t start
, word bytes
)
1836 ptr_t end_addr
= start
+ bytes
;
1837 end_addr
= (ptr_t
)((word
)end_addr
& ~(GC_page_size
- 1));
1841 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1842 /* memory using VirtualAlloc and VirtualFree. These functions */
1843 /* work on individual allocations of virtual memory, made */
1844 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1845 /* The ranges we need to (de)commit may span several of these */
1846 /* allocations; therefore we use VirtualQuery to check */
1847 /* allocation lengths, and split up the range as necessary. */
1849 /* We assume that GC_remap is called on exactly the same range */
1850 /* as a previous call to GC_unmap. It is safe to consistently */
1851 /* round the endpoints in both places. */
1852 void GC_unmap(ptr_t start
, word bytes
)
1854 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1855 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1856 word len
= end_addr
- start_addr
;
1857 if (0 == start_addr
) return;
1858 # if defined(MSWIN32) || defined(MSWINCE)
1860 MEMORY_BASIC_INFORMATION mem_info
;
1862 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1863 != sizeof(mem_info
))
1864 ABORT("Weird VirtualQuery result");
1865 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1866 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1867 ABORT("VirtualFree failed");
1868 GC_unmapped_bytes
+= free_len
;
1869 start_addr
+= free_len
;
1873 /* We immediately remap it to prevent an intervening mmap from */
1874 /* accidentally grabbing the same address space. */
1877 result
= mmap(start_addr
, len
, PROT_NONE
,
1878 MAP_PRIVATE
| MAP_FIXED
| OPT_MAP_ANON
,
1879 zero_fd
, 0/* offset */);
1880 if (result
!= (void *)start_addr
) ABORT("mmap(...PROT_NONE...) failed");
1882 GC_unmapped_bytes
+= len
;
1887 void GC_remap(ptr_t start
, word bytes
)
1889 ptr_t start_addr
= GC_unmap_start(start
, bytes
);
1890 ptr_t end_addr
= GC_unmap_end(start
, bytes
);
1891 word len
= end_addr
- start_addr
;
1893 # if defined(MSWIN32) || defined(MSWINCE)
1896 if (0 == start_addr
) return;
1898 MEMORY_BASIC_INFORMATION mem_info
;
1900 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1901 != sizeof(mem_info
))
1902 ABORT("Weird VirtualQuery result");
1903 alloc_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1904 result
= VirtualAlloc(start_addr
, alloc_len
,
1906 PAGE_EXECUTE_READWRITE
);
1907 if (result
!= start_addr
) {
1908 ABORT("VirtualAlloc remapping failed");
1910 GC_unmapped_bytes
-= alloc_len
;
1911 start_addr
+= alloc_len
;
1915 /* It was already remapped with PROT_NONE. */
1918 if (0 == start_addr
) return;
1919 result
= mprotect(start_addr
, len
,
1920 PROT_READ
| PROT_WRITE
| OPT_PROT_EXEC
);
1923 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1924 start_addr
, len
, errno
);
1925 ABORT("Mprotect remapping failed");
1927 GC_unmapped_bytes
-= len
;
1931 /* Two adjacent blocks have already been unmapped and are about to */
1932 /* be merged. Unmap the whole block. This typically requires */
1933 /* that we unmap a small section in the middle that was not previously */
1934 /* unmapped due to alignment constraints. */
1935 void GC_unmap_gap(ptr_t start1
, word bytes1
, ptr_t start2
, word bytes2
)
1937 ptr_t start1_addr
= GC_unmap_start(start1
, bytes1
);
1938 ptr_t end1_addr
= GC_unmap_end(start1
, bytes1
);
1939 ptr_t start2_addr
= GC_unmap_start(start2
, bytes2
);
1940 ptr_t end2_addr
= GC_unmap_end(start2
, bytes2
);
1941 ptr_t start_addr
= end1_addr
;
1942 ptr_t end_addr
= start2_addr
;
1944 GC_ASSERT(start1
+ bytes1
== start2
);
1945 if (0 == start1_addr
) start_addr
= GC_unmap_start(start1
, bytes1
+ bytes2
);
1946 if (0 == start2_addr
) end_addr
= GC_unmap_end(start1
, bytes1
+ bytes2
);
1947 if (0 == start_addr
) return;
1948 len
= end_addr
- start_addr
;
1949 # if defined(MSWIN32) || defined(MSWINCE)
1951 MEMORY_BASIC_INFORMATION mem_info
;
1953 if (VirtualQuery(start_addr
, &mem_info
, sizeof(mem_info
))
1954 != sizeof(mem_info
))
1955 ABORT("Weird VirtualQuery result");
1956 free_len
= (len
< mem_info
.RegionSize
) ? len
: mem_info
.RegionSize
;
1957 if (!VirtualFree(start_addr
, free_len
, MEM_DECOMMIT
))
1958 ABORT("VirtualFree failed");
1959 GC_unmapped_bytes
+= free_len
;
1960 start_addr
+= free_len
;
1964 if (len
!= 0 && munmap(start_addr
, len
) != 0) ABORT("munmap failed");
1965 GC_unmapped_bytes
+= len
;
1969 #endif /* USE_MUNMAP */
1971 /* Routine for pushing any additional roots. In THREADS */
1972 /* environment, this is also responsible for marking from */
1973 /* thread stacks. */
1975 void (*GC_push_other_roots
)() = 0;
1979 PCR_ERes
GC_push_thread_stack(PCR_Th_T
*t
, PCR_Any dummy
)
1981 struct PCR_ThCtl_TInfoRep info
;
1984 info
.ti_stkLow
= info
.ti_stkHi
= 0;
1985 result
= PCR_ThCtl_GetInfo(t
, &info
);
1986 GC_push_all_stack((ptr_t
)(info
.ti_stkLow
), (ptr_t
)(info
.ti_stkHi
));
1990 /* Push the contents of an old object. We treat this as stack */
1991 /* data only becasue that makes it robust against mark stack */
1993 PCR_ERes
GC_push_old_obj(void *p
, size_t size
, PCR_Any data
)
1995 GC_push_all_stack((ptr_t
)p
, (ptr_t
)p
+ size
);
1996 return(PCR_ERes_okay
);
2000 void GC_default_push_other_roots
GC_PROTO((void))
2002 /* Traverse data allocated by previous memory managers. */
2004 extern struct PCR_MM_ProcsRep
* GC_old_allocator
;
2006 if ((*(GC_old_allocator
->mmp_enumerate
))(PCR_Bool_false
,
2009 ABORT("Old object enumeration failed");
2012 /* Traverse all thread stacks. */
2014 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack
,0))
2015 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2016 ABORT("Thread stack marking failed\n");
2024 # ifdef ALL_INTERIOR_POINTERS
2028 void GC_push_thread_structures
GC_PROTO((void))
2030 /* Not our responsibibility. */
2033 extern void ThreadF__ProcessStacks();
2035 void GC_push_thread_stack(start
, stop
)
2038 GC_push_all_stack((ptr_t
)start
, (ptr_t
)stop
+ sizeof(word
));
2041 /* Push routine with M3 specific calling convention. */
2042 GC_m3_push_root(dummy1
, p
, dummy2
, dummy3
)
2044 ptr_t dummy1
, dummy2
;
2049 GC_PUSH_ONE_STACK(q
, p
);
2052 /* M3 set equivalent to RTHeap.TracedRefTypes */
2053 typedef struct { int elts
[1]; } RefTypeSet
;
2054 RefTypeSet GC_TracedRefTypes
= {{0x1}};
2056 void GC_default_push_other_roots
GC_PROTO((void))
2058 /* Use the M3 provided routine for finding static roots. */
2059 /* This is a bit dubious, since it presumes no C roots. */
2060 /* We handle the collector roots explicitly in GC_push_roots */
2061 RTMain__GlobalMapProc(GC_m3_push_root
, 0, GC_TracedRefTypes
);
2062 if (GC_words_allocd
> 0) {
2063 ThreadF__ProcessStacks(GC_push_thread_stack
);
2065 /* Otherwise this isn't absolutely necessary, and we have */
2066 /* startup ordering problems. */
2069 # endif /* SRC_M3 */
2071 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2072 defined(GC_WIN32_THREADS)
2074 extern void GC_push_all_stacks();
2076 void GC_default_push_other_roots
GC_PROTO((void))
2078 GC_push_all_stacks();
2081 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2083 void (*GC_push_other_roots
) GC_PROTO((void)) = GC_default_push_other_roots
;
2085 #endif /* THREADS */
2088 * Routines for accessing dirty bits on virtual pages.
2089 * We plan to eventually implement four strategies for doing so:
2090 * DEFAULT_VDB: A simple dummy implementation that treats every page
2091 * as possibly dirty. This makes incremental collection
2092 * useless, but the implementation is still correct.
2093 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2094 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2095 * works under some SVR4 variants. Even then, it may be
2096 * too slow to be entirely satisfactory. Requires reading
2097 * dirty bits for entire address space. Implementations tend
2098 * to assume that the client is a (slow) debugger.
2099 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2100 * dirtied pages. The implementation (and implementability)
2101 * is highly system dependent. This usually fails when system
2102 * calls write to a protected page. We prevent the read system
2103 * call from doing so. It is the clients responsibility to
2104 * make sure that other system calls are similarly protected
2105 * or write only to the stack.
2107 GC_bool GC_dirty_maintained
= FALSE
;
2111 /* All of the following assume the allocation lock is held, and */
2112 /* signals are disabled. */
2114 /* The client asserts that unallocated pages in the heap are never */
2117 /* Initialize virtual dirty bit implementation. */
2118 void GC_dirty_init()
2121 GC_printf0("Initializing DEFAULT_VDB...\n");
2123 GC_dirty_maintained
= TRUE
;
2126 /* Retrieve system dirty bits for heap to a local buffer. */
2127 /* Restore the systems notion of which pages are dirty. */
2128 void GC_read_dirty()
2131 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2132 /* If the actual page size is different, this returns TRUE if any */
2133 /* of the pages overlapping h are dirty. This routine may err on the */
2134 /* side of labelling pages as dirty (and this implementation does). */
2136 GC_bool
GC_page_was_dirty(h
)
2143 * The following two routines are typically less crucial. They matter
2144 * most with large dynamic libraries, or if we can't accurately identify
2145 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2146 * versions are adequate.
2149 /* Could any valid GC heap pointer ever have been written to this page? */
2151 GC_bool
GC_page_was_ever_dirty(h
)
2157 /* Reset the n pages starting at h to "was never dirty" status. */
2158 void GC_is_fresh(h
, n
)
2165 /* I) hints that [h, h+nblocks) is about to be written. */
2166 /* II) guarantees that protection is removed. */
2167 /* (I) may speed up some dirty bit implementations. */
2168 /* (II) may be essential if we need to ensure that */
2169 /* pointer-free system call buffers in the heap are */
2170 /* not protected. */
2172 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
2179 # endif /* DEFAULT_VDB */
2182 # ifdef MPROTECT_VDB
2185 * See DEFAULT_VDB for interface descriptions.
2189 * This implementation maintains dirty bits itself by catching write
2190 * faults and keeping track of them. We assume nobody else catches
2191 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2192 * This means that clients must ensure that system calls don't write
2193 * to the write-protected heap. Probably the best way to do this is to
2194 * ensure that system calls write at most to POINTERFREE objects in the
2195 * heap, and do even that only if we are on a platform on which those
2196 * are not protected. Another alternative is to wrap system calls
2197 * (see example for read below), but the current implementation holds
2198 * a lock across blocking calls, making it problematic for multithreaded
2200 * We assume the page size is a multiple of HBLKSIZE.
2201 * We prefer them to be the same. We avoid protecting POINTERFREE
2202 * objects only if they are the same.
2205 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2207 # include <sys/mman.h>
2208 # include <signal.h>
2209 # include <sys/syscall.h>
2211 # define PROTECT(addr, len) \
2212 if (mprotect((caddr_t)(addr), (size_t)(len), \
2213 PROT_READ | OPT_PROT_EXEC) < 0) { \
2214 ABORT("mprotect failed"); \
2216 # define UNPROTECT(addr, len) \
2217 if (mprotect((caddr_t)(addr), (size_t)(len), \
2218 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2219 ABORT("un-mprotect failed"); \
2225 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2226 decrease the likelihood of some of the problems described below. */
2227 #include <mach/vm_map.h>
2228 static mach_port_t GC_task_self
;
2229 #define PROTECT(addr,len) \
2230 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2231 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2232 ABORT("vm_portect failed"); \
2234 #define UNPROTECT(addr,len) \
2235 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2236 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2237 ABORT("vm_portect failed"); \
2242 # include <signal.h>
2245 static DWORD protect_junk
;
2246 # define PROTECT(addr, len) \
2247 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2249 DWORD last_error = GetLastError(); \
2250 GC_printf1("Last error code: %lx\n", last_error); \
2251 ABORT("VirtualProtect failed"); \
2253 # define UNPROTECT(addr, len) \
2254 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2256 ABORT("un-VirtualProtect failed"); \
2258 # endif /* !DARWIN */
2259 # endif /* MSWIN32 || MSWINCE || DARWIN */
2261 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2262 typedef void (* SIG_PF
)();
2263 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2265 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2268 typedef void (* SIG_PF
)(int);
2270 typedef void (* SIG_PF
)();
2272 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2274 #if defined(MSWIN32)
2275 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF
;
2277 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2279 #if defined(MSWINCE)
2280 typedef LONG (WINAPI
*SIG_PF
)(struct _EXCEPTION_POINTERS
*);
2282 # define SIG_DFL (SIG_PF) (-1)
2285 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2286 typedef void (* REAL_SIG_PF
)(int, int, struct sigcontext
*);
2287 #endif /* IRIX5 || OSF1 || HURD */
2289 #if defined(SUNOS5SIGS)
2290 # if defined(HPUX) || defined(FREEBSD)
2291 # define SIGINFO_T siginfo_t
2293 # define SIGINFO_T struct siginfo
2296 typedef void (* REAL_SIG_PF
)(int, SIGINFO_T
*, void *);
2298 typedef void (* REAL_SIG_PF
)();
2300 #endif /* SUNOS5SIGS */
2303 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2304 typedef struct sigcontext s_c
;
2305 # else /* glibc < 2.2 */
2306 # include <linux/version.h>
2307 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2308 typedef struct sigcontext s_c
;
2310 typedef struct sigcontext_struct s_c
;
2312 # endif /* glibc < 2.2 */
2313 # if defined(ALPHA) || defined(M68K)
2314 typedef void (* REAL_SIG_PF
)(int, int, s_c
*);
2316 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2317 typedef void (* REAL_SIG_PF
)(int, siginfo_t
*, s_c
*);
2319 /* According to SUSV3, the last argument should have type */
2320 /* void * or ucontext_t * */
2322 typedef void (* REAL_SIG_PF
)(int, s_c
);
2326 /* Retrieve fault address from sigcontext structure by decoding */
2328 char * get_fault_addr(s_c
*sc
) {
2332 instr
= *((unsigned *)(sc
->sc_pc
));
2333 faultaddr
= sc
->sc_regs
[(instr
>> 16) & 0x1f];
2334 faultaddr
+= (word
) (((int)instr
<< 16) >> 16);
2335 return (char *)faultaddr
;
2337 # endif /* !ALPHA */
2341 SIG_PF GC_old_bus_handler
;
2342 SIG_PF GC_old_segv_handler
; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2343 #endif /* !DARWIN */
2345 #if defined(THREADS)
2346 /* We need to lock around the bitmap update in the write fault handler */
2347 /* in order to avoid the risk of losing a bit. We do this with a */
2348 /* test-and-set spin lock if we know how to do that. Otherwise we */
2349 /* check whether we are already in the handler and use the dumb but */
2350 /* safe fallback algorithm of setting all bits in the word. */
2351 /* Contention should be very rare, so we do the minimum to handle it */
2353 #ifdef GC_TEST_AND_SET_DEFINED
2354 static VOLATILE
unsigned int fault_handler_lock
= 0;
2355 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2356 while (GC_test_and_set(&fault_handler_lock
)) {}
2357 /* Could also revert to set_pht_entry_from_index_safe if initial */
2358 /* GC_test_and_set fails. */
2359 set_pht_entry_from_index(db
, index
);
2360 GC_clear(&fault_handler_lock
);
2362 #else /* !GC_TEST_AND_SET_DEFINED */
2363 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2364 /* just before we notice the conflict and correct it. We may end up */
2365 /* looking at it while it's wrong. But this requires contention */
2366 /* exactly when a GC is triggered, which seems far less likely to */
2367 /* fail than the old code, which had no reported failures. Thus we */
2368 /* leave it this way while we think of something better, or support */
2369 /* GC_test_and_set on the remaining platforms. */
2370 static VOLATILE word currently_updating
= 0;
2371 void async_set_pht_entry_from_index(VOLATILE page_hash_table db
, int index
) {
2372 unsigned int update_dummy
;
2373 currently_updating
= (word
)(&update_dummy
);
2374 set_pht_entry_from_index(db
, index
);
2375 /* If we get contention in the 10 or so instruction window here, */
2376 /* and we get stopped by a GC between the two updates, we lose! */
2377 if (currently_updating
!= (word
)(&update_dummy
)) {
2378 set_pht_entry_from_index_safe(db
, index
);
2379 /* We claim that if two threads concurrently try to update the */
2380 /* dirty bit vector, the first one to execute UPDATE_START */
2381 /* will see it changed when UPDATE_END is executed. (Note that */
2382 /* &update_dummy must differ in two distinct threads.) It */
2383 /* will then execute set_pht_entry_from_index_safe, thus */
2384 /* returning us to a safe state, though not soon enough. */
2387 #endif /* !GC_TEST_AND_SET_DEFINED */
2388 #else /* !THREADS */
2389 # define async_set_pht_entry_from_index(db, index) \
2390 set_pht_entry_from_index(db, index)
2391 #endif /* !THREADS */
2394 #if !defined(DARWIN)
2395 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2396 void GC_write_fault_handler(sig
, code
, scp
, addr
)
2398 struct sigcontext
*scp
;
2401 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2402 # define CODE_OK (FC_CODE(code) == FC_PROT \
2403 || (FC_CODE(code) == FC_OBJERR \
2404 && FC_ERRNO(code) == FC_PROT))
2407 # define SIG_OK (sig == SIGBUS)
2408 # define CODE_OK TRUE
2410 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2412 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2414 void GC_write_fault_handler(int sig
, int code
, struct sigcontext
*scp
)
2416 # define SIG_OK (sig == SIGSEGV)
2417 # define CODE_OK (code == 2 /* experimentally determined */)
2420 # define SIG_OK (sig == SIGSEGV)
2421 # define CODE_OK (code == EACCES)
2424 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2425 # define CODE_OK TRUE
2427 # endif /* IRIX5 || OSF1 || HURD */
2430 # if defined(ALPHA) || defined(M68K)
2431 void GC_write_fault_handler(int sig
, int code
, s_c
* sc
)
2433 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2434 void GC_write_fault_handler(int sig
, siginfo_t
* si
, s_c
* scp
)
2437 void GC_write_fault_handler(int sig
, int a2
, int a3
, int a4
, s_c sc
)
2439 void GC_write_fault_handler(int sig
, s_c sc
)
2443 # define SIG_OK (sig == SIGSEGV)
2444 # define CODE_OK TRUE
2445 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2446 /* Should probably consider alignment issues on other */
2447 /* architectures. */
2450 # if defined(SUNOS5SIGS)
2452 void GC_write_fault_handler(int sig
, SIGINFO_T
*scp
, void * context
)
2454 void GC_write_fault_handler(sig
, scp
, context
)
2460 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2461 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2462 || (scp -> si_code == BUS_ADRERR) \
2463 || (scp -> si_code == BUS_UNKNOWN) \
2464 || (scp -> si_code == SEGV_UNKNOWN) \
2465 || (scp -> si_code == BUS_OBJERR)
2468 # define SIG_OK (sig == SIGBUS)
2469 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2471 # define SIG_OK (sig == SIGSEGV)
2472 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2475 # endif /* SUNOS5SIGS */
2477 # if defined(MSWIN32) || defined(MSWINCE)
2478 LONG WINAPI
GC_write_fault_handler(struct _EXCEPTION_POINTERS
*exc_info
)
2479 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2480 STATUS_ACCESS_VIOLATION)
2481 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2483 # endif /* MSWIN32 || MSWINCE */
2485 register unsigned i
;
2487 char *addr
= (char *) code
;
2490 char * addr
= (char *) (size_t) (scp
-> sc_badvaddr
);
2492 # if defined(OSF1) && defined(ALPHA)
2493 char * addr
= (char *) (scp
-> sc_traparg_a0
);
2496 char * addr
= (char *) (scp
-> si_addr
);
2500 char * addr
= (char *) (sc
.cr2
);
2505 struct sigcontext
*scp
= (struct sigcontext
*)(sc
);
2507 int format
= (scp
->sc_formatvec
>> 12) & 0xf;
2508 unsigned long *framedata
= (unsigned long *)(scp
+ 1);
2511 if (format
== 0xa || format
== 0xb) {
2514 } else if (format
== 7) {
2517 if (framedata
[1] & 0x08000000) {
2518 /* correct addr on misaligned access */
2519 ea
= (ea
+4095)&(~4095);
2521 } else if (format
== 4) {
2524 if (framedata
[1] & 0x08000000) {
2525 /* correct addr on misaligned access */
2526 ea
= (ea
+4095)&(~4095);
2532 char * addr
= get_fault_addr(sc
);
2534 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2535 char * addr
= si
-> si_addr
;
2536 /* I believe this is claimed to work on all platforms for */
2537 /* Linux 2.3.47 and later. Hopefully we don't have to */
2538 /* worry about earlier kernels on IA64. */
2540 # if defined(POWERPC)
2541 char * addr
= (char *) (sc
.regs
->dar
);
2544 char * addr
= (char *)sc
.fault_address
;
2547 char * addr
= (char *)sc
.regs
.csraddr
;
2549 --> architecture
not supported
2558 # if defined(MSWIN32) || defined(MSWINCE)
2559 char * addr
= (char *) (exc_info
-> ExceptionRecord
2560 -> ExceptionInformation
[1]);
2561 # define sig SIGSEGV
2564 if (SIG_OK
&& CODE_OK
) {
2565 register struct hblk
* h
=
2566 (struct hblk
*)((word
)addr
& ~(GC_page_size
-1));
2567 GC_bool in_allocd_block
;
2570 /* Address is only within the correct physical page. */
2571 in_allocd_block
= FALSE
;
2572 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2573 if (HDR(h
+i
) != 0) {
2574 in_allocd_block
= TRUE
;
2578 in_allocd_block
= (HDR(addr
) != 0);
2580 if (!in_allocd_block
) {
2581 /* FIXME - We should make sure that we invoke the */
2582 /* old handler with the appropriate calling */
2583 /* sequence, which often depends on SA_SIGINFO. */
2585 /* Heap blocks now begin and end on page boundaries */
2588 if (sig
== SIGSEGV
) {
2589 old_handler
= GC_old_segv_handler
;
2591 old_handler
= GC_old_bus_handler
;
2593 if (old_handler
== SIG_DFL
) {
2594 # if !defined(MSWIN32) && !defined(MSWINCE)
2595 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2596 ABORT("Unexpected bus error or segmentation fault");
2598 return(EXCEPTION_CONTINUE_SEARCH
);
2601 # if defined (SUNOS4) \
2602 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2603 (*old_handler
) (sig
, code
, scp
, addr
);
2606 # if defined (SUNOS5SIGS)
2608 * FIXME: For FreeBSD, this code should check if the
2609 * old signal handler used the traditional BSD style and
2610 * if so call it using that style.
2612 (*(REAL_SIG_PF
)old_handler
) (sig
, scp
, context
);
2615 # if defined (LINUX)
2616 # if defined(ALPHA) || defined(M68K)
2617 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, sc
);
2619 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2620 (*(REAL_SIG_PF
)old_handler
) (sig
, si
, scp
);
2622 (*(REAL_SIG_PF
)old_handler
) (sig
, sc
);
2627 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2628 (*(REAL_SIG_PF
)old_handler
) (sig
, code
, scp
);
2632 return((*old_handler
)(exc_info
));
2636 UNPROTECT(h
, GC_page_size
);
2637 /* We need to make sure that no collection occurs between */
2638 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2639 /* a write by a third thread might go unnoticed. Reversing */
2640 /* the order is just as bad, since we would end up unprotecting */
2641 /* a page in a GC cycle during which it's not marked. */
2642 /* Currently we do this by disabling the thread stopping */
2643 /* signals while this handler is running. An alternative might */
2644 /* be to record the fact that we're about to unprotect, or */
2645 /* have just unprotected a page in the GC's thread structure, */
2646 /* and then to have the thread stopping code set the dirty */
2647 /* flag, if necessary. */
2648 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
2649 register int index
= PHT_HASH(h
+i
);
2651 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2654 /* These reset the signal handler each time by default. */
2655 signal(SIGSEGV
, (SIG_PF
) GC_write_fault_handler
);
2657 /* The write may not take place before dirty bits are read. */
2658 /* But then we'll fault again ... */
2659 # if defined(MSWIN32) || defined(MSWINCE)
2660 return(EXCEPTION_CONTINUE_EXECUTION
);
2665 #if defined(MSWIN32) || defined(MSWINCE)
2666 return EXCEPTION_CONTINUE_SEARCH
;
2668 GC_err_printf1("Segfault at 0x%lx\n", addr
);
2669 ABORT("Unexpected bus error or segmentation fault");
2672 #endif /* !DARWIN */
2675 * We hold the allocation lock. We expect block h to be written
2676 * shortly. Ensure that all pages containing any part of the n hblks
2677 * starting at h are no longer protected. If is_ptrfree is false,
2678 * also ensure that they will subsequently appear to be dirty.
2680 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
2685 struct hblk
* h_trunc
; /* Truncated to page boundary */
2686 struct hblk
* h_end
; /* Page boundary following block end */
2687 struct hblk
* current
;
2688 GC_bool found_clean
;
2690 if (!GC_dirty_maintained
) return;
2691 h_trunc
= (struct hblk
*)((word
)h
& ~(GC_page_size
-1));
2692 h_end
= (struct hblk
*)(((word
)(h
+ nblocks
) + GC_page_size
-1)
2693 & ~(GC_page_size
-1));
2694 found_clean
= FALSE
;
2695 for (current
= h_trunc
; current
< h_end
; ++current
) {
2696 int index
= PHT_HASH(current
);
2698 if (!is_ptrfree
|| current
< h
|| current
>= h
+ nblocks
) {
2699 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2702 UNPROTECT(h_trunc
, (ptr_t
)h_end
- (ptr_t
)h_trunc
);
2705 #if !defined(DARWIN)
2706 void GC_dirty_init()
2708 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2709 defined(OSF1) || defined(HURD)
2710 struct sigaction act
, oldact
;
2711 /* We should probably specify SA_SIGINFO for Linux, and handle */
2712 /* the different architectures more uniformly. */
2713 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2714 || defined(OSF1) || defined(HURD)
2715 act
.sa_flags
= SA_RESTART
;
2716 act
.sa_handler
= (SIG_PF
)GC_write_fault_handler
;
2718 act
.sa_flags
= SA_RESTART
| SA_SIGINFO
;
2719 act
.sa_sigaction
= GC_write_fault_handler
;
2721 (void)sigemptyset(&act
.sa_mask
);
2723 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2724 /* handler. This effectively makes the handler atomic w.r.t. */
2725 /* stopping the world for GC. */
2726 (void)sigaddset(&act
.sa_mask
, SIG_SUSPEND
);
2727 # endif /* SIG_SUSPEND */
2730 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2732 GC_dirty_maintained
= TRUE
;
2733 if (GC_page_size
% HBLKSIZE
!= 0) {
2734 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2735 ABORT("Page size not multiple of HBLKSIZE");
2737 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2738 GC_old_bus_handler
= signal(SIGBUS
, GC_write_fault_handler
);
2739 if (GC_old_bus_handler
== SIG_IGN
) {
2740 GC_err_printf0("Previously ignored bus error!?");
2741 GC_old_bus_handler
= SIG_DFL
;
2743 if (GC_old_bus_handler
!= SIG_DFL
) {
2745 GC_err_printf0("Replaced other SIGBUS handler\n");
2749 # if defined(SUNOS4)
2750 GC_old_segv_handler
= signal(SIGSEGV
, (SIG_PF
)GC_write_fault_handler
);
2751 if (GC_old_segv_handler
== SIG_IGN
) {
2752 GC_err_printf0("Previously ignored segmentation violation!?");
2753 GC_old_segv_handler
= SIG_DFL
;
2755 if (GC_old_segv_handler
!= SIG_DFL
) {
2757 GC_err_printf0("Replaced other SIGSEGV handler\n");
2761 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2762 || defined(LINUX) || defined(OSF1) || defined(HURD)
2763 /* SUNOS5SIGS includes HPUX */
2764 # if defined(GC_IRIX_THREADS)
2765 sigaction(SIGSEGV
, 0, &oldact
);
2766 sigaction(SIGSEGV
, &act
, 0);
2769 int res
= sigaction(SIGSEGV
, &act
, &oldact
);
2770 if (res
!= 0) ABORT("Sigaction failed");
2773 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2774 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2776 GC_old_segv_handler
= oldact
.sa_handler
;
2777 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2778 if (oldact
.sa_flags
& SA_SIGINFO
) {
2779 GC_old_segv_handler
= (SIG_PF
)(oldact
.sa_sigaction
);
2781 GC_old_segv_handler
= oldact
.sa_handler
;
2784 if (GC_old_segv_handler
== SIG_IGN
) {
2785 GC_err_printf0("Previously ignored segmentation violation!?");
2786 GC_old_segv_handler
= SIG_DFL
;
2788 if (GC_old_segv_handler
!= SIG_DFL
) {
2790 GC_err_printf0("Replaced other SIGSEGV handler\n");
2793 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2794 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2795 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2796 sigaction(SIGBUS
, &act
, &oldact
);
2797 GC_old_bus_handler
= oldact
.sa_handler
;
2798 if (GC_old_bus_handler
== SIG_IGN
) {
2799 GC_err_printf0("Previously ignored bus error!?");
2800 GC_old_bus_handler
= SIG_DFL
;
2802 if (GC_old_bus_handler
!= SIG_DFL
) {
2804 GC_err_printf0("Replaced other SIGBUS handler\n");
2807 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2808 # if defined(MSWIN32)
2809 GC_old_segv_handler
= SetUnhandledExceptionFilter(GC_write_fault_handler
);
2810 if (GC_old_segv_handler
!= NULL
) {
2812 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2815 GC_old_segv_handler
= SIG_DFL
;
2819 #endif /* !DARWIN */
2821 int GC_incremental_protection_needs()
2823 if (GC_page_size
== HBLKSIZE
) {
2824 return GC_PROTECTS_POINTER_HEAP
;
2826 return GC_PROTECTS_POINTER_HEAP
| GC_PROTECTS_PTRFREE_HEAP
;
2830 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2832 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2834 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2835 void GC_protect_heap()
2839 struct hblk
* current
;
2840 struct hblk
* current_start
; /* Start of block to be protected. */
2841 struct hblk
* limit
;
2843 GC_bool protect_all
=
2844 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP
));
2845 for (i
= 0; i
< GC_n_heap_sects
; i
++) {
2846 start
= GC_heap_sects
[i
].hs_start
;
2847 len
= GC_heap_sects
[i
].hs_bytes
;
2849 PROTECT(start
, len
);
2851 GC_ASSERT(PAGE_ALIGNED(len
))
2852 GC_ASSERT(PAGE_ALIGNED(start
))
2853 current_start
= current
= (struct hblk
*)start
;
2854 limit
= (struct hblk
*)(start
+ len
);
2855 while (current
< limit
) {
2860 GC_ASSERT(PAGE_ALIGNED(current
));
2861 GET_HDR(current
, hhdr
);
2862 if (IS_FORWARDING_ADDR_OR_NIL(hhdr
)) {
2863 /* This can happen only if we're at the beginning of a */
2864 /* heap segment, and a block spans heap segments. */
2865 /* We will handle that block as part of the preceding */
2867 GC_ASSERT(current_start
== current
);
2868 current_start
= ++current
;
2871 if (HBLK_IS_FREE(hhdr
)) {
2872 GC_ASSERT(PAGE_ALIGNED(hhdr
-> hb_sz
));
2873 nhblks
= divHBLKSZ(hhdr
-> hb_sz
);
2874 is_ptrfree
= TRUE
; /* dirty on alloc */
2876 nhblks
= OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
);
2877 is_ptrfree
= IS_PTRFREE(hhdr
);
2880 if (current_start
< current
) {
2881 PROTECT(current_start
, (ptr_t
)current
- (ptr_t
)current_start
);
2883 current_start
= (current
+= nhblks
);
2888 if (current_start
< current
) {
2889 PROTECT(current_start
, (ptr_t
)current
- (ptr_t
)current_start
);
2895 /* We assume that either the world is stopped or its OK to lose dirty */
2896 /* bits while this is happenning (as in GC_enable_incremental). */
2897 void GC_read_dirty()
2899 BCOPY((word
*)GC_dirty_pages
, GC_grungy_pages
,
2900 (sizeof GC_dirty_pages
));
2901 BZERO((word
*)GC_dirty_pages
, (sizeof GC_dirty_pages
));
2905 GC_bool
GC_page_was_dirty(h
)
2908 register word index
= PHT_HASH(h
);
2910 return(HDR(h
) == 0 || get_pht_entry_from_index(GC_grungy_pages
, index
));
2914 * Acquiring the allocation lock here is dangerous, since this
2915 * can be called from within GC_call_with_alloc_lock, and the cord
2916 * package does so. On systems that allow nested lock acquisition, this
2918 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2921 static GC_bool syscall_acquired_lock
= FALSE
; /* Protected by GC lock. */
2923 void GC_begin_syscall()
2925 if (!I_HOLD_LOCK()) {
2927 syscall_acquired_lock
= TRUE
;
2931 void GC_end_syscall()
2933 if (syscall_acquired_lock
) {
2934 syscall_acquired_lock
= FALSE
;
2939 void GC_unprotect_range(addr
, len
)
2943 struct hblk
* start_block
;
2944 struct hblk
* end_block
;
2945 register struct hblk
*h
;
2948 if (!GC_dirty_maintained
) return;
2949 obj_start
= GC_base(addr
);
2950 if (obj_start
== 0) return;
2951 if (GC_base(addr
+ len
- 1) != obj_start
) {
2952 ABORT("GC_unprotect_range(range bigger than object)");
2954 start_block
= (struct hblk
*)((word
)addr
& ~(GC_page_size
- 1));
2955 end_block
= (struct hblk
*)((word
)(addr
+ len
- 1) & ~(GC_page_size
- 1));
2956 end_block
+= GC_page_size
/HBLKSIZE
- 1;
2957 for (h
= start_block
; h
<= end_block
; h
++) {
2958 register word index
= PHT_HASH(h
);
2960 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
2962 UNPROTECT(start_block
,
2963 ((ptr_t
)end_block
- (ptr_t
)start_block
) + HBLKSIZE
);
2968 /* We no longer wrap read by default, since that was causing too many */
2969 /* problems. It is preferred that the client instead avoids writing */
2970 /* to the write-protected heap with a system call. */
2971 /* This still serves as sample code if you do want to wrap system calls.*/
2973 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2974 /* Replacement for UNIX system call. */
2975 /* Other calls that write to the heap should be handled similarly. */
2976 /* Note that this doesn't work well for blocking reads: It will hold */
2977 /* the allocation lock for the entire duration of the call. Multithreaded */
2978 /* clients should really ensure that it won't block, either by setting */
2979 /* the descriptor nonblocking, or by calling select or poll first, to */
2980 /* make sure that input is available. */
2981 /* Another, preferred alternative is to ensure that system calls never */
2982 /* write to the protected heap (see above). */
2983 # if defined(__STDC__) && !defined(SUNOS4)
2984 # include <unistd.h>
2985 # include <sys/uio.h>
2986 ssize_t
read(int fd
, void *buf
, size_t nbyte
)
2989 int read(fd
, buf
, nbyte
)
2991 int GC_read(fd
, buf
, nbyte
)
3001 GC_unprotect_range(buf
, (word
)nbyte
);
3002 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
3003 /* Indirect system call may not always be easily available. */
3004 /* We could call _read, but that would interfere with the */
3005 /* libpthread interception of read. */
3006 /* On Linux, we have to be careful with the linuxthreads */
3007 /* read interception. */
3012 iov
.iov_len
= nbyte
;
3013 result
= readv(fd
, &iov
, 1);
3017 result
= __read(fd
, buf
, nbyte
);
3019 /* The two zero args at the end of this list are because one
3020 IA-64 syscall() implementation actually requires six args
3021 to be passed, even though they aren't always used. */
3022 result
= syscall(SYS_read
, fd
, buf
, nbyte
, 0, 0);
3028 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3030 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3031 /* We use the GNU ld call wrapping facility. */
3032 /* This requires that the linker be invoked with "--wrap read". */
3033 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3034 /* I'm not sure that this actually wraps whatever version of read */
3035 /* is called by stdio. That code also mentions __read. */
3036 # include <unistd.h>
3037 ssize_t
__wrap_read(int fd
, void *buf
, size_t nbyte
)
3042 GC_unprotect_range(buf
, (word
)nbyte
);
3043 result
= __real_read(fd
, buf
, nbyte
);
3048 /* We should probably also do this for __read, or whatever stdio */
3049 /* actually calls. */
3055 GC_bool
GC_page_was_ever_dirty(h
)
3061 /* Reset the n pages starting at h to "was never dirty" status. */
3063 void GC_is_fresh(h
, n
)
3069 # endif /* MPROTECT_VDB */
3074 * See DEFAULT_VDB for interface descriptions.
3078 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3079 * from which we can read page modified bits. This facility is far from
3080 * optimal (e.g. we would like to get the info for only some of the
3081 * address space), but it avoids intercepting system calls.
3085 #include <sys/types.h>
3086 #include <sys/signal.h>
3087 #include <sys/fault.h>
3088 #include <sys/syscall.h>
3089 #include <sys/procfs.h>
3090 #include <sys/stat.h>
3092 #define INITIAL_BUF_SZ 16384
3093 word GC_proc_buf_size
= INITIAL_BUF_SZ
;
3096 #ifdef GC_SOLARIS_THREADS
3097 /* We don't have exact sp values for threads. So we count on */
3098 /* occasionally declaring stack pages to be fresh. Thus we */
3099 /* need a real implementation of GC_is_fresh. We can't clear */
3100 /* entries in GC_written_pages, since that would declare all */
3101 /* pages with the given hash address to be fresh. */
3102 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3103 struct hblk
** GC_fresh_pages
; /* A direct mapped cache. */
3104 /* Collisions are dropped. */
3106 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3107 # define ADD_FRESH_PAGE(h) \
3108 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3109 # define PAGE_IS_FRESH(h) \
3110 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3113 /* Add all pages in pht2 to pht1 */
3114 void GC_or_pages(pht1
, pht2
)
3115 page_hash_table pht1
, pht2
;
3119 for (i
= 0; i
< PHT_SIZE
; i
++) pht1
[i
] |= pht2
[i
];
3124 void GC_dirty_init()
3129 GC_dirty_maintained
= TRUE
;
3130 if (GC_words_allocd
!= 0 || GC_words_allocd_before_gc
!= 0) {
3133 for (i
= 0; i
< PHT_SIZE
; i
++) GC_written_pages
[i
] = (word
)(-1);
3135 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3137 (GC_words_allocd
+ GC_words_allocd_before_gc
));
3140 sprintf(buf
, "/proc/%d", getpid());
3141 fd
= open(buf
, O_RDONLY
);
3143 ABORT("/proc open failed");
3145 GC_proc_fd
= syscall(SYS_ioctl
, fd
, PIOCOPENPD
, 0);
3147 syscall(SYS_fcntl
, GC_proc_fd
, F_SETFD
, FD_CLOEXEC
);
3148 if (GC_proc_fd
< 0) {
3149 ABORT("/proc ioctl failed");
3151 GC_proc_buf
= GC_scratch_alloc(GC_proc_buf_size
);
3152 # ifdef GC_SOLARIS_THREADS
3153 GC_fresh_pages
= (struct hblk
**)
3154 GC_scratch_alloc(MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3155 if (GC_fresh_pages
== 0) {
3156 GC_err_printf0("No space for fresh pages\n");
3159 BZERO(GC_fresh_pages
, MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3163 /* Ignore write hints. They don't help us here. */
3165 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
3172 #ifdef GC_SOLARIS_THREADS
3173 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3175 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3178 void GC_read_dirty()
3180 unsigned long ps
, np
;
3183 struct prasmap
* map
;
3185 ptr_t current_addr
, limit
;
3189 BZERO(GC_grungy_pages
, (sizeof GC_grungy_pages
));
3192 if (READ(GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
3194 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3198 /* Retry with larger buffer. */
3199 word new_size
= 2 * GC_proc_buf_size
;
3200 char * new_buf
= GC_scratch_alloc(new_size
);
3203 GC_proc_buf
= bufp
= new_buf
;
3204 GC_proc_buf_size
= new_size
;
3206 if (READ(GC_proc_fd
, bufp
, GC_proc_buf_size
) <= 0) {
3207 WARN("Insufficient space for /proc read\n", 0);
3209 memset(GC_grungy_pages
, 0xff, sizeof (page_hash_table
));
3210 memset(GC_written_pages
, 0xff, sizeof(page_hash_table
));
3211 # ifdef GC_SOLARIS_THREADS
3212 BZERO(GC_fresh_pages
,
3213 MAX_FRESH_PAGES
* sizeof (struct hblk
*));
3219 /* Copy dirty bits into GC_grungy_pages */
3220 nmaps
= ((struct prpageheader
*)bufp
) -> pr_nmap
;
3221 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3222 nmaps, PG_REFERENCED, PG_MODIFIED); */
3223 bufp
= bufp
+ sizeof(struct prpageheader
);
3224 for (i
= 0; i
< nmaps
; i
++) {
3225 map
= (struct prasmap
*)bufp
;
3226 vaddr
= (ptr_t
)(map
-> pr_vaddr
);
3227 ps
= map
-> pr_pagesize
;
3228 np
= map
-> pr_npage
;
3229 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3230 limit
= vaddr
+ ps
* np
;
3231 bufp
+= sizeof (struct prasmap
);
3232 for (current_addr
= vaddr
;
3233 current_addr
< limit
; current_addr
+= ps
){
3234 if ((*bufp
++) & PG_MODIFIED
) {
3235 register struct hblk
* h
= (struct hblk
*) current_addr
;
3237 while ((ptr_t
)h
< current_addr
+ ps
) {
3238 register word index
= PHT_HASH(h
);
3240 set_pht_entry_from_index(GC_grungy_pages
, index
);
3241 # ifdef GC_SOLARIS_THREADS
3243 register int slot
= FRESH_PAGE_SLOT(h
);
3245 if (GC_fresh_pages
[slot
] == h
) {
3246 GC_fresh_pages
[slot
] = 0;
3254 bufp
+= sizeof(long) - 1;
3255 bufp
= (char *)((unsigned long)bufp
& ~(sizeof(long)-1));
3257 /* Update GC_written_pages. */
3258 GC_or_pages(GC_written_pages
, GC_grungy_pages
);
3259 # ifdef GC_SOLARIS_THREADS
3260 /* Make sure that old stacks are considered completely clean */
3261 /* unless written again. */
3262 GC_old_stacks_are_fresh();
3268 GC_bool
GC_page_was_dirty(h
)
3271 register word index
= PHT_HASH(h
);
3272 register GC_bool result
;
3274 result
= get_pht_entry_from_index(GC_grungy_pages
, index
);
3275 # ifdef GC_SOLARIS_THREADS
3276 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
3277 /* This happens only if page was declared fresh since */
3278 /* the read_dirty call, e.g. because it's in an unused */
3279 /* thread stack. It's OK to treat it as clean, in */
3280 /* that case. And it's consistent with */
3281 /* GC_page_was_ever_dirty. */
3286 GC_bool
GC_page_was_ever_dirty(h
)
3289 register word index
= PHT_HASH(h
);
3290 register GC_bool result
;
3292 result
= get_pht_entry_from_index(GC_written_pages
, index
);
3293 # ifdef GC_SOLARIS_THREADS
3294 if (result
&& PAGE_IS_FRESH(h
)) result
= FALSE
;
3299 /* Caller holds allocation lock. */
3300 void GC_is_fresh(h
, n
)
3305 register word index
;
3307 # ifdef GC_SOLARIS_THREADS
3310 if (GC_fresh_pages
!= 0) {
3311 for (i
= 0; i
< n
; i
++) {
3312 ADD_FRESH_PAGE(h
+ i
);
3318 # endif /* PROC_VDB */
3323 # include "vd/PCR_VD.h"
3325 # define NPAGES (32*1024) /* 128 MB */
3327 PCR_VD_DB GC_grungy_bits
[NPAGES
];
3329 ptr_t GC_vd_base
; /* Address corresponding to GC_grungy_bits[0] */
3330 /* HBLKSIZE aligned. */
3332 void GC_dirty_init()
3334 GC_dirty_maintained
= TRUE
;
3335 /* For the time being, we assume the heap generally grows up */
3336 GC_vd_base
= GC_heap_sects
[0].hs_start
;
3337 if (GC_vd_base
== 0) {
3338 ABORT("Bad initial heap segment");
3340 if (PCR_VD_Start(HBLKSIZE
, GC_vd_base
, NPAGES
*HBLKSIZE
)
3342 ABORT("dirty bit initialization failed");
3346 void GC_read_dirty()
3348 /* lazily enable dirty bits on newly added heap sects */
3350 static int onhs
= 0;
3351 int nhs
= GC_n_heap_sects
;
3352 for( ; onhs
< nhs
; onhs
++ ) {
3353 PCR_VD_WriteProtectEnable(
3354 GC_heap_sects
[onhs
].hs_start
,
3355 GC_heap_sects
[onhs
].hs_bytes
);
3360 if (PCR_VD_Clear(GC_vd_base
, NPAGES
*HBLKSIZE
, GC_grungy_bits
)
3362 ABORT("dirty bit read failed");
3366 GC_bool
GC_page_was_dirty(h
)
3369 if((ptr_t
)h
< GC_vd_base
|| (ptr_t
)h
>= GC_vd_base
+ NPAGES
*HBLKSIZE
) {
3372 return(GC_grungy_bits
[h
- (struct hblk
*)GC_vd_base
] & PCR_VD_DB_dirtyBit
);
3376 void GC_remove_protection(h
, nblocks
, is_ptrfree
)
3381 PCR_VD_WriteProtectDisable(h
, nblocks
*HBLKSIZE
);
3382 PCR_VD_WriteProtectEnable(h
, nblocks
*HBLKSIZE
);
3385 # endif /* PCR_VDB */
3387 #if defined(MPROTECT_VDB) && defined(DARWIN)
3388 /* The following sources were used as a *reference* for this exception handling
3390 1. Apple's mach/xnu documentation
3391 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3392 omnigroup's macosx-dev list.
3393 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3394 3. macosx-nat.c from Apple's GDB source code.
3397 /* The bug that caused all this trouble should now be fixed. This should
3398 eventually be removed if all goes well. */
3399 /* define BROKEN_EXCEPTION_HANDLING */
3401 #include <mach/mach.h>
3402 #include <mach/mach_error.h>
3403 #include <mach/thread_status.h>
3404 #include <mach/exception.h>
3405 #include <mach/task.h>
3406 #include <pthread.h>
3408 /* These are not defined in any header, although they are documented */
3409 extern boolean_t
exc_server(mach_msg_header_t
*,mach_msg_header_t
*);
3410 extern kern_return_t
exception_raise(
3411 mach_port_t
,mach_port_t
,mach_port_t
,
3412 exception_type_t
,exception_data_t
,mach_msg_type_number_t
);
3413 extern kern_return_t
exception_raise_state(
3414 mach_port_t
,mach_port_t
,mach_port_t
,
3415 exception_type_t
,exception_data_t
,mach_msg_type_number_t
,
3416 thread_state_flavor_t
*,thread_state_t
,mach_msg_type_number_t
,
3417 thread_state_t
,mach_msg_type_number_t
*);
3418 extern kern_return_t
exception_raise_state_identity(
3419 mach_port_t
,mach_port_t
,mach_port_t
,
3420 exception_type_t
,exception_data_t
,mach_msg_type_number_t
,
3421 thread_state_flavor_t
*,thread_state_t
,mach_msg_type_number_t
,
3422 thread_state_t
,mach_msg_type_number_t
*);
3425 #define MAX_EXCEPTION_PORTS 16
3428 mach_msg_type_number_t count
;
3429 exception_mask_t masks
[MAX_EXCEPTION_PORTS
];
3430 exception_handler_t ports
[MAX_EXCEPTION_PORTS
];
3431 exception_behavior_t behaviors
[MAX_EXCEPTION_PORTS
];
3432 thread_state_flavor_t flavors
[MAX_EXCEPTION_PORTS
];
3436 mach_port_t exception
;
3437 #if defined(THREADS)
3443 mach_msg_header_t head
;
3447 GC_MP_NORMAL
, GC_MP_DISCARDING
, GC_MP_STOPPED
3448 } GC_mprotect_state_t
;
3450 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3451 but it isn't documented. Use the source and see if they
3456 /* These values are only used on the reply port */
3459 #if defined(THREADS)
3461 GC_mprotect_state_t GC_mprotect_state
;
3463 /* The following should ONLY be called when the world is stopped */
3464 static void GC_mprotect_thread_notify(mach_msg_id_t id
) {
3467 mach_msg_trailer_t trailer
;
3469 mach_msg_return_t r
;
3471 buf
.msg
.head
.msgh_bits
=
3472 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND
,0);
3473 buf
.msg
.head
.msgh_size
= sizeof(buf
.msg
);
3474 buf
.msg
.head
.msgh_remote_port
= GC_ports
.exception
;
3475 buf
.msg
.head
.msgh_local_port
= MACH_PORT_NULL
;
3476 buf
.msg
.head
.msgh_id
= id
;
3480 MACH_SEND_MSG
|MACH_RCV_MSG
|MACH_RCV_LARGE
,
3484 MACH_MSG_TIMEOUT_NONE
,
3486 if(r
!= MACH_MSG_SUCCESS
)
3487 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3488 if(buf
.msg
.head
.msgh_id
!= ID_ACK
)
3489 ABORT("invalid ack in GC_mprotect_thread_notify");
3492 /* Should only be called by the mprotect thread */
3493 static void GC_mprotect_thread_reply() {
3495 mach_msg_return_t r
;
3497 msg
.head
.msgh_bits
=
3498 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND
,0);
3499 msg
.head
.msgh_size
= sizeof(msg
);
3500 msg
.head
.msgh_remote_port
= GC_ports
.reply
;
3501 msg
.head
.msgh_local_port
= MACH_PORT_NULL
;
3502 msg
.head
.msgh_id
= ID_ACK
;
3510 MACH_MSG_TIMEOUT_NONE
,
3512 if(r
!= MACH_MSG_SUCCESS
)
3513 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3516 void GC_mprotect_stop() {
3517 GC_mprotect_thread_notify(ID_STOP
);
3519 void GC_mprotect_resume() {
3520 GC_mprotect_thread_notify(ID_RESUME
);
3523 #else /* !THREADS */
3524 /* The compiler should optimize away any GC_mprotect_state computations */
3525 #define GC_mprotect_state GC_MP_NORMAL
3528 static void *GC_mprotect_thread(void *arg
) {
3529 mach_msg_return_t r
;
3530 /* These two structures contain some private kernel data. We don't need to
3531 access any of it so we don't bother defining a proper struct. The
3532 correct definitions are in the xnu source code. */
3534 mach_msg_header_t head
;
3538 mach_msg_header_t head
;
3539 mach_msg_body_t msgh_body
;
3545 GC_darwin_register_mach_handler_thread(mach_thread_self());
3550 MACH_RCV_MSG
|MACH_RCV_LARGE
|
3551 (GC_mprotect_state
== GC_MP_DISCARDING
? MACH_RCV_TIMEOUT
: 0),
3555 GC_mprotect_state
== GC_MP_DISCARDING
? 0 : MACH_MSG_TIMEOUT_NONE
,
3558 id
= r
== MACH_MSG_SUCCESS
? msg
.head
.msgh_id
: -1;
3560 #if defined(THREADS)
3561 if(GC_mprotect_state
== GC_MP_DISCARDING
) {
3562 if(r
== MACH_RCV_TIMED_OUT
) {
3563 GC_mprotect_state
= GC_MP_STOPPED
;
3564 GC_mprotect_thread_reply();
3567 if(r
== MACH_MSG_SUCCESS
&& (id
== ID_STOP
|| id
== ID_RESUME
))
3568 ABORT("out of order mprotect thread request");
3572 if(r
!= MACH_MSG_SUCCESS
) {
3573 GC_err_printf2("mach_msg failed with %d %s\n",
3574 (int)r
,mach_error_string(r
));
3575 ABORT("mach_msg failed");
3579 #if defined(THREADS)
3581 if(GC_mprotect_state
!= GC_MP_NORMAL
)
3582 ABORT("Called mprotect_stop when state wasn't normal");
3583 GC_mprotect_state
= GC_MP_DISCARDING
;
3586 if(GC_mprotect_state
!= GC_MP_STOPPED
)
3587 ABORT("Called mprotect_resume when state wasn't stopped");
3588 GC_mprotect_state
= GC_MP_NORMAL
;
3589 GC_mprotect_thread_reply();
3591 #endif /* THREADS */
3593 /* Handle the message (calls catch_exception_raise) */
3594 if(!exc_server(&msg
.head
,&reply
.head
))
3595 ABORT("exc_server failed");
3596 /* Send the reply */
3600 reply
.head
.msgh_size
,
3603 MACH_MSG_TIMEOUT_NONE
,
3605 if(r
!= MACH_MSG_SUCCESS
) {
3606 /* This will fail if the thread dies, but the thread shouldn't
3608 #ifdef BROKEN_EXCEPTION_HANDLING
3610 "mach_msg failed with %d %s while sending exc reply\n",
3611 (int)r
,mach_error_string(r
));
3613 ABORT("mach_msg failed while sending exception reply");
3622 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3623 be going throught the mach exception handler. However, it seems a SIGBUS is
3624 occasionally sent for some unknown reason. Even more odd, it seems to be
3625 meaningless and safe to ignore. */
3626 #ifdef BROKEN_EXCEPTION_HANDLING
3628 typedef void (* SIG_PF
)();
3629 static SIG_PF GC_old_bus_handler
;
3631 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3632 Even if this doesn't get updated property, it isn't really a problem */
3633 static int GC_sigbus_count
;
3635 static void GC_darwin_sigbus(int num
,siginfo_t
*sip
,void *context
) {
3636 if(num
!= SIGBUS
) ABORT("Got a non-sigbus signal in the sigbus handler");
3638 /* Ugh... some seem safe to ignore, but too many in a row probably means
3639 trouble. GC_sigbus_count is reset for each mach exception that is
3641 if(GC_sigbus_count
>= 8) {
3642 ABORT("Got more than 8 SIGBUSs in a row!");
3645 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3648 #endif /* BROKEN_EXCEPTION_HANDLING */
3650 void GC_dirty_init() {
3654 pthread_attr_t attr
;
3655 exception_mask_t mask
;
3658 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3659 "implementation\n");
3661 # ifdef BROKEN_EXCEPTION_HANDLING
3662 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3663 "exception handling bugs.\n");
3665 GC_dirty_maintained
= TRUE
;
3666 if (GC_page_size
% HBLKSIZE
!= 0) {
3667 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3668 ABORT("Page size not multiple of HBLKSIZE");
3671 GC_task_self
= me
= mach_task_self();
3673 r
= mach_port_allocate(me
,MACH_PORT_RIGHT_RECEIVE
,&GC_ports
.exception
);
3674 if(r
!= KERN_SUCCESS
) ABORT("mach_port_allocate failed (exception port)");
3676 r
= mach_port_insert_right(me
,GC_ports
.exception
,GC_ports
.exception
,
3677 MACH_MSG_TYPE_MAKE_SEND
);
3678 if(r
!= KERN_SUCCESS
)
3679 ABORT("mach_port_insert_right failed (exception port)");
3681 #if defined(THREADS)
3682 r
= mach_port_allocate(me
,MACH_PORT_RIGHT_RECEIVE
,&GC_ports
.reply
);
3683 if(r
!= KERN_SUCCESS
) ABORT("mach_port_allocate failed (reply port)");
3686 /* The exceptions we want to catch */
3687 mask
= EXC_MASK_BAD_ACCESS
;
3689 r
= task_get_exception_ports(
3692 GC_old_exc_ports
.masks
,
3693 &GC_old_exc_ports
.count
,
3694 GC_old_exc_ports
.ports
,
3695 GC_old_exc_ports
.behaviors
,
3696 GC_old_exc_ports
.flavors
3698 if(r
!= KERN_SUCCESS
) ABORT("task_get_exception_ports failed");
3700 r
= task_set_exception_ports(
3705 GC_MACH_THREAD_STATE_FLAVOR
3707 if(r
!= KERN_SUCCESS
) ABORT("task_set_exception_ports failed");
3709 if(pthread_attr_init(&attr
) != 0) ABORT("pthread_attr_init failed");
3710 if(pthread_attr_setdetachstate(&attr
,PTHREAD_CREATE_DETACHED
) != 0)
3711 ABORT("pthread_attr_setdetachedstate failed");
3713 # undef pthread_create
3714 /* This will call the real pthread function, not our wrapper */
3715 if(pthread_create(&thread
,&attr
,GC_mprotect_thread
,NULL
) != 0)
3716 ABORT("pthread_create failed");
3717 pthread_attr_destroy(&attr
);
3719 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3720 #ifdef BROKEN_EXCEPTION_HANDLING
3722 struct sigaction sa
, oldsa
;
3723 sa
.sa_handler
= (SIG_PF
)GC_darwin_sigbus
;
3724 sigemptyset(&sa
.sa_mask
);
3725 sa
.sa_flags
= SA_RESTART
|SA_SIGINFO
;
3726 if(sigaction(SIGBUS
,&sa
,&oldsa
) < 0) ABORT("sigaction");
3727 GC_old_bus_handler
= (SIG_PF
)oldsa
.sa_handler
;
3728 if (GC_old_bus_handler
!= SIG_DFL
) {
3730 GC_err_printf0("Replaced other SIGBUS handler\n");
3734 #endif /* BROKEN_EXCEPTION_HANDLING */
3737 /* The source code for Apple's GDB was used as a reference for the exception
3738 forwarding code. This code is similar to be GDB code only because there is
3739 only one way to do it. */
3740 static kern_return_t
GC_forward_exception(
3743 exception_type_t exception
,
3744 exception_data_t data
,
3745 mach_msg_type_number_t data_count
3750 exception_behavior_t behavior
;
3751 thread_state_flavor_t flavor
;
3753 thread_state_t thread_state
;
3754 mach_msg_type_number_t thread_state_count
= THREAD_STATE_MAX
;
3756 for(i
=0;i
<GC_old_exc_ports
.count
;i
++)
3757 if(GC_old_exc_ports
.masks
[i
] & (1 << exception
))
3759 if(i
==GC_old_exc_ports
.count
) ABORT("No handler for exception!");
3761 port
= GC_old_exc_ports
.ports
[i
];
3762 behavior
= GC_old_exc_ports
.behaviors
[i
];
3763 flavor
= GC_old_exc_ports
.flavors
[i
];
3765 if(behavior
!= EXCEPTION_DEFAULT
) {
3766 r
= thread_get_state(thread
,flavor
,thread_state
,&thread_state_count
);
3767 if(r
!= KERN_SUCCESS
)
3768 ABORT("thread_get_state failed in forward_exception");
3772 case EXCEPTION_DEFAULT
:
3773 r
= exception_raise(port
,thread
,task
,exception
,data
,data_count
);
3775 case EXCEPTION_STATE
:
3776 r
= exception_raise_state(port
,thread
,task
,exception
,data
,
3777 data_count
,&flavor
,thread_state
,thread_state_count
,
3778 thread_state
,&thread_state_count
);
3780 case EXCEPTION_STATE_IDENTITY
:
3781 r
= exception_raise_state_identity(port
,thread
,task
,exception
,data
,
3782 data_count
,&flavor
,thread_state
,thread_state_count
,
3783 thread_state
,&thread_state_count
);
3786 r
= KERN_FAILURE
; /* make gcc happy */
3787 ABORT("forward_exception: unknown behavior");
3791 if(behavior
!= EXCEPTION_DEFAULT
) {
3792 r
= thread_set_state(thread
,flavor
,thread_state
,thread_state_count
);
3793 if(r
!= KERN_SUCCESS
)
3794 ABORT("thread_set_state failed in forward_exception");
3800 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3802 /* This violates the namespace rules but there isn't anything that can be done
3803 about it. The exception handling stuff is hard coded to call this */
3805 catch_exception_raise(
3806 mach_port_t exception_port
,mach_port_t thread
,mach_port_t task
,
3807 exception_type_t exception
,exception_data_t code
,
3808 mach_msg_type_number_t code_count
3814 # if defined(POWERPC)
3815 # if CPP_WORDSZ == 32
3816 thread_state_flavor_t flavor
= PPC_EXCEPTION_STATE
;
3817 mach_msg_type_number_t exc_state_count
= PPC_EXCEPTION_STATE_COUNT
;
3818 ppc_exception_state_t exc_state
;
3820 thread_state_flavor_t flavor
= PPC_EXCEPTION_STATE64
;
3821 mach_msg_type_number_t exc_state_count
= PPC_EXCEPTION_STATE64_COUNT
;
3822 ppc_exception_state64_t exc_state
;
3824 # elif defined(I386)
3825 thread_state_flavor_t flavor
= i386_EXCEPTION_STATE
;
3826 mach_msg_type_number_t exc_state_count
= i386_EXCEPTION_STATE_COUNT
;
3827 i386_exception_state_t exc_state
;
3829 # error FIXME for non-ppc darwin
3833 if(exception
!= EXC_BAD_ACCESS
|| code
[0] != KERN_PROTECTION_FAILURE
) {
3834 #ifdef DEBUG_EXCEPTION_HANDLING
3835 /* We aren't interested, pass it on to the old handler */
3836 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3838 code_count
> 0 ? code
[0] : -1,
3839 code_count
> 1 ? code
[1] : -1);
3844 r
= thread_get_state(thread
,flavor
,
3845 (natural_t
*)&exc_state
,&exc_state_count
);
3846 if(r
!= KERN_SUCCESS
) {
3847 /* The thread is supposed to be suspended while the exception handler
3848 is called. This shouldn't fail. */
3849 #ifdef BROKEN_EXCEPTION_HANDLING
3850 GC_err_printf0("thread_get_state failed in "
3851 "catch_exception_raise\n");
3852 return KERN_SUCCESS
;
3854 ABORT("thread_get_state failed in catch_exception_raise");
3858 /* This is the address that caused the fault */
3859 #if defined(POWERPC)
3860 addr
= (char*) exc_state
.dar
;
3861 #elif defined (I386)
3862 addr
= (char*) exc_state
.faultvaddr
;
3864 # error FIXME for non POWERPC/I386
3867 if((HDR(addr
)) == 0) {
3868 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3869 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3870 a bunch in a row before doing anything about it. If a "real" fault
3871 ever occurres it'll just keep faulting over and over and we'll hit
3872 the limit pretty quickly. */
3873 #ifdef BROKEN_EXCEPTION_HANDLING
3874 static char *last_fault
;
3875 static int last_fault_count
;
3877 if(addr
!= last_fault
) {
3879 last_fault_count
= 0;
3881 if(++last_fault_count
< 32) {
3882 if(last_fault_count
== 1)
3884 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3886 return KERN_SUCCESS
;
3889 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr
);
3890 /* Can't pass it along to the signal handler because that is
3891 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3892 signals don't always work too well from the exception handler. */
3893 GC_err_printf0("Aborting\n");
3895 #else /* BROKEN_EXCEPTION_HANDLING */
3896 /* Pass it along to the next exception handler
3897 (which should call SIGBUS/SIGSEGV) */
3899 #endif /* !BROKEN_EXCEPTION_HANDLING */
3902 #ifdef BROKEN_EXCEPTION_HANDLING
3903 /* Reset the number of consecutive SIGBUSs */
3904 GC_sigbus_count
= 0;
3907 if(GC_mprotect_state
== GC_MP_NORMAL
) { /* common case */
3908 h
= (struct hblk
*)((word
)addr
& ~(GC_page_size
-1));
3909 UNPROTECT(h
, GC_page_size
);
3910 for (i
= 0; i
< divHBLKSZ(GC_page_size
); i
++) {
3911 register int index
= PHT_HASH(h
+i
);
3912 async_set_pht_entry_from_index(GC_dirty_pages
, index
);
3914 } else if(GC_mprotect_state
== GC_MP_DISCARDING
) {
3915 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3916 when we're just going to PROTECT() it again later. The thread
3917 will just fault again once it resumes */
3919 /* Shouldn't happen, i don't think */
3920 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3923 return KERN_SUCCESS
;
3927 /* These should never be called, but just in case... */
3928 kern_return_t
catch_exception_raise_state(mach_port_name_t exception_port
,
3929 int exception
, exception_data_t code
, mach_msg_type_number_t codeCnt
,
3930 int flavor
, thread_state_t old_state
, int old_stateCnt
,
3931 thread_state_t new_state
, int new_stateCnt
)
3933 ABORT("catch_exception_raise_state");
3934 return(KERN_INVALID_ARGUMENT
);
3936 kern_return_t
catch_exception_raise_state_identity(
3937 mach_port_name_t exception_port
, mach_port_t thread
, mach_port_t task
,
3938 int exception
, exception_data_t code
, mach_msg_type_number_t codeCnt
,
3939 int flavor
, thread_state_t old_state
, int old_stateCnt
,
3940 thread_state_t new_state
, int new_stateCnt
)
3942 ABORT("catch_exception_raise_state_identity");
3943 return(KERN_INVALID_ARGUMENT
);
3947 #endif /* DARWIN && MPROTECT_VDB */
3949 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3950 int GC_incremental_protection_needs()
3952 return GC_PROTECTS_NONE
;
3954 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3957 * Call stack save code for debugging.
3958 * Should probably be in mach_dep.c, but that requires reorganization.
3961 /* I suspect the following works for most X86 *nix variants, so */
3962 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3963 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3964 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3965 # include <features.h>
3968 struct frame
*fr_savfp
;
3970 long fr_arg
[NARGS
]; /* All the arguments go here. */
3976 # include <features.h>
3981 struct frame
*fr_savfp
;
3990 # if defined(SUNOS4)
3991 # include <machine/frame.h>
3993 # if defined (DRSNX)
3994 # include <sys/sparc/frame.h>
3996 # if defined(OPENBSD)
3999 # if defined(FREEBSD) || defined(NETBSD)
4000 # include <machine/frame.h>
4002 # include <sys/frame.h>
4009 --> We only know how to to get the first
6 arguments
4013 #ifdef NEED_CALLINFO
4014 /* Fill in the pc and argument information for up to NFRAMES of my */
4015 /* callers. Ignore my frame and my callers frame. */
4018 # include <unistd.h>
4021 #endif /* NEED_CALLINFO */
4023 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4024 # include <execinfo.h>
4027 #ifdef SAVE_CALL_CHAIN
4029 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4030 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4032 #ifdef REDIRECT_MALLOC
4033 /* Deal with possible malloc calls in backtrace by omitting */
4034 /* the infinitely recursing backtrace. */
4036 __thread
/* If your compiler doesn't understand this */
4037 /* you could use something like pthread_getspecific. */
4039 GC_in_save_callers
= FALSE
;
4042 void GC_save_callers (info
)
4043 struct callinfo info
[NFRAMES
];
4045 void * tmp_info
[NFRAMES
+ 1];
4047 # define IGNORE_FRAMES 1
4049 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4050 /* points to our own frame. */
4051 # ifdef REDIRECT_MALLOC
4052 if (GC_in_save_callers
) {
4053 info
[0].ci_pc
= (word
)(&GC_save_callers
);
4054 for (i
= 1; i
< NFRAMES
; ++i
) info
[i
].ci_pc
= 0;
4057 GC_in_save_callers
= TRUE
;
4059 GC_ASSERT(sizeof(struct callinfo
) == sizeof(void *));
4060 npcs
= backtrace((void **)tmp_info
, NFRAMES
+ IGNORE_FRAMES
);
4061 BCOPY(tmp_info
+IGNORE_FRAMES
, info
, (npcs
- IGNORE_FRAMES
) * sizeof(void *));
4062 for (i
= npcs
- IGNORE_FRAMES
; i
< NFRAMES
; ++i
) info
[i
].ci_pc
= 0;
4063 # ifdef REDIRECT_MALLOC
4064 GC_in_save_callers
= FALSE
;
4068 #else /* No builtin backtrace; do it ourselves */
4070 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4071 # define FR_SAVFP fr_fp
4072 # define FR_SAVPC fr_pc
4074 # define FR_SAVFP fr_savfp
4075 # define FR_SAVPC fr_savpc
4078 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4084 void GC_save_callers (info
)
4085 struct callinfo info
[NFRAMES
];
4087 struct frame
*frame
;
4091 /* We assume this is turned on only with gcc as the compiler. */
4092 asm("movl %%ebp,%0" : "=r"(frame
));
4095 frame
= (struct frame
*) GC_save_regs_in_stack ();
4096 fp
= (struct frame
*)((long) frame
-> FR_SAVFP
+ BIAS
);
4099 for (; (!(fp HOTTER_THAN frame
) && !(GC_stackbottom
HOTTER_THAN (ptr_t
)fp
)
4100 && (nframes
< NFRAMES
));
4101 fp
= (struct frame
*)((long) fp
-> FR_SAVFP
+ BIAS
), nframes
++) {
4104 info
[nframes
].ci_pc
= fp
->FR_SAVPC
;
4106 for (i
= 0; i
< NARGS
; i
++) {
4107 info
[nframes
].ci_arg
[i
] = ~(fp
->fr_arg
[i
]);
4109 # endif /* NARGS > 0 */
4111 if (nframes
< NFRAMES
) info
[nframes
].ci_pc
= 0;
4114 #endif /* No builtin backtrace */
4116 #endif /* SAVE_CALL_CHAIN */
4118 #ifdef NEED_CALLINFO
4120 /* Print info to stderr. We do NOT hold the allocation lock */
4121 void GC_print_callers (info
)
4122 struct callinfo info
[NFRAMES
];
4125 static int reentry_count
= 0;
4126 GC_bool stop
= FALSE
;
4128 /* FIXME: This should probably use a different lock, so that we */
4129 /* become callable with or without the allocation lock. */
4135 GC_err_printf0("\tCaller at allocation:\n");
4137 GC_err_printf0("\tCall chain at allocation:\n");
4139 for (i
= 0; i
< NFRAMES
&& !stop
; i
++) {
4140 if (info
[i
].ci_pc
== 0) break;
4145 GC_err_printf0("\t\targs: ");
4146 for (j
= 0; j
< NARGS
; j
++) {
4147 if (j
!= 0) GC_err_printf0(", ");
4148 GC_err_printf2("%d (0x%X)", ~(info
[i
].ci_arg
[j
]),
4149 ~(info
[i
].ci_arg
[j
]));
4151 GC_err_printf0("\n");
4154 if (reentry_count
> 1) {
4155 /* We were called during an allocation during */
4156 /* a previous GC_print_callers call; punt. */
4157 GC_err_printf1("\t\t##PC##= 0x%lx\n", info
[i
].ci_pc
);
4164 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4165 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4167 backtrace_symbols((void **)(&(info
[i
].ci_pc
)), 1);
4168 char *name
= sym_name
[0];
4172 sprintf(buf
, "##PC##= 0x%lx", info
[i
].ci_pc
);
4174 # if defined(LINUX) && !defined(SMALL_CONFIG)
4175 /* Try for a line number. */
4178 static char exe_name
[EXE_SZ
];
4180 char cmd_buf
[CMD_SZ
];
4181 # define RESULT_SZ 200
4182 static char result_buf
[RESULT_SZ
];
4185 # define PRELOAD_SZ 200
4186 char preload_buf
[PRELOAD_SZ
];
4187 static GC_bool found_exe_name
= FALSE
;
4188 static GC_bool will_fail
= FALSE
;
4190 /* Try to get it via a hairy and expensive scheme. */
4191 /* First we get the name of the executable: */
4192 if (will_fail
) goto out
;
4193 if (!found_exe_name
) {
4194 ret_code
= readlink("/proc/self/exe", exe_name
, EXE_SZ
);
4195 if (ret_code
< 0 || ret_code
>= EXE_SZ
4196 || exe_name
[0] != '/') {
4197 will_fail
= TRUE
; /* Dont try again. */
4200 exe_name
[ret_code
] = '\0';
4201 found_exe_name
= TRUE
;
4203 /* Then we use popen to start addr2line -e <exe> <addr> */
4204 /* There are faster ways to do this, but hopefully this */
4205 /* isn't time critical. */
4206 sprintf(cmd_buf
, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name
,
4207 (unsigned long)info
[i
].ci_pc
);
4208 old_preload
= getenv ("LD_PRELOAD");
4209 if (0 != old_preload
) {
4210 if (strlen (old_preload
) >= PRELOAD_SZ
) {
4214 strcpy (preload_buf
, old_preload
);
4215 unsetenv ("LD_PRELOAD");
4217 pipe
= popen(cmd_buf
, "r");
4218 if (0 != old_preload
4219 && 0 != setenv ("LD_PRELOAD", preload_buf
, 0)) {
4220 WARN("Failed to reset LD_PRELOAD\n", 0);
4223 || (result_len
= fread(result_buf
, 1, RESULT_SZ
- 1, pipe
))
4225 if (pipe
!= NULL
) pclose(pipe
);
4229 if (result_buf
[result_len
- 1] == '\n') --result_len
;
4230 result_buf
[result_len
] = 0;
4231 if (result_buf
[0] == '?'
4232 || result_buf
[result_len
-2] == ':'
4233 && result_buf
[result_len
-1] == '0') {
4237 /* Get rid of embedded newline, if any. Test for "main" */
4239 char * nl
= strchr(result_buf
, '\n');
4240 if (nl
!= NULL
&& nl
< result_buf
+ result_len
) {
4243 if (strncmp(result_buf
, "main", nl
- result_buf
) == 0) {
4247 if (result_len
< RESULT_SZ
- 25) {
4248 /* Add in hex address */
4249 sprintf(result_buf
+ result_len
, " [0x%lx]",
4250 (unsigned long)info
[i
].ci_pc
);
4257 GC_err_printf1("\t\t%s\n", name
);
4258 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4259 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4260 free(sym_name
); /* May call GC_free; that's OK */
4269 #endif /* NEED_CALLINFO */
4273 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4275 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4276 addresses in FIND_LEAK output. */
4278 static word
dump_maps(char *maps
)
4280 GC_err_write(maps
, strlen(maps
));
4284 void GC_print_address_map()
4286 GC_err_printf0("---------- Begin address map ----------\n");
4287 GC_apply_to_maps(dump_maps
);
4288 GC_err_printf0("---------- End address map ----------\n");