[sgen] Add option for parallel nursery collector
[mono-project.git] / mono / sgen / sgen-split-nursery.c
blob38dc0c8c3a7a68b5b836e361ee0931471fcad54b
1 /**
2 * \file
3 * 3-space based nursery collector.
5 * Author:
6 * Rodrigo Kumpera Kumpera <kumpera@gmail.com>
8 * Copyright 2001-2003 Ximian, Inc
9 * Copyright 2003-2010 Novell, Inc.
10 * Copyright 2011-2012 Xamarin Inc (http://www.xamarin.com)
11 * Copyright (C) 2012 Xamarin Inc
13 * Licensed under the MIT license. See LICENSE file in the project root for full license information.
16 #include "config.h"
17 #ifdef HAVE_SGEN_GC
19 #include <string.h>
20 #include <stdlib.h>
22 #include "mono/sgen/sgen-gc.h"
23 #include "mono/sgen/sgen-protocol.h"
24 #include "mono/sgen/sgen-layout-stats.h"
25 #include "mono/sgen/sgen-client.h"
26 #include "mono/utils/mono-memory-model.h"
29 The nursery is logically divided into 3 spaces: Allocator space and two Survivor spaces.
31 Objects are born (allocated by the mutator) in the Allocator Space.
33 The Survivor spaces are divided in a copying collector style From and To spaces.
34 The hole of each space switch on each collection.
36 On each collection we process objects from the nursery this way:
37 Objects from the Allocator Space are evacuated into the To Space.
38 Objects from the Survivor From Space are evacuated into the old generation.
41 The nursery is physically divided in two parts, set by the promotion barrier.
43 The Allocator Space takes the botton part of the nursery.
45 The Survivor spaces are intermingled in the top part of the nursery. It's done
46 this way since the required size for the To Space depends on the survivor rate
47 of objects from the Allocator Space.
49 During a collection when the object scan function see a nursery object it must
50 determine if the object needs to be evacuated or left in place. Originally, this
51 check was done by checking if a forwarding pointer is installed, but now an object
52 can be in the To Space, it won't have a forwarding pointer and it must be left in place.
54 In order to solve that we classify nursery memory been either in the From Space or in
55 the To Space. Since the Allocator Space has the same behavior as the Survivor From Space
56 they are unified for this purpoise - a bit confusing at first.
58 This from/to classification is done on a larger granule than object to make the check efficient
59 and, due to that, we must make sure that all fragemnts used to allocate memory from the To Space
60 are naturally aligned in both ends to that granule to avoid wronly classifying a From Space object.
62 TODO:
63 -The promotion barrier is statically defined to 50% of the nursery, it should be dinamically adjusted based
64 on survival rates;
65 -We apply the same promotion policy to all objects, finalizable ones should age longer in the nursery;
66 -We apply the same promotion policy to all stages of a collection, maybe we should promote more aggressively
67 objects from non-stack roots, specially those found in the remembered set;
68 -Fix our major collection trigger to happen before we do a minor GC and collect the nursery only once.
69 -Make the serial fragment allocator fast path inlineable
70 -Make aging threshold be based on survival rates and survivor occupancy;
71 -Change promotion barrier to be size and not address based;
72 -Pre allocate memory for young ages to make sure that on overflow only the older suffer;
73 -Get rid of par_alloc_buffer_refill_mutex so to the parallel collection of the nursery doesn't suck;
76 /*FIXME Move this to a separate header. */
77 #define _toi(ptr) ((size_t)ptr)
78 #define make_ptr_mask(bits) ((1 << bits) - 1)
79 #define align_down(ptr, bits) ((void*)(_toi(ptr) & ~make_ptr_mask (bits)))
80 #define align_up(ptr, bits) ((void*) ((_toi(ptr) + make_ptr_mask (bits)) & ~make_ptr_mask (bits)))
83 Even though the effective max age is 255, aging that much doesn't make sense.
84 It might even make sense to use nimbles for age recording.
86 #define MAX_AGE 15
89 * Each age has its allocation buffer. Whenever an object is to be
90 * aged we try to fit it into its new age's allocation buffer. If
91 * that is not possible we get new space from the fragment allocator
92 * and set the allocation buffer to that space (minus the space
93 * required for the object).
96 typedef struct {
97 char *next;
98 char *end;
99 } AgeAllocationBuffer;
101 /* Limits the ammount of memory the mutator can have. */
102 static char *promotion_barrier;
105 Promotion age and alloc ratio are the two nursery knobs to control
106 how much effort we want to spend on young objects.
108 Allocation ratio should be the inverse of the expected survivor rate.
109 The more objects surviver, the smaller the alloc ratio much be so we can
110 age all objects.
112 Promote age depends on how much effort we want to spend aging objects before
113 we promote them to the old generation. If addional ages don't somewhat improve
114 mortality, it's better avoid as they increase the cost of minor collections.
120 If we're evacuating an object with this age or more, promote it.
121 Age is the number of surviving collections of an object.
123 static int promote_age = 2;
126 Initial ratio of allocation and survivor spaces.
127 This should be read as the fraction of the whole nursery dedicated
128 for the allocator space.
130 static float alloc_ratio = 60.f/100.f;
133 static char *region_age;
134 static size_t region_age_size;
135 static AgeAllocationBuffer age_alloc_buffers [MAX_AGE];
137 /* The collector allocs from here. */
138 static SgenFragmentAllocator collector_allocator;
140 static inline int
141 get_object_age (GCObject *object)
143 size_t idx = ((char*)object - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
144 return region_age [idx];
147 static void
148 set_age_in_range (char *start, char *end, int age)
150 char *region_start;
151 size_t region_idx, length;
152 region_idx = (start - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
153 region_start = &region_age [region_idx];
154 length = (end - start) >> SGEN_TO_SPACE_GRANULE_BITS;
155 memset (region_start, age, length);
158 static inline void
159 mark_bit (char *space_bitmap, char *pos)
161 size_t idx = (pos - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
162 size_t byte = idx / 8;
163 int bit = idx & 0x7;
165 g_assert (byte < sgen_space_bitmap_size);
166 space_bitmap [byte] |= 1 << bit;
169 static void
170 mark_bits_in_range (char *space_bitmap, char *start, char *end)
172 start = (char *)align_down (start, SGEN_TO_SPACE_GRANULE_BITS);
173 end = (char *)align_up (end, SGEN_TO_SPACE_GRANULE_BITS);
175 for (;start < end; start += SGEN_TO_SPACE_GRANULE_IN_BYTES)
176 mark_bit (space_bitmap, start);
180 * This splits the fragments at the point of the promotion barrier.
181 * Two allocator are actually involved here: The mutator allocator and
182 * the collector allocator. This function is called with the
183 * collector, but it's a copy of the mutator allocator and contains
184 * all the fragments in the nursery. The fragments below the
185 * promotion barrier are left with the mutator allocator and the ones
186 * above are put into the collector allocator.
188 static void
189 fragment_list_split (SgenFragmentAllocator *allocator)
191 SgenFragment *prev = NULL, *list = allocator->region_head;
193 while (list) {
194 if (list->fragment_end > promotion_barrier) {
195 if (list->fragment_start < promotion_barrier) {
196 SgenFragment *res = sgen_fragment_allocator_alloc ();
198 res->fragment_start = promotion_barrier;
199 res->fragment_next = promotion_barrier;
200 res->fragment_end = list->fragment_end;
201 res->next = list->next;
202 res->next_in_order = list->next_in_order;
203 g_assert (res->fragment_end > res->fragment_start);
205 list->fragment_end = promotion_barrier;
206 list->next = list->next_in_order = NULL;
207 set_age_in_range (list->fragment_start, list->fragment_end, 0);
209 allocator->region_head = allocator->alloc_head = res;
210 return;
211 } else {
212 if (prev)
213 prev->next = prev->next_in_order = NULL;
214 allocator->region_head = allocator->alloc_head = list;
215 return;
218 set_age_in_range (list->fragment_start, list->fragment_end, 0);
219 prev = list;
220 list = list->next;
222 allocator->region_head = allocator->alloc_head = NULL;
225 /******************************************Minor Collector API ************************************************/
227 #define AGE_ALLOC_BUFFER_MIN_SIZE SGEN_TO_SPACE_GRANULE_IN_BYTES
228 #define AGE_ALLOC_BUFFER_DESIRED_SIZE (SGEN_TO_SPACE_GRANULE_IN_BYTES * 8)
230 static char*
231 alloc_for_promotion_slow_path (int age, size_t objsize)
233 char *p;
234 size_t allocated_size;
235 size_t aligned_objsize = (size_t)align_up (objsize, SGEN_TO_SPACE_GRANULE_BITS);
237 p = (char *)sgen_fragment_allocator_serial_range_alloc (
238 &collector_allocator,
239 MAX (aligned_objsize, AGE_ALLOC_BUFFER_DESIRED_SIZE),
240 MAX (aligned_objsize, AGE_ALLOC_BUFFER_MIN_SIZE),
241 &allocated_size);
242 if (p) {
243 set_age_in_range (p, p + allocated_size, age);
244 sgen_clear_range (age_alloc_buffers [age].next, age_alloc_buffers [age].end);
245 age_alloc_buffers [age].next = p + objsize;
246 age_alloc_buffers [age].end = p + allocated_size;
248 return p;
251 static inline GCObject*
252 alloc_for_promotion (GCVTable vtable, GCObject *obj, size_t objsize, gboolean has_references)
254 char *p = NULL;
255 int age;
257 age = get_object_age (obj);
258 if (age >= promote_age) {
259 total_promoted_size += objsize;
260 return major_collector.alloc_object (vtable, objsize, has_references);
263 /* Promote! */
264 ++age;
266 p = age_alloc_buffers [age].next;
267 if (G_LIKELY (p + objsize <= age_alloc_buffers [age].end)) {
268 age_alloc_buffers [age].next += objsize;
269 } else {
270 p = alloc_for_promotion_slow_path (age, objsize);
271 if (!p) {
272 total_promoted_size += objsize;
273 return major_collector.alloc_object (vtable, objsize, has_references);
277 /* FIXME: assumes object layout */
278 *(GCVTable*)p = vtable;
280 return (GCObject*)p;
283 static GCObject*
284 minor_alloc_for_promotion (GCVTable vtable, GCObject *obj, size_t objsize, gboolean has_references)
287 We only need to check for a non-nursery object if we're doing a major collection.
289 if (!sgen_ptr_in_nursery (obj))
290 return major_collector.alloc_object (vtable, objsize, has_references);
292 return alloc_for_promotion (vtable, obj, objsize, has_references);
295 static SgenFragment*
296 build_fragments_get_exclude_head (void)
298 int i;
299 for (i = 0; i < MAX_AGE; ++i) {
300 /*If we OOM'd on the last collection ->end might be null while ->next not.*/
301 if (age_alloc_buffers [i].end)
302 sgen_clear_range (age_alloc_buffers [i].next, age_alloc_buffers [i].end);
305 return collector_allocator.region_head;
308 static void
309 build_fragments_release_exclude_head (void)
311 sgen_fragment_allocator_release (&collector_allocator);
314 static void
315 build_fragments_finish (SgenFragmentAllocator *allocator)
317 /* We split the fragment list based on the promotion barrier. */
318 collector_allocator = *allocator;
319 fragment_list_split (&collector_allocator);
322 static void
323 prepare_to_space (char *to_space_bitmap, size_t space_bitmap_size)
325 SgenFragment **previous, *frag;
327 memset (to_space_bitmap, 0, space_bitmap_size);
328 memset (age_alloc_buffers, 0, sizeof (age_alloc_buffers));
330 previous = &collector_allocator.alloc_head;
332 for (frag = *previous; frag; frag = *previous) {
333 char *start = (char *)align_up (frag->fragment_next, SGEN_TO_SPACE_GRANULE_BITS);
334 char *end = (char *)align_down (frag->fragment_end, SGEN_TO_SPACE_GRANULE_BITS);
336 /* Fragment is too small to be usable. */
337 if ((end - start) < SGEN_MAX_NURSERY_WASTE) {
338 sgen_clear_range (frag->fragment_next, frag->fragment_end);
339 frag->fragment_next = frag->fragment_end = frag->fragment_start;
340 *previous = frag->next;
341 continue;
345 We need to insert 3 phony objects so the fragments build step can correctly
346 walk the nursery.
349 /* Clean the fragment range. */
350 sgen_clear_range (start, end);
351 /* We need a phony object in between the original fragment start and the effective one. */
352 if (start != frag->fragment_next)
353 sgen_clear_range (frag->fragment_next, start);
354 /* We need an phony object in between the new fragment end and the original fragment end. */
355 if (end != frag->fragment_end)
356 sgen_clear_range (end, frag->fragment_end);
358 frag->fragment_start = frag->fragment_next = start;
359 frag->fragment_end = end;
360 mark_bits_in_range (to_space_bitmap, start, end);
361 previous = &frag->next;
365 static void
366 clear_fragments (void)
368 sgen_clear_allocator_fragments (&collector_allocator);
371 static void
372 init_nursery (SgenFragmentAllocator *allocator, char *start, char *end)
374 int alloc_quote = (int)((end - start) * alloc_ratio);
375 promotion_barrier = (char *)align_down (start + alloc_quote, 3);
376 sgen_fragment_allocator_add (allocator, start, promotion_barrier);
377 sgen_fragment_allocator_add (&collector_allocator, promotion_barrier, end);
379 region_age_size = (end - start) >> SGEN_TO_SPACE_GRANULE_BITS;
380 region_age = (char *)g_malloc0 (region_age_size);
383 static gboolean
384 handle_gc_param (const char *opt)
386 if (g_str_has_prefix (opt, "alloc-ratio=")) {
387 const char *arg = strchr (opt, '=') + 1;
388 int percentage = atoi (arg);
389 if (percentage < 1 || percentage > 100) {
390 fprintf (stderr, "alloc-ratio must be an integer in the range 1-100.\n");
391 exit (1);
393 alloc_ratio = (float)percentage / 100.0f;
394 return TRUE;
397 if (g_str_has_prefix (opt, "promotion-age=")) {
398 const char *arg = strchr (opt, '=') + 1;
399 promote_age = atoi (arg);
400 if (promote_age < 1 || promote_age >= MAX_AGE) {
401 fprintf (stderr, "promotion-age must be an integer in the range 1-%d.\n", MAX_AGE - 1);
402 exit (1);
404 return TRUE;
406 return FALSE;
409 static void
410 print_gc_param_usage (void)
412 fprintf (stderr,
414 " alloc-ratio=P (where P is a percentage, an integer in 1-100)\n"
415 " promotion-age=P (where P is a number, an integer in 1-%d)\n",
416 MAX_AGE - 1
420 /******************************************Copy/Scan functins ************************************************/
422 #define collector_pin_object(obj, queue) sgen_pin_object (obj, queue);
423 #define COLLECTOR_SERIAL_ALLOC_FOR_PROMOTION alloc_for_promotion
425 #include "sgen-copy-object.h"
427 #define SGEN_SPLIT_NURSERY
429 #include "sgen-minor-copy-object.h"
430 #include "sgen-minor-scan-object.h"
432 static void
433 fill_serial_ops (SgenObjectOperations *ops)
435 ops->copy_or_mark_object = SERIAL_COPY_OBJECT;
436 FILL_MINOR_COLLECTOR_SCAN_OBJECT (ops);
439 #define SGEN_CONCURRENT_MAJOR
441 #include "sgen-minor-copy-object.h"
442 #include "sgen-minor-scan-object.h"
444 static void
445 fill_serial_with_concurrent_major_ops (SgenObjectOperations *ops)
447 ops->copy_or_mark_object = SERIAL_COPY_OBJECT;
448 FILL_MINOR_COLLECTOR_SCAN_OBJECT (ops);
451 void
452 sgen_split_nursery_init (SgenMinorCollector *collector)
454 collector->is_split = TRUE;
455 collector->is_parallel = FALSE;
457 collector->alloc_for_promotion = minor_alloc_for_promotion;
459 collector->prepare_to_space = prepare_to_space;
460 collector->clear_fragments = clear_fragments;
461 collector->build_fragments_get_exclude_head = build_fragments_get_exclude_head;
462 collector->build_fragments_release_exclude_head = build_fragments_release_exclude_head;
463 collector->build_fragments_finish = build_fragments_finish;
464 collector->init_nursery = init_nursery;
465 collector->handle_gc_param = handle_gc_param;
466 collector->print_gc_param_usage = print_gc_param_usage;
468 fill_serial_ops (&collector->serial_ops);
469 fill_serial_with_concurrent_major_ops (&collector->serial_ops_with_concurrent_major);
473 #endif