2004-11-27 Ben Maurer <bmaurer@ximian.com>
[mono-project.git] / libgc / allchblk.c
blob1bd17da3b7a8012ed5d437a01df8e222a9b02f90
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1998-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 /* #define DEBUG */
18 #include <stdio.h>
19 #include "private/gc_priv.h"
21 GC_bool GC_use_entire_heap = 0;
24 * Free heap blocks are kept on one of several free lists,
25 * depending on the size of the block. Each free list is doubly linked.
26 * Adjacent free blocks are coalesced.
30 # define MAX_BLACK_LIST_ALLOC (2*HBLKSIZE)
31 /* largest block we will allocate starting on a black */
32 /* listed block. Must be >= HBLKSIZE. */
35 # define UNIQUE_THRESHOLD 32
36 /* Sizes up to this many HBLKs each have their own free list */
37 # define HUGE_THRESHOLD 256
38 /* Sizes of at least this many heap blocks are mapped to a */
39 /* single free list. */
40 # define FL_COMPRESSION 8
41 /* In between sizes map this many distinct sizes to a single */
42 /* bin. */
44 # define N_HBLK_FLS (HUGE_THRESHOLD - UNIQUE_THRESHOLD)/FL_COMPRESSION \
45 + UNIQUE_THRESHOLD
47 struct hblk * GC_hblkfreelist[N_HBLK_FLS+1] = { 0 };
49 #ifndef USE_MUNMAP
51 word GC_free_bytes[N_HBLK_FLS+1] = { 0 };
52 /* Number of free bytes on each list. */
54 /* Is bytes + the number of free bytes on lists n .. N_HBLK_FLS */
55 /* > GC_max_large_allocd_bytes? */
56 # ifdef __GNUC__
57 __inline__
58 # endif
59 static GC_bool GC_enough_large_bytes_left(bytes,n)
60 word bytes;
61 int n;
63 int i;
64 for (i = N_HBLK_FLS; i >= n; --i) {
65 bytes += GC_free_bytes[i];
66 if (bytes > GC_max_large_allocd_bytes) return TRUE;
68 return FALSE;
71 # define INCR_FREE_BYTES(n, b) GC_free_bytes[n] += (b);
73 # define FREE_ASSERT(e) GC_ASSERT(e)
75 #else /* USE_MUNMAP */
77 # define INCR_FREE_BYTES(n, b)
78 # define FREE_ASSERT(e)
80 #endif /* USE_MUNMAP */
82 /* Map a number of blocks to the appropriate large block free list index. */
83 int GC_hblk_fl_from_blocks(blocks_needed)
84 word blocks_needed;
86 if (blocks_needed <= UNIQUE_THRESHOLD) return blocks_needed;
87 if (blocks_needed >= HUGE_THRESHOLD) return N_HBLK_FLS;
88 return (blocks_needed - UNIQUE_THRESHOLD)/FL_COMPRESSION
89 + UNIQUE_THRESHOLD;
93 # define PHDR(hhdr) HDR(hhdr -> hb_prev)
94 # define NHDR(hhdr) HDR(hhdr -> hb_next)
96 # ifdef USE_MUNMAP
97 # define IS_MAPPED(hhdr) (((hhdr) -> hb_flags & WAS_UNMAPPED) == 0)
98 # else /* !USE_MMAP */
99 # define IS_MAPPED(hhdr) 1
100 # endif /* USE_MUNMAP */
102 # if !defined(NO_DEBUGGING)
103 void GC_print_hblkfreelist()
105 struct hblk * h;
106 word total_free = 0;
107 hdr * hhdr;
108 word sz;
109 int i;
111 for (i = 0; i <= N_HBLK_FLS; ++i) {
112 h = GC_hblkfreelist[i];
113 # ifdef USE_MUNMAP
114 if (0 != h) GC_printf1("Free list %ld (Total size %ld):\n",
115 (unsigned long)i);
116 # else
117 if (0 != h) GC_printf2("Free list %ld (Total size %ld):\n",
118 (unsigned long)i,
119 (unsigned long)GC_free_bytes[i]);
120 # endif
121 while (h != 0) {
122 hhdr = HDR(h);
123 sz = hhdr -> hb_sz;
124 GC_printf2("\t0x%lx size %lu ", (unsigned long)h, (unsigned long)sz);
125 total_free += sz;
126 if (GC_is_black_listed(h, HBLKSIZE) != 0) {
127 GC_printf0("start black listed\n");
128 } else if (GC_is_black_listed(h, hhdr -> hb_sz) != 0) {
129 GC_printf0("partially black listed\n");
130 } else {
131 GC_printf0("not black listed\n");
133 h = hhdr -> hb_next;
136 if (total_free != GC_large_free_bytes) {
137 GC_printf1("GC_large_free_bytes = %lu (INCONSISTENT!!)\n",
138 (unsigned long) GC_large_free_bytes);
140 GC_printf1("Total of %lu bytes on free list\n", (unsigned long)total_free);
143 /* Return the free list index on which the block described by the header */
144 /* appears, or -1 if it appears nowhere. */
145 int free_list_index_of(wanted)
146 hdr * wanted;
148 struct hblk * h;
149 hdr * hhdr;
150 int i;
152 for (i = 0; i <= N_HBLK_FLS; ++i) {
153 h = GC_hblkfreelist[i];
154 while (h != 0) {
155 hhdr = HDR(h);
156 if (hhdr == wanted) return i;
157 h = hhdr -> hb_next;
160 return -1;
163 void GC_dump_regions()
165 unsigned i;
166 ptr_t start, end;
167 ptr_t p;
168 size_t bytes;
169 hdr *hhdr;
170 for (i = 0; i < GC_n_heap_sects; ++i) {
171 start = GC_heap_sects[i].hs_start;
172 bytes = GC_heap_sects[i].hs_bytes;
173 end = start + bytes;
174 /* Merge in contiguous sections. */
175 while (i+1 < GC_n_heap_sects && GC_heap_sects[i+1].hs_start == end) {
176 ++i;
177 end = GC_heap_sects[i].hs_start + GC_heap_sects[i].hs_bytes;
179 GC_printf2("***Section from 0x%lx to 0x%lx\n", start, end);
180 for (p = start; p < end;) {
181 hhdr = HDR(p);
182 GC_printf1("\t0x%lx ", (unsigned long)p);
183 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
184 GC_printf1("Missing header!!\n", hhdr);
185 p += HBLKSIZE;
186 continue;
188 if (HBLK_IS_FREE(hhdr)) {
189 int correct_index = GC_hblk_fl_from_blocks(
190 divHBLKSZ(hhdr -> hb_sz));
191 int actual_index;
193 GC_printf1("\tfree block of size 0x%lx bytes",
194 (unsigned long)(hhdr -> hb_sz));
195 if (IS_MAPPED(hhdr)) {
196 GC_printf0("\n");
197 } else {
198 GC_printf0("(unmapped)\n");
200 actual_index = free_list_index_of(hhdr);
201 if (-1 == actual_index) {
202 GC_printf1("\t\tBlock not on free list %ld!!\n",
203 correct_index);
204 } else if (correct_index != actual_index) {
205 GC_printf2("\t\tBlock on list %ld, should be on %ld!!\n",
206 actual_index, correct_index);
208 p += hhdr -> hb_sz;
209 } else {
210 GC_printf1("\tused for blocks of size 0x%lx bytes\n",
211 (unsigned long)WORDS_TO_BYTES(hhdr -> hb_sz));
212 p += HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
218 # endif /* NO_DEBUGGING */
220 /* Initialize hdr for a block containing the indicated size and */
221 /* kind of objects. */
222 /* Return FALSE on failure. */
223 static GC_bool setup_header(hhdr, sz, kind, flags)
224 register hdr * hhdr;
225 word sz; /* object size in words */
226 int kind;
227 unsigned char flags;
229 register word descr;
231 /* Add description of valid object pointers */
232 if (!GC_add_map_entry(sz)) return(FALSE);
233 hhdr -> hb_map = GC_obj_map[sz > MAXOBJSZ? 0 : sz];
235 /* Set size, kind and mark proc fields */
236 hhdr -> hb_sz = sz;
237 hhdr -> hb_obj_kind = kind;
238 hhdr -> hb_flags = flags;
239 descr = GC_obj_kinds[kind].ok_descriptor;
240 if (GC_obj_kinds[kind].ok_relocate_descr) descr += WORDS_TO_BYTES(sz);
241 hhdr -> hb_descr = descr;
243 /* Clear mark bits */
244 GC_clear_hdr_marks(hhdr);
246 hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no;
247 return(TRUE);
250 #define FL_UNKNOWN -1
252 * Remove hhdr from the appropriate free list.
253 * We assume it is on the nth free list, or on the size
254 * appropriate free list if n is FL_UNKNOWN.
256 void GC_remove_from_fl(hhdr, n)
257 hdr * hhdr;
258 int n;
260 int index;
262 GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0);
263 # ifndef USE_MUNMAP
264 /* We always need index to mainatin free counts. */
265 if (FL_UNKNOWN == n) {
266 index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz));
267 } else {
268 index = n;
270 # endif
271 if (hhdr -> hb_prev == 0) {
272 # ifdef USE_MUNMAP
273 if (FL_UNKNOWN == n) {
274 index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz));
275 } else {
276 index = n;
278 # endif
279 GC_ASSERT(HDR(GC_hblkfreelist[index]) == hhdr);
280 GC_hblkfreelist[index] = hhdr -> hb_next;
281 } else {
282 hdr *phdr;
283 GET_HDR(hhdr -> hb_prev, phdr);
284 phdr -> hb_next = hhdr -> hb_next;
286 INCR_FREE_BYTES(index, - (signed_word)(hhdr -> hb_sz));
287 FREE_ASSERT(GC_free_bytes[index] >= 0);
288 if (0 != hhdr -> hb_next) {
289 hdr * nhdr;
290 GC_ASSERT(!IS_FORWARDING_ADDR_OR_NIL(NHDR(hhdr)));
291 GET_HDR(hhdr -> hb_next, nhdr);
292 nhdr -> hb_prev = hhdr -> hb_prev;
297 * Return a pointer to the free block ending just before h, if any.
299 struct hblk * GC_free_block_ending_at(h)
300 struct hblk *h;
302 struct hblk * p = h - 1;
303 hdr * phdr;
305 GET_HDR(p, phdr);
306 while (0 != phdr && IS_FORWARDING_ADDR_OR_NIL(phdr)) {
307 p = FORWARDED_ADDR(p,phdr);
308 phdr = HDR(p);
310 if (0 != phdr) {
311 if(HBLK_IS_FREE(phdr)) {
312 return p;
313 } else {
314 return 0;
317 p = GC_prev_block(h - 1);
318 if (0 != p) {
319 phdr = HDR(p);
320 if (HBLK_IS_FREE(phdr) && (ptr_t)p + phdr -> hb_sz == (ptr_t)h) {
321 return p;
324 return 0;
328 * Add hhdr to the appropriate free list.
329 * We maintain individual free lists sorted by address.
331 void GC_add_to_fl(h, hhdr)
332 struct hblk *h;
333 hdr * hhdr;
335 int index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz));
336 struct hblk *second = GC_hblkfreelist[index];
337 hdr * second_hdr;
338 # ifdef GC_ASSERTIONS
339 struct hblk *next = (struct hblk *)((word)h + hhdr -> hb_sz);
340 hdr * nexthdr = HDR(next);
341 struct hblk *prev = GC_free_block_ending_at(h);
342 hdr * prevhdr = HDR(prev);
343 GC_ASSERT(nexthdr == 0 || !HBLK_IS_FREE(nexthdr) || !IS_MAPPED(nexthdr));
344 GC_ASSERT(prev == 0 || !HBLK_IS_FREE(prevhdr) || !IS_MAPPED(prevhdr));
345 # endif
346 GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0);
347 GC_hblkfreelist[index] = h;
348 INCR_FREE_BYTES(index, hhdr -> hb_sz);
349 FREE_ASSERT(GC_free_bytes[index] <= GC_large_free_bytes)
350 hhdr -> hb_next = second;
351 hhdr -> hb_prev = 0;
352 if (0 != second) {
353 GET_HDR(second, second_hdr);
354 second_hdr -> hb_prev = h;
356 GC_invalidate_map(hhdr);
359 #ifdef USE_MUNMAP
361 /* Unmap blocks that haven't been recently touched. This is the only way */
362 /* way blocks are ever unmapped. */
363 void GC_unmap_old(void)
365 struct hblk * h;
366 hdr * hhdr;
367 word sz;
368 unsigned short last_rec, threshold;
369 int i;
370 # define UNMAP_THRESHOLD 6
372 for (i = 0; i <= N_HBLK_FLS; ++i) {
373 for (h = GC_hblkfreelist[i]; 0 != h; h = hhdr -> hb_next) {
374 hhdr = HDR(h);
375 if (!IS_MAPPED(hhdr)) continue;
376 threshold = (unsigned short)(GC_gc_no - UNMAP_THRESHOLD);
377 last_rec = hhdr -> hb_last_reclaimed;
378 if ((last_rec > GC_gc_no || last_rec < threshold)
379 && threshold < GC_gc_no /* not recently wrapped */) {
380 sz = hhdr -> hb_sz;
381 GC_unmap((ptr_t)h, sz);
382 hhdr -> hb_flags |= WAS_UNMAPPED;
388 /* Merge all unmapped blocks that are adjacent to other free */
389 /* blocks. This may involve remapping, since all blocks are either */
390 /* fully mapped or fully unmapped. */
391 void GC_merge_unmapped(void)
393 struct hblk * h, *next;
394 hdr * hhdr, *nexthdr;
395 word size, nextsize;
396 int i;
398 for (i = 0; i <= N_HBLK_FLS; ++i) {
399 h = GC_hblkfreelist[i];
400 while (h != 0) {
401 GET_HDR(h, hhdr);
402 size = hhdr->hb_sz;
403 next = (struct hblk *)((word)h + size);
404 GET_HDR(next, nexthdr);
405 /* Coalesce with successor, if possible */
406 if (0 != nexthdr && HBLK_IS_FREE(nexthdr)) {
407 nextsize = nexthdr -> hb_sz;
408 if (IS_MAPPED(hhdr)) {
409 GC_ASSERT(!IS_MAPPED(nexthdr));
410 /* make both consistent, so that we can merge */
411 if (size > nextsize) {
412 GC_remap((ptr_t)next, nextsize);
413 } else {
414 GC_unmap((ptr_t)h, size);
415 hhdr -> hb_flags |= WAS_UNMAPPED;
417 } else if (IS_MAPPED(nexthdr)) {
418 GC_ASSERT(!IS_MAPPED(hhdr));
419 if (size > nextsize) {
420 GC_unmap((ptr_t)next, nextsize);
421 } else {
422 GC_remap((ptr_t)h, size);
423 hhdr -> hb_flags &= ~WAS_UNMAPPED;
424 hhdr -> hb_last_reclaimed = nexthdr -> hb_last_reclaimed;
426 } else {
427 /* Unmap any gap in the middle */
428 GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nexthdr -> hb_sz);
430 /* If they are both unmapped, we merge, but leave unmapped. */
431 GC_remove_from_fl(hhdr, i);
432 GC_remove_from_fl(nexthdr, FL_UNKNOWN);
433 hhdr -> hb_sz += nexthdr -> hb_sz;
434 GC_remove_header(next);
435 GC_add_to_fl(h, hhdr);
436 /* Start over at beginning of list */
437 h = GC_hblkfreelist[i];
438 } else /* not mergable with successor */ {
439 h = hhdr -> hb_next;
441 } /* while (h != 0) ... */
442 } /* for ... */
445 #endif /* USE_MUNMAP */
448 * Return a pointer to a block starting at h of length bytes.
449 * Memory for the block is mapped.
450 * Remove the block from its free list, and return the remainder (if any)
451 * to its appropriate free list.
452 * May fail by returning 0.
453 * The header for the returned block must be set up by the caller.
454 * If the return value is not 0, then hhdr is the header for it.
456 struct hblk * GC_get_first_part(h, hhdr, bytes, index)
457 struct hblk *h;
458 hdr * hhdr;
459 word bytes;
460 int index;
462 word total_size = hhdr -> hb_sz;
463 struct hblk * rest;
464 hdr * rest_hdr;
466 GC_ASSERT((total_size & (HBLKSIZE-1)) == 0);
467 GC_remove_from_fl(hhdr, index);
468 if (total_size == bytes) return h;
469 rest = (struct hblk *)((word)h + bytes);
470 rest_hdr = GC_install_header(rest);
471 if (0 == rest_hdr) return(0);
472 rest_hdr -> hb_sz = total_size - bytes;
473 rest_hdr -> hb_flags = 0;
474 # ifdef GC_ASSERTIONS
475 /* Mark h not free, to avoid assertion about adjacent free blocks. */
476 hhdr -> hb_map = 0;
477 # endif
478 GC_add_to_fl(rest, rest_hdr);
479 return h;
483 * H is a free block. N points at an address inside it.
484 * A new header for n has already been set up. Fix up h's header
485 * to reflect the fact that it is being split, move it to the
486 * appropriate free list.
487 * N replaces h in the original free list.
489 * Nhdr is not completely filled in, since it is about to allocated.
490 * It may in fact end up on the wrong free list for its size.
491 * (Hence adding it to a free list is silly. But this path is hopefully
492 * rare enough that it doesn't matter. The code is cleaner this way.)
494 void GC_split_block(h, hhdr, n, nhdr, index)
495 struct hblk *h;
496 hdr * hhdr;
497 struct hblk *n;
498 hdr * nhdr;
499 int index; /* Index of free list */
501 word total_size = hhdr -> hb_sz;
502 word h_size = (word)n - (word)h;
503 struct hblk *prev = hhdr -> hb_prev;
504 struct hblk *next = hhdr -> hb_next;
506 /* Replace h with n on its freelist */
507 nhdr -> hb_prev = prev;
508 nhdr -> hb_next = next;
509 nhdr -> hb_sz = total_size - h_size;
510 nhdr -> hb_flags = 0;
511 if (0 != prev) {
512 HDR(prev) -> hb_next = n;
513 } else {
514 GC_hblkfreelist[index] = n;
516 if (0 != next) {
517 HDR(next) -> hb_prev = n;
519 INCR_FREE_BYTES(index, -(signed_word)h_size);
520 FREE_ASSERT(GC_free_bytes[index] > 0);
521 # ifdef GC_ASSERTIONS
522 nhdr -> hb_map = 0; /* Don't fail test for consecutive */
523 /* free blocks in GC_add_to_fl. */
524 # endif
525 # ifdef USE_MUNMAP
526 hhdr -> hb_last_reclaimed = GC_gc_no;
527 # endif
528 hhdr -> hb_sz = h_size;
529 GC_add_to_fl(h, hhdr);
530 GC_invalidate_map(nhdr);
533 struct hblk * GC_allochblk_nth();
536 * Allocate (and return pointer to) a heap block
537 * for objects of size sz words, searching the nth free list.
539 * NOTE: We set obj_map field in header correctly.
540 * Caller is responsible for building an object freelist in block.
542 * Unlike older versions of the collectors, the client is responsible
543 * for clearing the block, if necessary.
545 struct hblk *
546 GC_allochblk(sz, kind, flags)
547 word sz;
548 int kind;
549 unsigned flags; /* IGNORE_OFF_PAGE or 0 */
551 word blocks = OBJ_SZ_TO_BLOCKS(sz);
552 int start_list = GC_hblk_fl_from_blocks(blocks);
553 int i;
554 for (i = start_list; i <= N_HBLK_FLS; ++i) {
555 struct hblk * result = GC_allochblk_nth(sz, kind, flags, i);
556 if (0 != result) {
557 return result;
560 return 0;
563 * The same, but with search restricted to nth free list.
565 struct hblk *
566 GC_allochblk_nth(sz, kind, flags, n)
567 word sz;
568 int kind;
569 unsigned char flags; /* IGNORE_OFF_PAGE or 0 */
570 int n;
572 register struct hblk *hbp;
573 register hdr * hhdr; /* Header corr. to hbp */
574 register struct hblk *thishbp;
575 register hdr * thishdr; /* Header corr. to hbp */
576 signed_word size_needed; /* number of bytes in requested objects */
577 signed_word size_avail; /* bytes available in this block */
579 size_needed = HBLKSIZE * OBJ_SZ_TO_BLOCKS(sz);
581 /* search for a big enough block in free list */
582 hbp = GC_hblkfreelist[n];
583 for(; 0 != hbp; hbp = hhdr -> hb_next) {
584 GET_HDR(hbp, hhdr);
585 size_avail = hhdr->hb_sz;
586 if (size_avail < size_needed) continue;
587 if (!GC_use_entire_heap
588 && size_avail != size_needed
589 && USED_HEAP_SIZE >= GC_requested_heapsize
590 && !TRUE_INCREMENTAL && GC_should_collect()) {
591 # ifdef USE_MUNMAP
592 continue;
593 # else
594 /* If we have enough large blocks left to cover any */
595 /* previous request for large blocks, we go ahead */
596 /* and split. Assuming a steady state, that should */
597 /* be safe. It means that we can use the full */
598 /* heap if we allocate only small objects. */
599 if (!GC_enough_large_bytes_left(GC_large_allocd_bytes, n)) {
600 continue;
602 /* If we are deallocating lots of memory from */
603 /* finalizers, fail and collect sooner rather */
604 /* than later. */
605 if (GC_finalizer_mem_freed > (GC_heapsize >> 4)) {
606 continue;
608 # endif /* !USE_MUNMAP */
610 /* If the next heap block is obviously better, go on. */
611 /* This prevents us from disassembling a single large block */
612 /* to get tiny blocks. */
614 signed_word next_size;
616 thishbp = hhdr -> hb_next;
617 if (thishbp != 0) {
618 GET_HDR(thishbp, thishdr);
619 next_size = (signed_word)(thishdr -> hb_sz);
620 if (next_size < size_avail
621 && next_size >= size_needed
622 && !GC_is_black_listed(thishbp, (word)size_needed)) {
623 continue;
627 if ( !IS_UNCOLLECTABLE(kind) &&
628 (kind != PTRFREE || size_needed > MAX_BLACK_LIST_ALLOC)) {
629 struct hblk * lasthbp = hbp;
630 ptr_t search_end = (ptr_t)hbp + size_avail - size_needed;
631 signed_word orig_avail = size_avail;
632 signed_word eff_size_needed = ((flags & IGNORE_OFF_PAGE)?
633 HBLKSIZE
634 : size_needed);
637 while ((ptr_t)lasthbp <= search_end
638 && (thishbp = GC_is_black_listed(lasthbp,
639 (word)eff_size_needed))
640 != 0) {
641 lasthbp = thishbp;
643 size_avail -= (ptr_t)lasthbp - (ptr_t)hbp;
644 thishbp = lasthbp;
645 if (size_avail >= size_needed) {
646 if (thishbp != hbp &&
647 0 != (thishdr = GC_install_header(thishbp))) {
648 /* Make sure it's mapped before we mangle it. */
649 # ifdef USE_MUNMAP
650 if (!IS_MAPPED(hhdr)) {
651 GC_remap((ptr_t)hbp, hhdr -> hb_sz);
652 hhdr -> hb_flags &= ~WAS_UNMAPPED;
654 # endif
655 /* Split the block at thishbp */
656 GC_split_block(hbp, hhdr, thishbp, thishdr, n);
657 /* Advance to thishbp */
658 hbp = thishbp;
659 hhdr = thishdr;
660 /* We must now allocate thishbp, since it may */
661 /* be on the wrong free list. */
663 } else if (size_needed > (signed_word)BL_LIMIT
664 && orig_avail - size_needed
665 > (signed_word)BL_LIMIT) {
666 /* Punt, since anything else risks unreasonable heap growth. */
667 if (++GC_large_alloc_warn_suppressed
668 >= GC_large_alloc_warn_interval) {
669 WARN("Repeated allocation of very large block "
670 "(appr. size %ld):\n"
671 "\tMay lead to memory leak and poor performance.\n",
672 size_needed);
673 GC_large_alloc_warn_suppressed = 0;
675 size_avail = orig_avail;
676 } else if (size_avail == 0 && size_needed == HBLKSIZE
677 && IS_MAPPED(hhdr)) {
678 if (!GC_find_leak) {
679 static unsigned count = 0;
681 /* The block is completely blacklisted. We need */
682 /* to drop some such blocks, since otherwise we spend */
683 /* all our time traversing them if pointerfree */
684 /* blocks are unpopular. */
685 /* A dropped block will be reconsidered at next GC. */
686 if ((++count & 3) == 0) {
687 /* Allocate and drop the block in small chunks, to */
688 /* maximize the chance that we will recover some */
689 /* later. */
690 word total_size = hhdr -> hb_sz;
691 struct hblk * limit = hbp + divHBLKSZ(total_size);
692 struct hblk * h;
693 struct hblk * prev = hhdr -> hb_prev;
695 GC_words_wasted += total_size;
696 GC_large_free_bytes -= total_size;
697 GC_remove_from_fl(hhdr, n);
698 for (h = hbp; h < limit; h++) {
699 if (h == hbp || 0 != (hhdr = GC_install_header(h))) {
700 (void) setup_header(
701 hhdr,
702 BYTES_TO_WORDS(HBLKSIZE),
703 PTRFREE, 0); /* Cant fail */
704 if (GC_debugging_started) {
705 BZERO(h, HBLKSIZE);
709 /* Restore hbp to point at free block */
710 hbp = prev;
711 if (0 == hbp) {
712 return GC_allochblk_nth(sz, kind, flags, n);
714 hhdr = HDR(hbp);
719 if( size_avail >= size_needed ) {
720 # ifdef USE_MUNMAP
721 if (!IS_MAPPED(hhdr)) {
722 GC_remap((ptr_t)hbp, hhdr -> hb_sz);
723 hhdr -> hb_flags &= ~WAS_UNMAPPED;
725 # endif
726 /* hbp may be on the wrong freelist; the parameter n */
727 /* is important. */
728 hbp = GC_get_first_part(hbp, hhdr, size_needed, n);
729 break;
733 if (0 == hbp) return 0;
735 /* Add it to map of valid blocks */
736 if (!GC_install_counts(hbp, (word)size_needed)) return(0);
737 /* This leaks memory under very rare conditions. */
739 /* Set up header */
740 if (!setup_header(hhdr, sz, kind, flags)) {
741 GC_remove_counts(hbp, (word)size_needed);
742 return(0); /* ditto */
745 /* Notify virtual dirty bit implementation that we are about to write. */
746 /* Ensure that pointerfree objects are not protected if it's avoidable. */
747 GC_remove_protection(hbp, divHBLKSZ(size_needed),
748 (hhdr -> hb_descr == 0) /* pointer-free */);
750 /* We just successfully allocated a block. Restart count of */
751 /* consecutive failures. */
753 extern unsigned GC_fail_count;
755 GC_fail_count = 0;
758 GC_large_free_bytes -= size_needed;
760 GC_ASSERT(IS_MAPPED(hhdr));
761 return( hbp );
764 struct hblk * GC_freehblk_ptr = 0; /* Search position hint for GC_freehblk */
767 * Free a heap block.
769 * Coalesce the block with its neighbors if possible.
771 * All mark words are assumed to be cleared.
773 void
774 GC_freehblk(hbp)
775 struct hblk *hbp;
777 struct hblk *next, *prev;
778 hdr *hhdr, *prevhdr, *nexthdr;
779 signed_word size;
782 GET_HDR(hbp, hhdr);
783 size = hhdr->hb_sz;
784 size = HBLKSIZE * OBJ_SZ_TO_BLOCKS(size);
785 GC_remove_counts(hbp, (word)size);
786 hhdr->hb_sz = size;
787 # ifdef USE_MUNMAP
788 hhdr -> hb_last_reclaimed = GC_gc_no;
789 # endif
791 /* Check for duplicate deallocation in the easy case */
792 if (HBLK_IS_FREE(hhdr)) {
793 GC_printf1("Duplicate large block deallocation of 0x%lx\n",
794 (unsigned long) hbp);
795 ABORT("Duplicate large block deallocation");
798 GC_ASSERT(IS_MAPPED(hhdr));
799 GC_invalidate_map(hhdr);
800 next = (struct hblk *)((word)hbp + size);
801 GET_HDR(next, nexthdr);
802 prev = GC_free_block_ending_at(hbp);
803 /* Coalesce with successor, if possible */
804 if(0 != nexthdr && HBLK_IS_FREE(nexthdr) && IS_MAPPED(nexthdr)) {
805 GC_remove_from_fl(nexthdr, FL_UNKNOWN);
806 hhdr -> hb_sz += nexthdr -> hb_sz;
807 GC_remove_header(next);
809 /* Coalesce with predecessor, if possible. */
810 if (0 != prev) {
811 prevhdr = HDR(prev);
812 if (IS_MAPPED(prevhdr)) {
813 GC_remove_from_fl(prevhdr, FL_UNKNOWN);
814 prevhdr -> hb_sz += hhdr -> hb_sz;
815 # ifdef USE_MUNMAP
816 prevhdr -> hb_last_reclaimed = GC_gc_no;
817 # endif
818 GC_remove_header(hbp);
819 hbp = prev;
820 hhdr = prevhdr;
823 /* FIXME: It is not clear we really always want to do these merges */
824 /* with -DUSE_MUNMAP, since it updates ages and hence prevents */
825 /* unmapping. */
827 GC_large_free_bytes += size;
828 GC_add_to_fl(hbp, hhdr);