2008-11-10 Zoltan Varga <vargaz@gmail.com>
[mono-project.git] / libgc / os_dep.c
blob39cb513f68f9e55410940d7d80f7a4388c95a810
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 #endif
129 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
130 # include <sys/types.h>
131 # include <sys/mman.h>
132 # include <sys/stat.h>
133 # include <errno.h>
134 #endif
136 #ifdef UNIX_LIKE
137 # include <fcntl.h>
138 #endif
140 #if (defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX) || defined(NETBSD)) && !defined(FREEBSD)
141 # ifdef SUNOS5SIGS
142 # include <sys/siginfo.h>
143 # endif
144 /* Define SETJMP and friends to be the version that restores */
145 /* the signal mask. */
146 # define SETJMP(env) sigsetjmp(env, 1)
147 # define LONGJMP(env, val) siglongjmp(env, val)
148 # define JMP_BUF sigjmp_buf
149 #else
150 # define SETJMP(env) setjmp(env)
151 # define LONGJMP(env, val) longjmp(env, val)
152 # define JMP_BUF jmp_buf
153 #endif
155 #ifdef DARWIN
156 /* for get_etext and friends */
157 #include <mach-o/getsect.h>
158 #endif
160 #ifdef DJGPP
161 /* Apparently necessary for djgpp 2.01. May cause problems with */
162 /* other versions. */
163 typedef long unsigned int caddr_t;
164 #endif
166 #ifdef PCR
167 # include "il/PCR_IL.h"
168 # include "th/PCR_ThCtl.h"
169 # include "mm/PCR_MM.h"
170 #endif
172 #if !defined(NO_EXECUTE_PERMISSION)
173 # define OPT_PROT_EXEC PROT_EXEC
174 #else
175 # define OPT_PROT_EXEC 0
176 #endif
178 #if defined(LINUX) && \
179 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
181 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
182 /* and/or to find the register backing store base (IA64). Do it once */
183 /* here. */
185 #define READ read
187 /* Repeatedly perform a read call until the buffer is filled or */
188 /* we encounter EOF. */
189 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
191 ssize_t num_read = 0;
192 ssize_t result;
194 while (num_read < count) {
195 result = READ(fd, buf + num_read, count - num_read);
196 if (result < 0) return result;
197 if (result == 0) break;
198 num_read += result;
200 return num_read;
204 * Apply fn to a buffer containing the contents of /proc/self/maps.
205 * Return the result of fn or, if we failed, 0.
206 * We currently do nothing to /proc/self/maps other than simply read
207 * it. This code could be simplified if we could determine its size
208 * ahead of time.
211 word GC_apply_to_maps(word (*fn)(char *))
213 int f;
214 int result;
215 size_t maps_size = 4000; /* Initial guess. */
216 static char init_buf[1];
217 static char *maps_buf = init_buf;
218 static size_t maps_buf_sz = 1;
220 /* Read /proc/self/maps, growing maps_buf as necessary. */
221 /* Note that we may not allocate conventionally, and */
222 /* thus can't use stdio. */
223 do {
224 if (maps_size >= maps_buf_sz) {
225 /* Grow only by powers of 2, since we leak "too small" buffers. */
226 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
227 maps_buf = GC_scratch_alloc(maps_buf_sz);
228 if (maps_buf == 0) return 0;
230 f = open("/proc/self/maps", O_RDONLY);
231 if (-1 == f) return 0;
232 maps_size = 0;
233 do {
234 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
235 if (result <= 0) return 0;
236 maps_size += result;
237 } while (result == maps_buf_sz-1);
238 close(f);
239 } while (maps_size >= maps_buf_sz);
240 maps_buf[maps_size] = '\0';
242 /* Apply fn to result. */
243 return fn(maps_buf);
246 #endif /* Need GC_apply_to_maps */
248 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
250 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
251 // locate all writable data segments that belong to shared libraries.
252 // The format of one of these entries and the fields we care about
253 // is as follows:
254 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
255 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
256 // start end prot maj_dev
258 // Note that since about auguat 2003 kernels, the columns no longer have
259 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
260 // anywhere, which is safer anyway.
264 * Assign various fields of the first line in buf_ptr to *start, *end,
265 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
267 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
268 char *prot_buf, unsigned int *maj_dev)
270 char *start_start, *end_start, *prot_start, *maj_dev_start;
271 char *p;
272 char *endp;
274 if (buf_ptr == NULL || *buf_ptr == '\0') {
275 return NULL;
278 p = buf_ptr;
279 while (isspace(*p)) ++p;
280 start_start = p;
281 GC_ASSERT(isxdigit(*start_start));
282 *start = strtoul(start_start, &endp, 16); p = endp;
283 GC_ASSERT(*p=='-');
285 ++p;
286 end_start = p;
287 GC_ASSERT(isxdigit(*end_start));
288 *end = strtoul(end_start, &endp, 16); p = endp;
289 GC_ASSERT(isspace(*p));
291 while (isspace(*p)) ++p;
292 prot_start = p;
293 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
294 memcpy(prot_buf, prot_start, 4);
295 prot_buf[4] = '\0';
296 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
297 /* Skip past protection field to offset field */
298 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
299 GC_ASSERT(isxdigit(*p));
300 /* Skip past offset field, which we ignore */
301 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
302 maj_dev_start = p;
303 GC_ASSERT(isxdigit(*maj_dev_start));
304 *maj_dev = strtoul(maj_dev_start, NULL, 16);
307 while (*p && *p++ != '\n');
309 return p;
312 #endif /* Need to parse /proc/self/maps. */
314 #if defined(SEARCH_FOR_DATA_START)
315 /* The I386 case can be handled without a search. The Alpha case */
316 /* used to be handled differently as well, but the rules changed */
317 /* for recent Linux versions. This seems to be the easiest way to */
318 /* cover all versions. */
320 # ifdef LINUX
321 /* Some Linux distributions arrange to define __data_start. Some */
322 /* define data_start as a weak symbol. The latter is technically */
323 /* broken, since the user program may define data_start, in which */
324 /* case we lose. Nonetheless, we try both, prefering __data_start. */
325 /* We assume gcc-compatible pragmas. */
326 # pragma weak __data_start
327 extern int __data_start[];
328 # pragma weak data_start
329 extern int data_start[];
330 # endif /* LINUX */
331 extern int _end[];
333 ptr_t GC_data_start;
335 void GC_init_linux_data_start()
337 extern ptr_t GC_find_limit();
339 # ifdef LINUX
340 /* Try the easy approaches first: */
341 if ((ptr_t)__data_start != 0) {
342 GC_data_start = (ptr_t)(__data_start);
343 return;
345 if ((ptr_t)data_start != 0) {
346 GC_data_start = (ptr_t)(data_start);
347 return;
349 # endif /* LINUX */
350 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
352 #endif
354 # ifdef ECOS
356 # ifndef ECOS_GC_MEMORY_SIZE
357 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
358 # endif /* ECOS_GC_MEMORY_SIZE */
360 // setjmp() function, as described in ANSI para 7.6.1.1
361 #undef SETJMP
362 #define SETJMP( __env__ ) hal_setjmp( __env__ )
364 // FIXME: This is a simple way of allocating memory which is
365 // compatible with ECOS early releases. Later releases use a more
366 // sophisticated means of allocating memory than this simple static
367 // allocator, but this method is at least bound to work.
368 static char memory[ECOS_GC_MEMORY_SIZE];
369 static char *brk = memory;
371 static void *tiny_sbrk(ptrdiff_t increment)
373 void *p = brk;
375 brk += increment;
377 if (brk > memory + sizeof memory)
379 brk -= increment;
380 return NULL;
383 return p;
385 #define sbrk tiny_sbrk
386 # endif /* ECOS */
388 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
389 ptr_t GC_data_start;
391 void GC_init_netbsd_elf()
393 extern ptr_t GC_find_limit();
394 extern char **environ;
395 /* This may need to be environ, without the underscore, for */
396 /* some versions. */
397 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
399 #endif
401 # ifdef OS2
403 # include <stddef.h>
405 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
407 struct exe_hdr {
408 unsigned short magic_number;
409 unsigned short padding[29];
410 long new_exe_offset;
413 #define E_MAGIC(x) (x).magic_number
414 #define EMAGIC 0x5A4D
415 #define E_LFANEW(x) (x).new_exe_offset
417 struct e32_exe {
418 unsigned char magic_number[2];
419 unsigned char byte_order;
420 unsigned char word_order;
421 unsigned long exe_format_level;
422 unsigned short cpu;
423 unsigned short os;
424 unsigned long padding1[13];
425 unsigned long object_table_offset;
426 unsigned long object_count;
427 unsigned long padding2[31];
430 #define E32_MAGIC1(x) (x).magic_number[0]
431 #define E32MAGIC1 'L'
432 #define E32_MAGIC2(x) (x).magic_number[1]
433 #define E32MAGIC2 'X'
434 #define E32_BORDER(x) (x).byte_order
435 #define E32LEBO 0
436 #define E32_WORDER(x) (x).word_order
437 #define E32LEWO 0
438 #define E32_CPU(x) (x).cpu
439 #define E32CPU286 1
440 #define E32_OBJTAB(x) (x).object_table_offset
441 #define E32_OBJCNT(x) (x).object_count
443 struct o32_obj {
444 unsigned long size;
445 unsigned long base;
446 unsigned long flags;
447 unsigned long pagemap;
448 unsigned long mapsize;
449 unsigned long reserved;
452 #define O32_FLAGS(x) (x).flags
453 #define OBJREAD 0x0001L
454 #define OBJWRITE 0x0002L
455 #define OBJINVALID 0x0080L
456 #define O32_SIZE(x) (x).size
457 #define O32_BASE(x) (x).base
459 # else /* IBM's compiler */
461 /* A kludge to get around what appears to be a header file bug */
462 # ifndef WORD
463 # define WORD unsigned short
464 # endif
465 # ifndef DWORD
466 # define DWORD unsigned long
467 # endif
469 # define EXE386 1
470 # include <newexe.h>
471 # include <exe386.h>
473 # endif /* __IBMC__ */
475 # define INCL_DOSEXCEPTIONS
476 # define INCL_DOSPROCESS
477 # define INCL_DOSERRORS
478 # define INCL_DOSMODULEMGR
479 # define INCL_DOSMEMMGR
480 # include <os2.h>
483 /* Disable and enable signals during nontrivial allocations */
485 void GC_disable_signals(void)
487 ULONG nest;
489 DosEnterMustComplete(&nest);
490 if (nest != 1) ABORT("nested GC_disable_signals");
493 void GC_enable_signals(void)
495 ULONG nest;
497 DosExitMustComplete(&nest);
498 if (nest != 0) ABORT("GC_enable_signals");
502 # else
504 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
505 && !defined(MSWINCE) \
506 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
507 && !defined(NOSYS) && !defined(ECOS)
509 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
510 /* Use the traditional BSD interface */
511 # define SIGSET_T int
512 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
513 # define SIG_FILL(set) (set) = 0x7fffffff
514 /* Setting the leading bit appears to provoke a bug in some */
515 /* longjmp implementations. Most systems appear not to have */
516 /* a signal 32. */
517 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
518 # else
519 /* Use POSIX/SYSV interface */
520 # define SIGSET_T sigset_t
521 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
522 # define SIG_FILL(set) sigfillset(&set)
523 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
524 # endif
526 static GC_bool mask_initialized = FALSE;
528 static SIGSET_T new_mask;
530 static SIGSET_T old_mask;
532 static SIGSET_T dummy;
534 #if defined(PRINTSTATS) && !defined(THREADS)
535 # define CHECK_SIGNALS
536 int GC_sig_disabled = 0;
537 #endif
539 void GC_disable_signals()
541 if (!mask_initialized) {
542 SIG_FILL(new_mask);
544 SIG_DEL(new_mask, SIGSEGV);
545 SIG_DEL(new_mask, SIGILL);
546 SIG_DEL(new_mask, SIGQUIT);
547 # ifdef SIGBUS
548 SIG_DEL(new_mask, SIGBUS);
549 # endif
550 # ifdef SIGIOT
551 SIG_DEL(new_mask, SIGIOT);
552 # endif
553 # ifdef SIGEMT
554 SIG_DEL(new_mask, SIGEMT);
555 # endif
556 # ifdef SIGTRAP
557 SIG_DEL(new_mask, SIGTRAP);
558 # endif
559 mask_initialized = TRUE;
561 # ifdef CHECK_SIGNALS
562 if (GC_sig_disabled != 0) ABORT("Nested disables");
563 GC_sig_disabled++;
564 # endif
565 SIGSETMASK(old_mask,new_mask);
568 void GC_enable_signals()
570 # ifdef CHECK_SIGNALS
571 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
572 GC_sig_disabled--;
573 # endif
574 SIGSETMASK(dummy,old_mask);
577 # endif /* !PCR */
579 # endif /*!OS/2 */
581 /* Ivan Demakov: simplest way (to me) */
582 #if defined (DOS4GW)
583 void GC_disable_signals() { }
584 void GC_enable_signals() { }
585 #endif
587 /* Find the page size */
588 word GC_page_size;
590 # if defined(MSWIN32) || defined(MSWINCE)
591 void GC_setpagesize()
593 GetSystemInfo(&GC_sysinfo);
594 GC_page_size = GC_sysinfo.dwPageSize;
597 # else
598 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
599 || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
600 void GC_setpagesize()
602 GC_page_size = GETPAGESIZE();
604 # else
605 /* It's acceptable to fake it. */
606 void GC_setpagesize()
608 GC_page_size = HBLKSIZE;
610 # endif
611 # endif
614 * Find the base of the stack.
615 * Used only in single-threaded environment.
616 * With threads, GC_mark_roots needs to know how to do this.
617 * Called with allocator lock held.
619 # if defined(MSWIN32) || defined(MSWINCE)
620 # define is_writable(prot) ((prot) == PAGE_READWRITE \
621 || (prot) == PAGE_WRITECOPY \
622 || (prot) == PAGE_EXECUTE_READWRITE \
623 || (prot) == PAGE_EXECUTE_WRITECOPY)
624 /* Return the number of bytes that are writable starting at p. */
625 /* The pointer p is assumed to be page aligned. */
626 /* If base is not 0, *base becomes the beginning of the */
627 /* allocation region containing p. */
628 word GC_get_writable_length(ptr_t p, ptr_t *base)
630 MEMORY_BASIC_INFORMATION buf;
631 word result;
632 word protect;
634 result = VirtualQuery(p, &buf, sizeof(buf));
635 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
636 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
637 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
638 if (!is_writable(protect)) {
639 return(0);
641 if (buf.State != MEM_COMMIT) return(0);
642 return(buf.RegionSize);
645 ptr_t GC_get_stack_base()
647 int dummy;
648 ptr_t sp = (ptr_t)(&dummy);
649 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
650 word size = GC_get_writable_length(trunc_sp, 0);
652 return(trunc_sp + size);
656 # endif /* MS Windows */
658 # ifdef BEOS
659 # include <kernel/OS.h>
660 ptr_t GC_get_stack_base(){
661 thread_info th;
662 get_thread_info(find_thread(NULL),&th);
663 return th.stack_end;
665 # endif /* BEOS */
668 # ifdef OS2
670 ptr_t GC_get_stack_base()
672 PTIB ptib;
673 PPIB ppib;
675 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
676 GC_err_printf0("DosGetInfoBlocks failed\n");
677 ABORT("DosGetInfoBlocks failed\n");
679 return((ptr_t)(ptib -> tib_pstacklimit));
682 # endif /* OS2 */
684 # ifdef AMIGA
685 # define GC_AMIGA_SB
686 # include "AmigaOS.c"
687 # undef GC_AMIGA_SB
688 # endif /* AMIGA */
690 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
692 # ifdef __STDC__
693 typedef void (*handler)(int);
694 # else
695 typedef void (*handler)();
696 # endif
698 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
699 || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
700 static struct sigaction old_segv_act;
701 # if defined(IRIX5) || defined(HPUX) \
702 || defined(HURD) || defined(NETBSD)
703 static struct sigaction old_bus_act;
704 # endif
705 # else
706 static handler old_segv_handler, old_bus_handler;
707 # endif
709 # ifdef __STDC__
710 void GC_set_and_save_fault_handler(handler h)
711 # else
712 void GC_set_and_save_fault_handler(h)
713 handler h;
714 # endif
716 # if defined(SUNOS5SIGS) || defined(IRIX5) \
717 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
718 struct sigaction act;
720 act.sa_handler = h;
721 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
722 /* NetBSD bugs. */
723 act.sa_flags = SA_RESTART | SA_NODEFER;
724 # else
725 act.sa_flags = SA_RESTART;
726 # endif
728 (void) sigemptyset(&act.sa_mask);
729 # ifdef GC_IRIX_THREADS
730 /* Older versions have a bug related to retrieving and */
731 /* and setting a handler at the same time. */
732 (void) sigaction(SIGSEGV, 0, &old_segv_act);
733 (void) sigaction(SIGSEGV, &act, 0);
734 (void) sigaction(SIGBUS, 0, &old_bus_act);
735 (void) sigaction(SIGBUS, &act, 0);
736 # else
737 (void) sigaction(SIGSEGV, &act, &old_segv_act);
738 # if defined(IRIX5) \
739 || defined(HPUX) || defined(HURD) || defined(NETBSD)
740 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
741 /* Pthreads doesn't exist under Irix 5.x, so we */
742 /* don't have to worry in the threads case. */
743 (void) sigaction(SIGBUS, &act, &old_bus_act);
744 # endif
745 # endif /* GC_IRIX_THREADS */
746 # else
747 old_segv_handler = signal(SIGSEGV, h);
748 # ifdef SIGBUS
749 old_bus_handler = signal(SIGBUS, h);
750 # endif
751 # endif
753 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
755 # ifdef NEED_FIND_LIMIT
756 /* Some tools to implement HEURISTIC2 */
757 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
758 /* static */ JMP_BUF GC_jmp_buf;
760 /*ARGSUSED*/
761 void GC_fault_handler(sig)
762 int sig;
764 LONGJMP(GC_jmp_buf, 1);
767 void GC_setup_temporary_fault_handler()
769 GC_set_and_save_fault_handler(GC_fault_handler);
772 void GC_reset_fault_handler()
774 # if defined(SUNOS5SIGS) || defined(IRIX5) \
775 || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
776 (void) sigaction(SIGSEGV, &old_segv_act, 0);
777 # if defined(IRIX5) \
778 || defined(HPUX) || defined(HURD) || defined(NETBSD)
779 (void) sigaction(SIGBUS, &old_bus_act, 0);
780 # endif
781 # else
782 (void) signal(SIGSEGV, old_segv_handler);
783 # ifdef SIGBUS
784 (void) signal(SIGBUS, old_bus_handler);
785 # endif
786 # endif
789 /* Return the first nonaddressible location > p (up) or */
790 /* the smallest location q s.t. [q,p) is addressable (!up). */
791 /* We assume that p (up) or p-1 (!up) is addressable. */
792 ptr_t GC_find_limit(p, up)
793 ptr_t p;
794 GC_bool up;
796 static VOLATILE ptr_t result;
797 /* Needs to be static, since otherwise it may not be */
798 /* preserved across the longjmp. Can safely be */
799 /* static since it's only called once, with the */
800 /* allocation lock held. */
803 GC_setup_temporary_fault_handler();
804 if (SETJMP(GC_jmp_buf) == 0) {
805 result = (ptr_t)(((word)(p))
806 & ~(MIN_PAGE_SIZE-1));
807 for (;;) {
808 if (up) {
809 result += MIN_PAGE_SIZE;
810 } else {
811 result -= MIN_PAGE_SIZE;
813 GC_noop1((word)(*result));
816 GC_reset_fault_handler();
817 if (!up) {
818 result += MIN_PAGE_SIZE;
820 return(result);
822 # endif
824 #if defined(ECOS) || defined(NOSYS)
825 ptr_t GC_get_stack_base()
827 return STACKBOTTOM;
829 #endif
831 #ifdef HPUX_STACKBOTTOM
833 #include <sys/param.h>
834 #include <sys/pstat.h>
836 ptr_t GC_get_register_stack_base(void)
838 struct pst_vm_status vm_status;
840 int i = 0;
841 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
842 if (vm_status.pst_type == PS_RSESTACK) {
843 return (ptr_t) vm_status.pst_vaddr;
847 /* old way to get the register stackbottom */
848 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
849 & ~(BACKING_STORE_ALIGNMENT - 1));
852 #endif /* HPUX_STACK_BOTTOM */
854 #ifdef LINUX_STACKBOTTOM
856 #include <sys/types.h>
857 #include <sys/stat.h>
859 # define STAT_SKIP 27 /* Number of fields preceding startstack */
860 /* field in /proc/self/stat */
862 #ifdef USE_LIBC_PRIVATES
863 # pragma weak __libc_stack_end
864 extern ptr_t __libc_stack_end;
865 #endif
867 # ifdef IA64
868 /* Try to read the backing store base from /proc/self/maps. */
869 /* We look for the writable mapping with a 0 major device, */
870 /* which is as close to our frame as possible, but below it.*/
871 static word backing_store_base_from_maps(char *maps)
873 char prot_buf[5];
874 char *buf_ptr = maps;
875 word start, end;
876 unsigned int maj_dev;
877 word current_best = 0;
878 word dummy;
880 for (;;) {
881 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
882 if (buf_ptr == NULL) return current_best;
883 if (prot_buf[1] == 'w' && maj_dev == 0) {
884 if (end < (word)(&dummy) && start > current_best) current_best = start;
887 return current_best;
890 static word backing_store_base_from_proc(void)
892 return GC_apply_to_maps(backing_store_base_from_maps);
895 # ifdef USE_LIBC_PRIVATES
896 # pragma weak __libc_ia64_register_backing_store_base
897 extern ptr_t __libc_ia64_register_backing_store_base;
898 # endif
900 ptr_t GC_get_register_stack_base(void)
902 # ifdef USE_LIBC_PRIVATES
903 if (0 != &__libc_ia64_register_backing_store_base
904 && 0 != __libc_ia64_register_backing_store_base) {
905 /* Glibc 2.2.4 has a bug such that for dynamically linked */
906 /* executables __libc_ia64_register_backing_store_base is */
907 /* defined but uninitialized during constructor calls. */
908 /* Hence we check for both nonzero address and value. */
909 return __libc_ia64_register_backing_store_base;
911 # endif
912 word result = backing_store_base_from_proc();
913 if (0 == result) {
914 /* Use dumb heuristics. Works only for default configuration. */
915 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
916 result += BACKING_STORE_ALIGNMENT - 1;
917 result &= ~(BACKING_STORE_ALIGNMENT - 1);
918 /* Verify that it's at least readable. If not, we goofed. */
919 GC_noop1(*(word *)result);
921 return (ptr_t)result;
923 # endif
925 void *GC_set_stackbottom = NULL;
927 ptr_t GC_linux_stack_base(void)
929 /* We read the stack base value from /proc/self/stat. We do this */
930 /* using direct I/O system calls in order to avoid calling malloc */
931 /* in case REDIRECT_MALLOC is defined. */
932 # define STAT_BUF_SIZE 4096
933 # define STAT_READ read
934 /* Should probably call the real read, if read is wrapped. */
935 char stat_buf[STAT_BUF_SIZE];
936 int f;
937 char c;
938 word result = 0;
939 size_t i, buf_offset = 0;
941 /* First try the easy way. This should work for glibc 2.2 */
942 /* This fails in a prelinked ("prelink" command) executable */
943 /* since the correct value of __libc_stack_end never */
944 /* becomes visible to us. The second test works around */
945 /* this. */
946 # ifdef USE_LIBC_PRIVATES
947 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
948 # ifdef IA64
949 /* Some versions of glibc set the address 16 bytes too */
950 /* low while the initialization code is running. */
951 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
952 return __libc_stack_end + 0x10;
953 } /* Otherwise it's not safe to add 16 bytes and we fall */
954 /* back to using /proc. */
955 # else
956 # ifdef SPARC
957 /* Older versions of glibc for 64-bit Sparc do not set
958 * this variable correctly, it gets set to either zero
959 * or one.
961 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
962 return __libc_stack_end;
963 # else
964 return __libc_stack_end;
965 # endif
966 # endif
968 # endif
969 f = open("/proc/self/stat", O_RDONLY);
970 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
971 ABORT("Couldn't read /proc/self/stat");
973 c = stat_buf[buf_offset++];
974 /* Skip the required number of fields. This number is hopefully */
975 /* constant across all Linux implementations. */
976 for (i = 0; i < STAT_SKIP; ++i) {
977 while (isspace(c)) c = stat_buf[buf_offset++];
978 while (!isspace(c)) c = stat_buf[buf_offset++];
980 while (isspace(c)) c = stat_buf[buf_offset++];
981 while (isdigit(c)) {
982 result *= 10;
983 result += c - '0';
984 c = stat_buf[buf_offset++];
986 close(f);
987 if (result < 0x10000000) ABORT("Absurd stack bottom value");
988 return (ptr_t)result;
991 #endif /* LINUX_STACKBOTTOM */
993 #ifdef FREEBSD_STACKBOTTOM
995 /* This uses an undocumented sysctl call, but at least one expert */
996 /* believes it will stay. */
998 #include <unistd.h>
999 #include <sys/types.h>
1000 #include <sys/sysctl.h>
1002 ptr_t GC_freebsd_stack_base(void)
1004 int nm[2] = {CTL_KERN, KERN_USRSTACK};
1005 ptr_t base;
1006 size_t len = sizeof(ptr_t);
1007 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1009 if (r) ABORT("Error getting stack base");
1011 return base;
1014 #endif /* FREEBSD_STACKBOTTOM */
1016 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1017 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1019 ptr_t GC_get_stack_base()
1021 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1022 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1023 word dummy;
1024 ptr_t result;
1025 # endif
1027 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1029 # ifdef STACKBOTTOM
1030 return(STACKBOTTOM);
1031 # else
1032 # ifdef HEURISTIC1
1033 # ifdef STACK_GROWS_DOWN
1034 result = (ptr_t)((((word)(&dummy))
1035 + STACKBOTTOM_ALIGNMENT_M1)
1036 & ~STACKBOTTOM_ALIGNMENT_M1);
1037 # else
1038 result = (ptr_t)(((word)(&dummy))
1039 & ~STACKBOTTOM_ALIGNMENT_M1);
1040 # endif
1041 # endif /* HEURISTIC1 */
1042 # ifdef LINUX_STACKBOTTOM
1043 result = GC_linux_stack_base();
1044 # endif
1045 # ifdef FREEBSD_STACKBOTTOM
1046 result = GC_freebsd_stack_base();
1047 # endif
1048 # ifdef HEURISTIC2
1049 # ifdef STACK_GROWS_DOWN
1050 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1051 # ifdef HEURISTIC2_LIMIT
1052 if (result > HEURISTIC2_LIMIT
1053 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1054 result = HEURISTIC2_LIMIT;
1056 # endif
1057 # else
1058 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1059 # ifdef HEURISTIC2_LIMIT
1060 if (result < HEURISTIC2_LIMIT
1061 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1062 result = HEURISTIC2_LIMIT;
1064 # endif
1065 # endif
1067 # endif /* HEURISTIC2 */
1068 # ifdef STACK_GROWS_DOWN
1069 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1070 # endif
1071 return(result);
1072 # endif /* STACKBOTTOM */
1075 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1078 * Register static data segment(s) as roots.
1079 * If more data segments are added later then they need to be registered
1080 * add that point (as we do with SunOS dynamic loading),
1081 * or GC_mark_roots needs to check for them (as we do with PCR).
1082 * Called with allocator lock held.
1085 # ifdef OS2
1087 void GC_register_data_segments()
1089 PTIB ptib;
1090 PPIB ppib;
1091 HMODULE module_handle;
1092 # define PBUFSIZ 512
1093 UCHAR path[PBUFSIZ];
1094 FILE * myexefile;
1095 struct exe_hdr hdrdos; /* MSDOS header. */
1096 struct e32_exe hdr386; /* Real header for my executable */
1097 struct o32_obj seg; /* Currrent segment */
1098 int nsegs;
1101 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1102 GC_err_printf0("DosGetInfoBlocks failed\n");
1103 ABORT("DosGetInfoBlocks failed\n");
1105 module_handle = ppib -> pib_hmte;
1106 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1107 GC_err_printf0("DosQueryModuleName failed\n");
1108 ABORT("DosGetInfoBlocks failed\n");
1110 myexefile = fopen(path, "rb");
1111 if (myexefile == 0) {
1112 GC_err_puts("Couldn't open executable ");
1113 GC_err_puts(path); GC_err_puts("\n");
1114 ABORT("Failed to open executable\n");
1116 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1117 GC_err_puts("Couldn't read MSDOS header from ");
1118 GC_err_puts(path); GC_err_puts("\n");
1119 ABORT("Couldn't read MSDOS header");
1121 if (E_MAGIC(hdrdos) != EMAGIC) {
1122 GC_err_puts("Executable has wrong DOS magic number: ");
1123 GC_err_puts(path); GC_err_puts("\n");
1124 ABORT("Bad DOS magic number");
1126 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1127 GC_err_puts("Seek to new header failed in ");
1128 GC_err_puts(path); GC_err_puts("\n");
1129 ABORT("Bad DOS magic number");
1131 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1132 GC_err_puts("Couldn't read MSDOS header from ");
1133 GC_err_puts(path); GC_err_puts("\n");
1134 ABORT("Couldn't read OS/2 header");
1136 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1137 GC_err_puts("Executable has wrong OS/2 magic number:");
1138 GC_err_puts(path); GC_err_puts("\n");
1139 ABORT("Bad OS/2 magic number");
1141 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1142 GC_err_puts("Executable %s has wrong byte order: ");
1143 GC_err_puts(path); GC_err_puts("\n");
1144 ABORT("Bad byte order");
1146 if ( E32_CPU(hdr386) == E32CPU286) {
1147 GC_err_puts("GC can't handle 80286 executables: ");
1148 GC_err_puts(path); GC_err_puts("\n");
1149 EXIT();
1151 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1152 SEEK_SET) != 0) {
1153 GC_err_puts("Seek to object table failed: ");
1154 GC_err_puts(path); GC_err_puts("\n");
1155 ABORT("Seek to object table failed");
1157 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1158 int flags;
1159 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1160 GC_err_puts("Couldn't read obj table entry from ");
1161 GC_err_puts(path); GC_err_puts("\n");
1162 ABORT("Couldn't read obj table entry");
1164 flags = O32_FLAGS(seg);
1165 if (!(flags & OBJWRITE)) continue;
1166 if (!(flags & OBJREAD)) continue;
1167 if (flags & OBJINVALID) {
1168 GC_err_printf0("Object with invalid pages?\n");
1169 continue;
1171 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1175 # else /* !OS2 */
1177 # if defined(MSWIN32) || defined(MSWINCE)
1179 # ifdef MSWIN32
1180 /* Unfortunately, we have to handle win32s very differently from NT, */
1181 /* Since VirtualQuery has very different semantics. In particular, */
1182 /* under win32s a VirtualQuery call on an unmapped page returns an */
1183 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1184 /* all real work is done by GC_register_dynamic_libraries. Under */
1185 /* win32s, we cannot find the data segments associated with dll's. */
1186 /* We register the main data segment here. */
1187 GC_bool GC_no_win32_dlls = FALSE;
1188 /* This used to be set for gcc, to avoid dealing with */
1189 /* the structured exception handling issues. But we now have */
1190 /* assembly code to do that right. */
1192 void GC_init_win32()
1194 /* if we're running under win32s, assume that no DLLs will be loaded */
1195 DWORD v = GetVersion();
1196 GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1199 /* Return the smallest address a such that VirtualQuery */
1200 /* returns correct results for all addresses between a and start. */
1201 /* Assumes VirtualQuery returns correct information for start. */
1202 ptr_t GC_least_described_address(ptr_t start)
1204 MEMORY_BASIC_INFORMATION buf;
1205 DWORD result;
1206 LPVOID limit;
1207 ptr_t p;
1208 LPVOID q;
1210 limit = GC_sysinfo.lpMinimumApplicationAddress;
1211 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1212 for (;;) {
1213 q = (LPVOID)(p - GC_page_size);
1214 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1215 result = VirtualQuery(q, &buf, sizeof(buf));
1216 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1217 p = (ptr_t)(buf.AllocationBase);
1219 return(p);
1221 # endif
1223 # ifndef REDIRECT_MALLOC
1224 /* We maintain a linked list of AllocationBase values that we know */
1225 /* correspond to malloc heap sections. Currently this is only called */
1226 /* during a GC. But there is some hope that for long running */
1227 /* programs we will eventually see most heap sections. */
1229 /* In the long run, it would be more reliable to occasionally walk */
1230 /* the malloc heap with HeapWalk on the default heap. But that */
1231 /* apparently works only for NT-based Windows. */
1233 /* In the long run, a better data structure would also be nice ... */
1234 struct GC_malloc_heap_list {
1235 void * allocation_base;
1236 struct GC_malloc_heap_list *next;
1237 } *GC_malloc_heap_l = 0;
1239 /* Is p the base of one of the malloc heap sections we already know */
1240 /* about? */
1241 GC_bool GC_is_malloc_heap_base(ptr_t p)
1243 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1245 while (0 != q) {
1246 if (q -> allocation_base == p) return TRUE;
1247 q = q -> next;
1249 return FALSE;
1252 void *GC_get_allocation_base(void *p)
1254 MEMORY_BASIC_INFORMATION buf;
1255 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1256 if (result != sizeof(buf)) {
1257 ABORT("Weird VirtualQuery result");
1259 return buf.AllocationBase;
1262 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1264 void GC_add_current_malloc_heap()
1266 struct GC_malloc_heap_list *new_l =
1267 malloc(sizeof(struct GC_malloc_heap_list));
1268 void * candidate = GC_get_allocation_base(new_l);
1270 if (new_l == 0) return;
1271 if (GC_is_malloc_heap_base(candidate)) {
1272 /* Try a little harder to find malloc heap. */
1273 size_t req_size = 10000;
1274 do {
1275 void *p = malloc(req_size);
1276 if (0 == p) { free(new_l); return; }
1277 candidate = GC_get_allocation_base(p);
1278 free(p);
1279 req_size *= 2;
1280 } while (GC_is_malloc_heap_base(candidate)
1281 && req_size < GC_max_root_size/10 && req_size < 500000);
1282 if (GC_is_malloc_heap_base(candidate)) {
1283 free(new_l); return;
1286 # ifdef CONDPRINT
1287 if (GC_print_stats)
1288 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1289 candidate);
1290 # endif
1291 new_l -> allocation_base = candidate;
1292 new_l -> next = GC_malloc_heap_l;
1293 GC_malloc_heap_l = new_l;
1295 # endif /* REDIRECT_MALLOC */
1297 /* Is p the start of either the malloc heap, or of one of our */
1298 /* heap sections? */
1299 GC_bool GC_is_heap_base (ptr_t p)
1302 unsigned i;
1304 # ifndef REDIRECT_MALLOC
1305 static word last_gc_no = -1;
1307 if (last_gc_no != GC_gc_no) {
1308 GC_add_current_malloc_heap();
1309 last_gc_no = GC_gc_no;
1311 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1312 if (GC_is_malloc_heap_base(p)) return TRUE;
1313 # endif
1314 for (i = 0; i < GC_n_heap_bases; i++) {
1315 if (GC_heap_bases[i] == p) return TRUE;
1317 return FALSE ;
1320 # ifdef MSWIN32
1321 void GC_register_root_section(ptr_t static_root)
1323 MEMORY_BASIC_INFORMATION buf;
1324 DWORD result;
1325 DWORD protect;
1326 LPVOID p;
1327 char * base;
1328 char * limit, * new_limit;
1330 if (!GC_no_win32_dlls) return;
1331 p = base = limit = GC_least_described_address(static_root);
1332 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1333 result = VirtualQuery(p, &buf, sizeof(buf));
1334 if (result != sizeof(buf) || buf.AllocationBase == 0
1335 || GC_is_heap_base(buf.AllocationBase)) break;
1336 new_limit = (char *)p + buf.RegionSize;
1337 protect = buf.Protect;
1338 if (buf.State == MEM_COMMIT
1339 && is_writable(protect)) {
1340 if ((char *)p == limit) {
1341 limit = new_limit;
1342 } else {
1343 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1344 base = p;
1345 limit = new_limit;
1348 if (p > (LPVOID)new_limit /* overflow */) break;
1349 p = (LPVOID)new_limit;
1351 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1353 #endif
1355 void GC_register_data_segments()
1357 # ifdef MSWIN32
1358 static char dummy;
1359 GC_register_root_section((ptr_t)(&dummy));
1360 # endif
1363 # else /* !OS2 && !Windows */
1365 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1366 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1367 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1368 int max_page_size;
1369 int * etext_addr;
1371 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1372 & ~(sizeof(word) - 1);
1373 /* etext rounded to word boundary */
1374 word next_page = ((text_end + (word)max_page_size - 1)
1375 & ~((word)max_page_size - 1));
1376 word page_offset = (text_end & ((word)max_page_size - 1));
1377 VOLATILE char * result = (char *)(next_page + page_offset);
1378 /* Note that this isnt equivalent to just adding */
1379 /* max_page_size to &etext if &etext is at a page boundary */
1381 GC_setup_temporary_fault_handler();
1382 if (SETJMP(GC_jmp_buf) == 0) {
1383 /* Try writing to the address. */
1384 *result = *result;
1385 GC_reset_fault_handler();
1386 } else {
1387 GC_reset_fault_handler();
1388 /* We got here via a longjmp. The address is not readable. */
1389 /* This is known to happen under Solaris 2.4 + gcc, which place */
1390 /* string constants in the text segment, but after etext. */
1391 /* Use plan B. Note that we now know there is a gap between */
1392 /* text and data segments, so plan A bought us something. */
1393 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1395 return((ptr_t)result);
1397 # endif
1399 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__) || defined(__x86_64__)) && !defined(PCR)
1400 /* Its unclear whether this should be identical to the above, or */
1401 /* whether it should apply to non-X86 architectures. */
1402 /* For now we don't assume that there is always an empty page after */
1403 /* etext. But in some cases there actually seems to be slightly more. */
1404 /* This also deals with holes between read-only data and writable data. */
1405 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1406 int max_page_size;
1407 int * etext_addr;
1409 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1410 & ~(sizeof(word) - 1);
1411 /* etext rounded to word boundary */
1412 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1413 & ~((word)max_page_size - 1);
1414 VOLATILE ptr_t result = (ptr_t)text_end;
1415 GC_setup_temporary_fault_handler();
1416 if (SETJMP(GC_jmp_buf) == 0) {
1417 /* Try reading at the address. */
1418 /* This should happen before there is another thread. */
1419 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1420 *(VOLATILE char *)next_page;
1421 GC_reset_fault_handler();
1422 } else {
1423 GC_reset_fault_handler();
1424 /* As above, we go to plan B */
1425 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1427 return(result);
1430 # endif
1433 #ifdef AMIGA
1435 # define GC_AMIGA_DS
1436 # include "AmigaOS.c"
1437 # undef GC_AMIGA_DS
1439 #else /* !OS2 && !Windows && !AMIGA */
1441 void GC_register_data_segments()
1443 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1444 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1445 /* As of Solaris 2.3, the Solaris threads implementation */
1446 /* allocates the data structure for the initial thread with */
1447 /* sbrk at process startup. It needs to be scanned, so that */
1448 /* we don't lose some malloc allocated data structures */
1449 /* hanging from it. We're on thin ice here ... */
1450 extern caddr_t sbrk();
1452 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1453 # else
1454 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1455 # if defined(DATASTART2)
1456 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1457 # endif
1458 # endif
1459 # endif
1460 # if defined(MACOS)
1462 # if defined(THINK_C)
1463 extern void* GC_MacGetDataStart(void);
1464 /* globals begin above stack and end at a5. */
1465 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1466 (ptr_t)LMGetCurrentA5(), FALSE);
1467 # else
1468 # if defined(__MWERKS__)
1469 # if !__POWERPC__
1470 extern void* GC_MacGetDataStart(void);
1471 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1472 # if __option(far_data)
1473 extern void* GC_MacGetDataEnd(void);
1474 # endif
1475 /* globals begin above stack and end at a5. */
1476 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1477 (ptr_t)LMGetCurrentA5(), FALSE);
1478 /* MATTHEW: Handle Far Globals */
1479 # if __option(far_data)
1480 /* Far globals follow he QD globals: */
1481 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1482 (ptr_t)GC_MacGetDataEnd(), FALSE);
1483 # endif
1484 # else
1485 extern char __data_start__[], __data_end__[];
1486 GC_add_roots_inner((ptr_t)&__data_start__,
1487 (ptr_t)&__data_end__, FALSE);
1488 # endif /* __POWERPC__ */
1489 # endif /* __MWERKS__ */
1490 # endif /* !THINK_C */
1492 # endif /* MACOS */
1494 /* Dynamic libraries are added at every collection, since they may */
1495 /* change. */
1498 # endif /* ! AMIGA */
1499 # endif /* ! MSWIN32 && ! MSWINCE*/
1500 # endif /* ! OS2 */
1503 * Auxiliary routines for obtaining memory from OS.
1506 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1507 && !defined(MSWIN32) && !defined(MSWINCE) \
1508 && !defined(MACOS) && !defined(DOS4GW)
1510 # ifdef SUNOS4
1511 extern caddr_t sbrk();
1512 # endif
1513 # ifdef __STDC__
1514 # define SBRK_ARG_T ptrdiff_t
1515 # else
1516 # define SBRK_ARG_T int
1517 # endif
1520 # if 0 && defined(RS6000) /* We now use mmap */
1521 /* The compiler seems to generate speculative reads one past the end of */
1522 /* an allocated object. Hence we need to make sure that the page */
1523 /* following the last heap page is also mapped. */
1524 ptr_t GC_unix_get_mem(bytes)
1525 word bytes;
1527 caddr_t cur_brk = (caddr_t)sbrk(0);
1528 caddr_t result;
1529 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1530 static caddr_t my_brk_val = 0;
1532 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1533 if (lsbs != 0) {
1534 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1536 if (cur_brk == my_brk_val) {
1537 /* Use the extra block we allocated last time. */
1538 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1539 if (result == (caddr_t)(-1)) return(0);
1540 result -= GC_page_size;
1541 } else {
1542 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1543 if (result == (caddr_t)(-1)) return(0);
1545 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1546 return((ptr_t)result);
1549 #else /* Not RS6000 */
1551 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
1553 #ifdef USE_MMAP_FIXED
1554 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1555 /* Seems to yield better performance on Solaris 2, but can */
1556 /* be unreliable if something is already mapped at the address. */
1557 #else
1558 # define GC_MMAP_FLAGS MAP_PRIVATE
1559 #endif
1561 #ifdef USE_MMAP_ANON
1562 # define zero_fd -1
1563 # if defined(MAP_ANONYMOUS)
1564 # define OPT_MAP_ANON MAP_ANONYMOUS
1565 # else
1566 # define OPT_MAP_ANON MAP_ANON
1567 # endif
1568 #else
1569 static int zero_fd;
1570 # define OPT_MAP_ANON 0
1571 #endif
1573 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1575 #if defined(USE_MMAP) || defined(FALLBACK_TO_MMAP)
1576 /* Tested only under Linux, IRIX5 and Solaris 2 */
1578 #ifndef HEAP_START
1579 # define HEAP_START 0
1580 #endif
1582 #ifdef FALLBACK_TO_MMAP
1583 static ptr_t GC_unix_get_mem_mmap(bytes)
1584 #else
1585 ptr_t GC_unix_get_mem(bytes)
1586 #endif
1587 word bytes;
1589 void *result;
1590 static ptr_t last_addr = HEAP_START;
1592 # ifndef USE_MMAP_ANON
1593 static GC_bool initialized = FALSE;
1595 if (!initialized) {
1596 zero_fd = open("/dev/zero", O_RDONLY);
1597 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1598 initialized = TRUE;
1600 # endif
1602 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1603 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1604 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1605 if (result == MAP_FAILED) return(0);
1606 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1607 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1608 # if !defined(LINUX)
1609 if (last_addr == 0) {
1610 /* Oops. We got the end of the address space. This isn't */
1611 /* usable by arbitrary C code, since one-past-end pointers */
1612 /* don't work, so we discard it and try again. */
1613 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1614 /* Leave last page mapped, so we can't repeat. */
1615 return GC_unix_get_mem(bytes);
1617 # else
1618 GC_ASSERT(last_addr != 0);
1619 # endif
1620 if (((word)result % HBLKSIZE) != 0)
1621 ABORT ("GC_unix_get_mem: Memory returned by mmap is not aligned to HBLKSIZE.");
1622 return((ptr_t)result);
1625 #endif
1627 #ifndef USE_MMAP
1629 ptr_t GC_unix_get_mem(bytes)
1630 word bytes;
1632 ptr_t result;
1633 # ifdef IRIX5
1634 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1635 /* The equivalent may be needed on other systems as well. */
1636 __LOCK_MALLOC();
1637 # endif
1639 ptr_t cur_brk = (ptr_t)sbrk(0);
1640 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1642 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1643 if (lsbs != 0) {
1644 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1646 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1647 if (result == (ptr_t)(-1)) {
1648 #ifdef FALLBACK_TO_MMAP
1649 result = GC_unix_get_mem_mmap (bytes);
1650 #else
1651 result = 0;
1652 #endif
1655 # ifdef IRIX5
1656 __UNLOCK_MALLOC();
1657 # endif
1658 return(result);
1661 #endif /* Not USE_MMAP */
1662 #endif /* Not RS6000 */
1664 # endif /* UN*X */
1666 # ifdef OS2
1668 void * os2_alloc(size_t bytes)
1670 void * result;
1672 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1673 PAG_WRITE | PAG_COMMIT)
1674 != NO_ERROR) {
1675 return(0);
1677 if (result == 0) return(os2_alloc(bytes));
1678 return(result);
1681 # endif /* OS2 */
1684 # if defined(MSWIN32) || defined(MSWINCE)
1685 SYSTEM_INFO GC_sysinfo;
1686 # endif
1688 # ifdef MSWIN32
1690 # ifdef USE_GLOBAL_ALLOC
1691 # define GLOBAL_ALLOC_TEST 1
1692 # else
1693 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1694 # endif
1696 word GC_n_heap_bases = 0;
1698 ptr_t GC_win32_get_mem(bytes)
1699 word bytes;
1701 ptr_t result;
1703 if (GLOBAL_ALLOC_TEST) {
1704 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1705 /* There are also unconfirmed rumors of other */
1706 /* problems, so we dodge the issue. */
1707 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1708 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1709 } else {
1710 /* VirtualProtect only works on regions returned by a */
1711 /* single VirtualAlloc call. Thus we allocate one */
1712 /* extra page, which will prevent merging of blocks */
1713 /* in separate regions, and eliminate any temptation */
1714 /* to call VirtualProtect on a range spanning regions. */
1715 /* This wastes a small amount of memory, and risks */
1716 /* increased fragmentation. But better alternatives */
1717 /* would require effort. */
1718 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1719 MEM_COMMIT | MEM_RESERVE,
1720 PAGE_EXECUTE_READWRITE);
1722 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1723 /* If I read the documentation correctly, this can */
1724 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1725 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1726 GC_heap_bases[GC_n_heap_bases++] = result;
1727 return(result);
1730 void GC_win32_free_heap ()
1732 if (GC_no_win32_dlls) {
1733 while (GC_n_heap_bases > 0) {
1734 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1735 GC_heap_bases[GC_n_heap_bases] = 0;
1739 # endif
1741 #ifdef AMIGA
1742 # define GC_AMIGA_AM
1743 # include "AmigaOS.c"
1744 # undef GC_AMIGA_AM
1745 #endif
1748 # ifdef MSWINCE
1749 word GC_n_heap_bases = 0;
1751 ptr_t GC_wince_get_mem(bytes)
1752 word bytes;
1754 ptr_t result;
1755 word i;
1757 /* Round up allocation size to multiple of page size */
1758 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1760 /* Try to find reserved, uncommitted pages */
1761 for (i = 0; i < GC_n_heap_bases; i++) {
1762 if (((word)(-(signed_word)GC_heap_lengths[i])
1763 & (GC_sysinfo.dwAllocationGranularity-1))
1764 >= bytes) {
1765 result = GC_heap_bases[i] + GC_heap_lengths[i];
1766 break;
1770 if (i == GC_n_heap_bases) {
1771 /* Reserve more pages */
1772 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1773 & ~(GC_sysinfo.dwAllocationGranularity-1);
1774 /* If we ever support MPROTECT_VDB here, we will probably need to */
1775 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1776 /* never spans regions. It seems to be OK for a VirtualFree argument */
1777 /* to span regions, so we should be OK for now. */
1778 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1779 MEM_RESERVE | MEM_TOP_DOWN,
1780 PAGE_EXECUTE_READWRITE);
1781 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1782 /* If I read the documentation correctly, this can */
1783 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1784 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1785 GC_heap_bases[GC_n_heap_bases] = result;
1786 GC_heap_lengths[GC_n_heap_bases] = 0;
1787 GC_n_heap_bases++;
1790 /* Commit pages */
1791 result = (ptr_t) VirtualAlloc(result, bytes,
1792 MEM_COMMIT,
1793 PAGE_EXECUTE_READWRITE);
1794 if (result != NULL) {
1795 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1796 GC_heap_lengths[i] += bytes;
1799 return(result);
1801 # endif
1803 #ifdef USE_MUNMAP
1805 /* For now, this only works on Win32/WinCE and some Unix-like */
1806 /* systems. If you have something else, don't define */
1807 /* USE_MUNMAP. */
1808 /* We assume ANSI C to support this feature. */
1810 #if !defined(MSWIN32) && !defined(MSWINCE)
1812 #include <unistd.h>
1813 #include <sys/mman.h>
1814 #include <sys/stat.h>
1815 #include <sys/types.h>
1817 #endif
1819 /* Compute a page aligned starting address for the unmap */
1820 /* operation on a block of size bytes starting at start. */
1821 /* Return 0 if the block is too small to make this feasible. */
1822 ptr_t GC_unmap_start(ptr_t start, word bytes)
1824 ptr_t result = start;
1825 /* Round start to next page boundary. */
1826 result += GC_page_size - 1;
1827 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1828 if (result + GC_page_size > start + bytes) return 0;
1829 return result;
1832 /* Compute end address for an unmap operation on the indicated */
1833 /* block. */
1834 ptr_t GC_unmap_end(ptr_t start, word bytes)
1836 ptr_t end_addr = start + bytes;
1837 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1838 return end_addr;
1841 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1842 /* memory using VirtualAlloc and VirtualFree. These functions */
1843 /* work on individual allocations of virtual memory, made */
1844 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1845 /* The ranges we need to (de)commit may span several of these */
1846 /* allocations; therefore we use VirtualQuery to check */
1847 /* allocation lengths, and split up the range as necessary. */
1849 /* We assume that GC_remap is called on exactly the same range */
1850 /* as a previous call to GC_unmap. It is safe to consistently */
1851 /* round the endpoints in both places. */
1852 void GC_unmap(ptr_t start, word bytes)
1854 ptr_t start_addr = GC_unmap_start(start, bytes);
1855 ptr_t end_addr = GC_unmap_end(start, bytes);
1856 word len = end_addr - start_addr;
1857 if (0 == start_addr) return;
1858 # if defined(MSWIN32) || defined(MSWINCE)
1859 while (len != 0) {
1860 MEMORY_BASIC_INFORMATION mem_info;
1861 GC_word free_len;
1862 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1863 != sizeof(mem_info))
1864 ABORT("Weird VirtualQuery result");
1865 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1866 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1867 ABORT("VirtualFree failed");
1868 GC_unmapped_bytes += free_len;
1869 start_addr += free_len;
1870 len -= free_len;
1872 # else
1873 /* We immediately remap it to prevent an intervening mmap from */
1874 /* accidentally grabbing the same address space. */
1876 void * result;
1877 result = mmap(start_addr, len, PROT_NONE,
1878 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1879 zero_fd, 0/* offset */);
1880 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1882 GC_unmapped_bytes += len;
1883 # endif
1887 void GC_remap(ptr_t start, word bytes)
1889 ptr_t start_addr = GC_unmap_start(start, bytes);
1890 ptr_t end_addr = GC_unmap_end(start, bytes);
1891 word len = end_addr - start_addr;
1893 # if defined(MSWIN32) || defined(MSWINCE)
1894 ptr_t result;
1896 if (0 == start_addr) return;
1897 while (len != 0) {
1898 MEMORY_BASIC_INFORMATION mem_info;
1899 GC_word alloc_len;
1900 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1901 != sizeof(mem_info))
1902 ABORT("Weird VirtualQuery result");
1903 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1904 result = VirtualAlloc(start_addr, alloc_len,
1905 MEM_COMMIT,
1906 PAGE_EXECUTE_READWRITE);
1907 if (result != start_addr) {
1908 ABORT("VirtualAlloc remapping failed");
1910 GC_unmapped_bytes -= alloc_len;
1911 start_addr += alloc_len;
1912 len -= alloc_len;
1914 # else
1915 /* It was already remapped with PROT_NONE. */
1916 int result;
1918 if (0 == start_addr) return;
1919 result = mprotect(start_addr, len,
1920 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1921 if (result != 0) {
1922 GC_err_printf3(
1923 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1924 start_addr, len, errno);
1925 ABORT("Mprotect remapping failed");
1927 GC_unmapped_bytes -= len;
1928 # endif
1931 /* Two adjacent blocks have already been unmapped and are about to */
1932 /* be merged. Unmap the whole block. This typically requires */
1933 /* that we unmap a small section in the middle that was not previously */
1934 /* unmapped due to alignment constraints. */
1935 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1937 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1938 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1939 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1940 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1941 ptr_t start_addr = end1_addr;
1942 ptr_t end_addr = start2_addr;
1943 word len;
1944 GC_ASSERT(start1 + bytes1 == start2);
1945 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1946 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1947 if (0 == start_addr) return;
1948 len = end_addr - start_addr;
1949 # if defined(MSWIN32) || defined(MSWINCE)
1950 while (len != 0) {
1951 MEMORY_BASIC_INFORMATION mem_info;
1952 GC_word free_len;
1953 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1954 != sizeof(mem_info))
1955 ABORT("Weird VirtualQuery result");
1956 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1957 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1958 ABORT("VirtualFree failed");
1959 GC_unmapped_bytes += free_len;
1960 start_addr += free_len;
1961 len -= free_len;
1963 # else
1964 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1965 GC_unmapped_bytes += len;
1966 # endif
1969 #endif /* USE_MUNMAP */
1971 /* Routine for pushing any additional roots. In THREADS */
1972 /* environment, this is also responsible for marking from */
1973 /* thread stacks. */
1974 #ifndef THREADS
1975 void (*GC_push_other_roots)() = 0;
1976 #else /* THREADS */
1978 # ifdef PCR
1979 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1981 struct PCR_ThCtl_TInfoRep info;
1982 PCR_ERes result;
1984 info.ti_stkLow = info.ti_stkHi = 0;
1985 result = PCR_ThCtl_GetInfo(t, &info);
1986 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1987 return(result);
1990 /* Push the contents of an old object. We treat this as stack */
1991 /* data only becasue that makes it robust against mark stack */
1992 /* overflow. */
1993 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1995 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1996 return(PCR_ERes_okay);
2000 void GC_default_push_other_roots GC_PROTO((void))
2002 /* Traverse data allocated by previous memory managers. */
2004 extern struct PCR_MM_ProcsRep * GC_old_allocator;
2006 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2007 GC_push_old_obj, 0)
2008 != PCR_ERes_okay) {
2009 ABORT("Old object enumeration failed");
2012 /* Traverse all thread stacks. */
2013 if (PCR_ERes_IsErr(
2014 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2015 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2016 ABORT("Thread stack marking failed\n");
2020 # endif /* PCR */
2022 # ifdef SRC_M3
2024 # ifdef ALL_INTERIOR_POINTERS
2025 --> misconfigured
2026 # endif
2028 void GC_push_thread_structures GC_PROTO((void))
2030 /* Not our responsibibility. */
2033 extern void ThreadF__ProcessStacks();
2035 void GC_push_thread_stack(start, stop)
2036 word start, stop;
2038 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2041 /* Push routine with M3 specific calling convention. */
2042 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2043 word *p;
2044 ptr_t dummy1, dummy2;
2045 int dummy3;
2047 word q = *p;
2049 GC_PUSH_ONE_STACK(q, p);
2052 /* M3 set equivalent to RTHeap.TracedRefTypes */
2053 typedef struct { int elts[1]; } RefTypeSet;
2054 RefTypeSet GC_TracedRefTypes = {{0x1}};
2056 void GC_default_push_other_roots GC_PROTO((void))
2058 /* Use the M3 provided routine for finding static roots. */
2059 /* This is a bit dubious, since it presumes no C roots. */
2060 /* We handle the collector roots explicitly in GC_push_roots */
2061 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2062 if (GC_words_allocd > 0) {
2063 ThreadF__ProcessStacks(GC_push_thread_stack);
2065 /* Otherwise this isn't absolutely necessary, and we have */
2066 /* startup ordering problems. */
2069 # endif /* SRC_M3 */
2071 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2072 defined(GC_WIN32_THREADS)
2074 extern void GC_push_all_stacks();
2076 void GC_default_push_other_roots GC_PROTO((void))
2078 GC_push_all_stacks();
2081 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2083 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2085 #endif /* THREADS */
2088 * Routines for accessing dirty bits on virtual pages.
2089 * We plan to eventually implement four strategies for doing so:
2090 * DEFAULT_VDB: A simple dummy implementation that treats every page
2091 * as possibly dirty. This makes incremental collection
2092 * useless, but the implementation is still correct.
2093 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2094 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2095 * works under some SVR4 variants. Even then, it may be
2096 * too slow to be entirely satisfactory. Requires reading
2097 * dirty bits for entire address space. Implementations tend
2098 * to assume that the client is a (slow) debugger.
2099 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2100 * dirtied pages. The implementation (and implementability)
2101 * is highly system dependent. This usually fails when system
2102 * calls write to a protected page. We prevent the read system
2103 * call from doing so. It is the clients responsibility to
2104 * make sure that other system calls are similarly protected
2105 * or write only to the stack.
2107 GC_bool GC_dirty_maintained = FALSE;
2109 # ifdef DEFAULT_VDB
2111 /* All of the following assume the allocation lock is held, and */
2112 /* signals are disabled. */
2114 /* The client asserts that unallocated pages in the heap are never */
2115 /* written. */
2117 /* Initialize virtual dirty bit implementation. */
2118 void GC_dirty_init()
2120 # ifdef PRINTSTATS
2121 GC_printf0("Initializing DEFAULT_VDB...\n");
2122 # endif
2123 GC_dirty_maintained = TRUE;
2126 /* Retrieve system dirty bits for heap to a local buffer. */
2127 /* Restore the systems notion of which pages are dirty. */
2128 void GC_read_dirty()
2131 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2132 /* If the actual page size is different, this returns TRUE if any */
2133 /* of the pages overlapping h are dirty. This routine may err on the */
2134 /* side of labelling pages as dirty (and this implementation does). */
2135 /*ARGSUSED*/
2136 GC_bool GC_page_was_dirty(h)
2137 struct hblk *h;
2139 return(TRUE);
2143 * The following two routines are typically less crucial. They matter
2144 * most with large dynamic libraries, or if we can't accurately identify
2145 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2146 * versions are adequate.
2149 /* Could any valid GC heap pointer ever have been written to this page? */
2150 /*ARGSUSED*/
2151 GC_bool GC_page_was_ever_dirty(h)
2152 struct hblk *h;
2154 return(TRUE);
2157 /* Reset the n pages starting at h to "was never dirty" status. */
2158 void GC_is_fresh(h, n)
2159 struct hblk *h;
2160 word n;
2164 /* A call that: */
2165 /* I) hints that [h, h+nblocks) is about to be written. */
2166 /* II) guarantees that protection is removed. */
2167 /* (I) may speed up some dirty bit implementations. */
2168 /* (II) may be essential if we need to ensure that */
2169 /* pointer-free system call buffers in the heap are */
2170 /* not protected. */
2171 /*ARGSUSED*/
2172 void GC_remove_protection(h, nblocks, is_ptrfree)
2173 struct hblk *h;
2174 word nblocks;
2175 GC_bool is_ptrfree;
2179 # endif /* DEFAULT_VDB */
2182 # ifdef MPROTECT_VDB
2185 * See DEFAULT_VDB for interface descriptions.
2189 * This implementation maintains dirty bits itself by catching write
2190 * faults and keeping track of them. We assume nobody else catches
2191 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2192 * This means that clients must ensure that system calls don't write
2193 * to the write-protected heap. Probably the best way to do this is to
2194 * ensure that system calls write at most to POINTERFREE objects in the
2195 * heap, and do even that only if we are on a platform on which those
2196 * are not protected. Another alternative is to wrap system calls
2197 * (see example for read below), but the current implementation holds
2198 * a lock across blocking calls, making it problematic for multithreaded
2199 * applications.
2200 * We assume the page size is a multiple of HBLKSIZE.
2201 * We prefer them to be the same. We avoid protecting POINTERFREE
2202 * objects only if they are the same.
2205 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2207 # include <sys/mman.h>
2208 # include <signal.h>
2209 # include <sys/syscall.h>
2211 # define PROTECT(addr, len) \
2212 if (mprotect((caddr_t)(addr), (size_t)(len), \
2213 PROT_READ | OPT_PROT_EXEC) < 0) { \
2214 ABORT("mprotect failed"); \
2216 # define UNPROTECT(addr, len) \
2217 if (mprotect((caddr_t)(addr), (size_t)(len), \
2218 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2219 ABORT("un-mprotect failed"); \
2222 # else
2224 # ifdef DARWIN
2225 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2226 decrease the likelihood of some of the problems described below. */
2227 #include <mach/vm_map.h>
2228 static mach_port_t GC_task_self;
2229 #define PROTECT(addr,len) \
2230 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2231 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2232 ABORT("vm_portect failed"); \
2234 #define UNPROTECT(addr,len) \
2235 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2236 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2237 ABORT("vm_portect failed"); \
2239 # else
2241 # ifndef MSWINCE
2242 # include <signal.h>
2243 # endif
2245 static DWORD protect_junk;
2246 # define PROTECT(addr, len) \
2247 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2248 &protect_junk)) { \
2249 DWORD last_error = GetLastError(); \
2250 GC_printf1("Last error code: %lx\n", last_error); \
2251 ABORT("VirtualProtect failed"); \
2253 # define UNPROTECT(addr, len) \
2254 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2255 &protect_junk)) { \
2256 ABORT("un-VirtualProtect failed"); \
2258 # endif /* !DARWIN */
2259 # endif /* MSWIN32 || MSWINCE || DARWIN */
2261 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2262 typedef void (* SIG_PF)();
2263 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2265 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2266 || defined(HURD)
2267 # ifdef __STDC__
2268 typedef void (* SIG_PF)(int);
2269 # else
2270 typedef void (* SIG_PF)();
2271 # endif
2272 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2274 #if defined(MSWIN32)
2275 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2276 # undef SIG_DFL
2277 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2278 #endif
2279 #if defined(MSWINCE)
2280 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2281 # undef SIG_DFL
2282 # define SIG_DFL (SIG_PF) (-1)
2283 #endif
2285 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2286 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2287 #endif /* IRIX5 || OSF1 || HURD */
2289 #if defined(SUNOS5SIGS)
2290 # if defined(HPUX) || defined(FREEBSD)
2291 # define SIGINFO_T siginfo_t
2292 # else
2293 # define SIGINFO_T struct siginfo
2294 # endif
2295 # ifdef __STDC__
2296 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2297 # else
2298 typedef void (* REAL_SIG_PF)();
2299 # endif
2300 #endif /* SUNOS5SIGS */
2302 #if defined(LINUX)
2303 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2304 typedef struct sigcontext s_c;
2305 # else /* glibc < 2.2 */
2306 # include <linux/version.h>
2307 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2308 typedef struct sigcontext s_c;
2309 # else
2310 typedef struct sigcontext_struct s_c;
2311 # endif
2312 # endif /* glibc < 2.2 */
2313 # if defined(ALPHA) || defined(M68K)
2314 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2315 # else
2316 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2317 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2318 /* FIXME: */
2319 /* According to SUSV3, the last argument should have type */
2320 /* void * or ucontext_t * */
2321 # else
2322 typedef void (* REAL_SIG_PF)(int, s_c);
2323 # endif
2324 # endif
2325 # ifdef ALPHA
2326 /* Retrieve fault address from sigcontext structure by decoding */
2327 /* instruction. */
2328 char * get_fault_addr(s_c *sc) {
2329 unsigned instr;
2330 word faultaddr;
2332 instr = *((unsigned *)(sc->sc_pc));
2333 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2334 faultaddr += (word) (((int)instr << 16) >> 16);
2335 return (char *)faultaddr;
2337 # endif /* !ALPHA */
2338 # endif /* LINUX */
2340 #ifndef DARWIN
2341 SIG_PF GC_old_bus_handler;
2342 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2343 #endif /* !DARWIN */
2345 #if defined(THREADS)
2346 /* We need to lock around the bitmap update in the write fault handler */
2347 /* in order to avoid the risk of losing a bit. We do this with a */
2348 /* test-and-set spin lock if we know how to do that. Otherwise we */
2349 /* check whether we are already in the handler and use the dumb but */
2350 /* safe fallback algorithm of setting all bits in the word. */
2351 /* Contention should be very rare, so we do the minimum to handle it */
2352 /* correctly. */
2353 #ifdef GC_TEST_AND_SET_DEFINED
2354 static VOLATILE unsigned int fault_handler_lock = 0;
2355 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2356 while (GC_test_and_set(&fault_handler_lock)) {}
2357 /* Could also revert to set_pht_entry_from_index_safe if initial */
2358 /* GC_test_and_set fails. */
2359 set_pht_entry_from_index(db, index);
2360 GC_clear(&fault_handler_lock);
2362 #else /* !GC_TEST_AND_SET_DEFINED */
2363 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2364 /* just before we notice the conflict and correct it. We may end up */
2365 /* looking at it while it's wrong. But this requires contention */
2366 /* exactly when a GC is triggered, which seems far less likely to */
2367 /* fail than the old code, which had no reported failures. Thus we */
2368 /* leave it this way while we think of something better, or support */
2369 /* GC_test_and_set on the remaining platforms. */
2370 static VOLATILE word currently_updating = 0;
2371 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2372 unsigned int update_dummy;
2373 currently_updating = (word)(&update_dummy);
2374 set_pht_entry_from_index(db, index);
2375 /* If we get contention in the 10 or so instruction window here, */
2376 /* and we get stopped by a GC between the two updates, we lose! */
2377 if (currently_updating != (word)(&update_dummy)) {
2378 set_pht_entry_from_index_safe(db, index);
2379 /* We claim that if two threads concurrently try to update the */
2380 /* dirty bit vector, the first one to execute UPDATE_START */
2381 /* will see it changed when UPDATE_END is executed. (Note that */
2382 /* &update_dummy must differ in two distinct threads.) It */
2383 /* will then execute set_pht_entry_from_index_safe, thus */
2384 /* returning us to a safe state, though not soon enough. */
2387 #endif /* !GC_TEST_AND_SET_DEFINED */
2388 #else /* !THREADS */
2389 # define async_set_pht_entry_from_index(db, index) \
2390 set_pht_entry_from_index(db, index)
2391 #endif /* !THREADS */
2393 /*ARGSUSED*/
2394 #if !defined(DARWIN)
2395 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2396 void GC_write_fault_handler(sig, code, scp, addr)
2397 int sig, code;
2398 struct sigcontext *scp;
2399 char * addr;
2400 # ifdef SUNOS4
2401 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2402 # define CODE_OK (FC_CODE(code) == FC_PROT \
2403 || (FC_CODE(code) == FC_OBJERR \
2404 && FC_ERRNO(code) == FC_PROT))
2405 # endif
2406 # ifdef FREEBSD
2407 # define SIG_OK (sig == SIGBUS)
2408 # define CODE_OK TRUE
2409 # endif
2410 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2412 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2413 # include <errno.h>
2414 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2415 # ifdef OSF1
2416 # define SIG_OK (sig == SIGSEGV)
2417 # define CODE_OK (code == 2 /* experimentally determined */)
2418 # endif
2419 # ifdef IRIX5
2420 # define SIG_OK (sig == SIGSEGV)
2421 # define CODE_OK (code == EACCES)
2422 # endif
2423 # ifdef HURD
2424 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2425 # define CODE_OK TRUE
2426 # endif
2427 # endif /* IRIX5 || OSF1 || HURD */
2429 # if defined(LINUX)
2430 # if defined(ALPHA) || defined(M68K)
2431 void GC_write_fault_handler(int sig, int code, s_c * sc)
2432 # else
2433 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2434 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2435 # else
2436 # if defined(ARM32)
2437 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2438 # else
2439 void GC_write_fault_handler(int sig, s_c sc)
2440 # endif
2441 # endif
2442 # endif
2443 # define SIG_OK (sig == SIGSEGV)
2444 # define CODE_OK TRUE
2445 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2446 /* Should probably consider alignment issues on other */
2447 /* architectures. */
2448 # endif /* LINUX */
2450 # if defined(SUNOS5SIGS)
2451 # ifdef __STDC__
2452 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2453 # else
2454 void GC_write_fault_handler(sig, scp, context)
2455 int sig;
2456 SIGINFO_T *scp;
2457 void * context;
2458 # endif
2459 # ifdef HPUX
2460 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2461 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2462 || (scp -> si_code == BUS_ADRERR) \
2463 || (scp -> si_code == BUS_UNKNOWN) \
2464 || (scp -> si_code == SEGV_UNKNOWN) \
2465 || (scp -> si_code == BUS_OBJERR)
2466 # else
2467 # ifdef FREEBSD
2468 # define SIG_OK (sig == SIGBUS)
2469 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2470 # else
2471 # define SIG_OK (sig == SIGSEGV)
2472 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2473 # endif
2474 # endif
2475 # endif /* SUNOS5SIGS */
2477 # if defined(MSWIN32) || defined(MSWINCE)
2478 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2479 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2480 STATUS_ACCESS_VIOLATION)
2481 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2482 /* Write fault */
2483 # endif /* MSWIN32 || MSWINCE */
2485 register unsigned i;
2486 # if defined(HURD)
2487 char *addr = (char *) code;
2488 # endif
2489 # ifdef IRIX5
2490 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2491 # endif
2492 # if defined(OSF1) && defined(ALPHA)
2493 char * addr = (char *) (scp -> sc_traparg_a0);
2494 # endif
2495 # ifdef SUNOS5SIGS
2496 char * addr = (char *) (scp -> si_addr);
2497 # endif
2498 # ifdef LINUX
2499 # if defined(I386)
2500 char * addr = (char *) (sc.cr2);
2501 # else
2502 # if defined(M68K)
2503 char * addr = NULL;
2505 struct sigcontext *scp = (struct sigcontext *)(sc);
2507 int format = (scp->sc_formatvec >> 12) & 0xf;
2508 unsigned long *framedata = (unsigned long *)(scp + 1);
2509 unsigned long ea;
2511 if (format == 0xa || format == 0xb) {
2512 /* 68020/030 */
2513 ea = framedata[2];
2514 } else if (format == 7) {
2515 /* 68040 */
2516 ea = framedata[3];
2517 if (framedata[1] & 0x08000000) {
2518 /* correct addr on misaligned access */
2519 ea = (ea+4095)&(~4095);
2521 } else if (format == 4) {
2522 /* 68060 */
2523 ea = framedata[0];
2524 if (framedata[1] & 0x08000000) {
2525 /* correct addr on misaligned access */
2526 ea = (ea+4095)&(~4095);
2529 addr = (char *)ea;
2530 # else
2531 # ifdef ALPHA
2532 char * addr = get_fault_addr(sc);
2533 # else
2534 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2535 char * addr = si -> si_addr;
2536 /* I believe this is claimed to work on all platforms for */
2537 /* Linux 2.3.47 and later. Hopefully we don't have to */
2538 /* worry about earlier kernels on IA64. */
2539 # else
2540 # if defined(POWERPC)
2541 char * addr = (char *) (sc.regs->dar);
2542 # else
2543 # if defined(ARM32)
2544 char * addr = (char *)sc.fault_address;
2545 # else
2546 # if defined(CRIS)
2547 char * addr = (char *)sc.regs.csraddr;
2548 # else
2549 --> architecture not supported
2550 # endif
2551 # endif
2552 # endif
2553 # endif
2554 # endif
2555 # endif
2556 # endif
2557 # endif
2558 # if defined(MSWIN32) || defined(MSWINCE)
2559 char * addr = (char *) (exc_info -> ExceptionRecord
2560 -> ExceptionInformation[1]);
2561 # define sig SIGSEGV
2562 # endif
2564 if (SIG_OK && CODE_OK) {
2565 register struct hblk * h =
2566 (struct hblk *)((word)addr & ~(GC_page_size-1));
2567 GC_bool in_allocd_block;
2569 # ifdef SUNOS5SIGS
2570 /* Address is only within the correct physical page. */
2571 in_allocd_block = FALSE;
2572 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2573 if (HDR(h+i) != 0) {
2574 in_allocd_block = TRUE;
2577 # else
2578 in_allocd_block = (HDR(addr) != 0);
2579 # endif
2580 if (!in_allocd_block) {
2581 /* FIXME - We should make sure that we invoke the */
2582 /* old handler with the appropriate calling */
2583 /* sequence, which often depends on SA_SIGINFO. */
2585 /* Heap blocks now begin and end on page boundaries */
2586 SIG_PF old_handler;
2588 if (sig == SIGSEGV) {
2589 old_handler = GC_old_segv_handler;
2590 } else {
2591 old_handler = GC_old_bus_handler;
2593 if (old_handler == SIG_DFL) {
2594 # if !defined(MSWIN32) && !defined(MSWINCE)
2595 GC_err_printf1("Segfault at 0x%lx\n", addr);
2596 ABORT("Unexpected bus error or segmentation fault");
2597 # else
2598 return(EXCEPTION_CONTINUE_SEARCH);
2599 # endif
2600 } else {
2601 # if defined (SUNOS4) \
2602 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2603 (*old_handler) (sig, code, scp, addr);
2604 return;
2605 # endif
2606 # if defined (SUNOS5SIGS)
2608 * FIXME: For FreeBSD, this code should check if the
2609 * old signal handler used the traditional BSD style and
2610 * if so call it using that style.
2612 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2613 return;
2614 # endif
2615 # if defined (LINUX)
2616 # if defined(ALPHA) || defined(M68K)
2617 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2618 # else
2619 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2620 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2621 # else
2622 (*(REAL_SIG_PF)old_handler) (sig, sc);
2623 # endif
2624 # endif
2625 return;
2626 # endif
2627 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2628 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2629 return;
2630 # endif
2631 # ifdef MSWIN32
2632 return((*old_handler)(exc_info));
2633 # endif
2636 UNPROTECT(h, GC_page_size);
2637 /* We need to make sure that no collection occurs between */
2638 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2639 /* a write by a third thread might go unnoticed. Reversing */
2640 /* the order is just as bad, since we would end up unprotecting */
2641 /* a page in a GC cycle during which it's not marked. */
2642 /* Currently we do this by disabling the thread stopping */
2643 /* signals while this handler is running. An alternative might */
2644 /* be to record the fact that we're about to unprotect, or */
2645 /* have just unprotected a page in the GC's thread structure, */
2646 /* and then to have the thread stopping code set the dirty */
2647 /* flag, if necessary. */
2648 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2649 register int index = PHT_HASH(h+i);
2651 async_set_pht_entry_from_index(GC_dirty_pages, index);
2653 # if defined(OSF1)
2654 /* These reset the signal handler each time by default. */
2655 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2656 # endif
2657 /* The write may not take place before dirty bits are read. */
2658 /* But then we'll fault again ... */
2659 # if defined(MSWIN32) || defined(MSWINCE)
2660 return(EXCEPTION_CONTINUE_EXECUTION);
2661 # else
2662 return;
2663 # endif
2665 #if defined(MSWIN32) || defined(MSWINCE)
2666 return EXCEPTION_CONTINUE_SEARCH;
2667 #else
2668 GC_err_printf1("Segfault at 0x%lx\n", addr);
2669 ABORT("Unexpected bus error or segmentation fault");
2670 #endif
2672 #endif /* !DARWIN */
2675 * We hold the allocation lock. We expect block h to be written
2676 * shortly. Ensure that all pages containing any part of the n hblks
2677 * starting at h are no longer protected. If is_ptrfree is false,
2678 * also ensure that they will subsequently appear to be dirty.
2680 void GC_remove_protection(h, nblocks, is_ptrfree)
2681 struct hblk *h;
2682 word nblocks;
2683 GC_bool is_ptrfree;
2685 struct hblk * h_trunc; /* Truncated to page boundary */
2686 struct hblk * h_end; /* Page boundary following block end */
2687 struct hblk * current;
2688 GC_bool found_clean;
2690 if (!GC_dirty_maintained) return;
2691 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2692 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2693 & ~(GC_page_size-1));
2694 found_clean = FALSE;
2695 for (current = h_trunc; current < h_end; ++current) {
2696 int index = PHT_HASH(current);
2698 if (!is_ptrfree || current < h || current >= h + nblocks) {
2699 async_set_pht_entry_from_index(GC_dirty_pages, index);
2702 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2705 #if !defined(DARWIN)
2706 void GC_dirty_init()
2708 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2709 defined(OSF1) || defined(HURD)
2710 struct sigaction act, oldact;
2711 /* We should probably specify SA_SIGINFO for Linux, and handle */
2712 /* the different architectures more uniformly. */
2713 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2714 || defined(OSF1) || defined(HURD)
2715 act.sa_flags = SA_RESTART;
2716 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2717 # else
2718 act.sa_flags = SA_RESTART | SA_SIGINFO;
2719 act.sa_sigaction = GC_write_fault_handler;
2720 # endif
2721 (void)sigemptyset(&act.sa_mask);
2722 # ifdef SIG_SUSPEND
2723 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2724 /* handler. This effectively makes the handler atomic w.r.t. */
2725 /* stopping the world for GC. */
2726 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2727 # endif /* SIG_SUSPEND */
2728 # endif
2729 # ifdef PRINTSTATS
2730 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2731 # endif
2732 GC_dirty_maintained = TRUE;
2733 if (GC_page_size % HBLKSIZE != 0) {
2734 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2735 ABORT("Page size not multiple of HBLKSIZE");
2737 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2738 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2739 if (GC_old_bus_handler == SIG_IGN) {
2740 GC_err_printf0("Previously ignored bus error!?");
2741 GC_old_bus_handler = SIG_DFL;
2743 if (GC_old_bus_handler != SIG_DFL) {
2744 # ifdef PRINTSTATS
2745 GC_err_printf0("Replaced other SIGBUS handler\n");
2746 # endif
2748 # endif
2749 # if defined(SUNOS4)
2750 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2751 if (GC_old_segv_handler == SIG_IGN) {
2752 GC_err_printf0("Previously ignored segmentation violation!?");
2753 GC_old_segv_handler = SIG_DFL;
2755 if (GC_old_segv_handler != SIG_DFL) {
2756 # ifdef PRINTSTATS
2757 GC_err_printf0("Replaced other SIGSEGV handler\n");
2758 # endif
2760 # endif
2761 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2762 || defined(LINUX) || defined(OSF1) || defined(HURD)
2763 /* SUNOS5SIGS includes HPUX */
2764 # if defined(GC_IRIX_THREADS)
2765 sigaction(SIGSEGV, 0, &oldact);
2766 sigaction(SIGSEGV, &act, 0);
2767 # else
2769 int res = sigaction(SIGSEGV, &act, &oldact);
2770 if (res != 0) ABORT("Sigaction failed");
2772 # endif
2773 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2774 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2775 /* sa_sigaction. */
2776 GC_old_segv_handler = oldact.sa_handler;
2777 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2778 if (oldact.sa_flags & SA_SIGINFO) {
2779 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2780 } else {
2781 GC_old_segv_handler = oldact.sa_handler;
2783 # endif
2784 if (GC_old_segv_handler == SIG_IGN) {
2785 GC_err_printf0("Previously ignored segmentation violation!?");
2786 GC_old_segv_handler = SIG_DFL;
2788 if (GC_old_segv_handler != SIG_DFL) {
2789 # ifdef PRINTSTATS
2790 GC_err_printf0("Replaced other SIGSEGV handler\n");
2791 # endif
2793 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2794 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2795 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2796 sigaction(SIGBUS, &act, &oldact);
2797 GC_old_bus_handler = oldact.sa_handler;
2798 if (GC_old_bus_handler == SIG_IGN) {
2799 GC_err_printf0("Previously ignored bus error!?");
2800 GC_old_bus_handler = SIG_DFL;
2802 if (GC_old_bus_handler != SIG_DFL) {
2803 # ifdef PRINTSTATS
2804 GC_err_printf0("Replaced other SIGBUS handler\n");
2805 # endif
2807 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2808 # if defined(MSWIN32)
2809 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2810 if (GC_old_segv_handler != NULL) {
2811 # ifdef PRINTSTATS
2812 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2813 # endif
2814 } else {
2815 GC_old_segv_handler = SIG_DFL;
2817 # endif
2819 #endif /* !DARWIN */
2821 int GC_incremental_protection_needs()
2823 if (GC_page_size == HBLKSIZE) {
2824 return GC_PROTECTS_POINTER_HEAP;
2825 } else {
2826 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2830 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2832 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2834 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2835 void GC_protect_heap()
2837 ptr_t start;
2838 word len;
2839 struct hblk * current;
2840 struct hblk * current_start; /* Start of block to be protected. */
2841 struct hblk * limit;
2842 unsigned i;
2843 GC_bool protect_all =
2844 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2845 for (i = 0; i < GC_n_heap_sects; i++) {
2846 start = GC_heap_sects[i].hs_start;
2847 len = GC_heap_sects[i].hs_bytes;
2848 if (protect_all) {
2849 PROTECT(start, len);
2850 } else {
2851 GC_ASSERT(PAGE_ALIGNED(len))
2852 GC_ASSERT(PAGE_ALIGNED(start))
2853 current_start = current = (struct hblk *)start;
2854 limit = (struct hblk *)(start + len);
2855 while (current < limit) {
2856 hdr * hhdr;
2857 word nhblks;
2858 GC_bool is_ptrfree;
2860 GC_ASSERT(PAGE_ALIGNED(current));
2861 GET_HDR(current, hhdr);
2862 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2863 /* This can happen only if we're at the beginning of a */
2864 /* heap segment, and a block spans heap segments. */
2865 /* We will handle that block as part of the preceding */
2866 /* segment. */
2867 GC_ASSERT(current_start == current);
2868 current_start = ++current;
2869 continue;
2871 if (HBLK_IS_FREE(hhdr)) {
2872 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2873 nhblks = divHBLKSZ(hhdr -> hb_sz);
2874 is_ptrfree = TRUE; /* dirty on alloc */
2875 } else {
2876 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2877 is_ptrfree = IS_PTRFREE(hhdr);
2879 if (is_ptrfree) {
2880 if (current_start < current) {
2881 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2883 current_start = (current += nhblks);
2884 } else {
2885 current += nhblks;
2888 if (current_start < current) {
2889 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2895 /* We assume that either the world is stopped or its OK to lose dirty */
2896 /* bits while this is happenning (as in GC_enable_incremental). */
2897 void GC_read_dirty()
2899 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2900 (sizeof GC_dirty_pages));
2901 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2902 GC_protect_heap();
2905 GC_bool GC_page_was_dirty(h)
2906 struct hblk * h;
2908 register word index = PHT_HASH(h);
2910 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2914 * Acquiring the allocation lock here is dangerous, since this
2915 * can be called from within GC_call_with_alloc_lock, and the cord
2916 * package does so. On systems that allow nested lock acquisition, this
2917 * happens to work.
2918 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2921 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2923 void GC_begin_syscall()
2925 if (!I_HOLD_LOCK()) {
2926 LOCK();
2927 syscall_acquired_lock = TRUE;
2931 void GC_end_syscall()
2933 if (syscall_acquired_lock) {
2934 syscall_acquired_lock = FALSE;
2935 UNLOCK();
2939 void GC_unprotect_range(addr, len)
2940 ptr_t addr;
2941 word len;
2943 struct hblk * start_block;
2944 struct hblk * end_block;
2945 register struct hblk *h;
2946 ptr_t obj_start;
2948 if (!GC_dirty_maintained) return;
2949 obj_start = GC_base(addr);
2950 if (obj_start == 0) return;
2951 if (GC_base(addr + len - 1) != obj_start) {
2952 ABORT("GC_unprotect_range(range bigger than object)");
2954 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2955 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2956 end_block += GC_page_size/HBLKSIZE - 1;
2957 for (h = start_block; h <= end_block; h++) {
2958 register word index = PHT_HASH(h);
2960 async_set_pht_entry_from_index(GC_dirty_pages, index);
2962 UNPROTECT(start_block,
2963 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2966 #if 0
2968 /* We no longer wrap read by default, since that was causing too many */
2969 /* problems. It is preferred that the client instead avoids writing */
2970 /* to the write-protected heap with a system call. */
2971 /* This still serves as sample code if you do want to wrap system calls.*/
2973 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2974 /* Replacement for UNIX system call. */
2975 /* Other calls that write to the heap should be handled similarly. */
2976 /* Note that this doesn't work well for blocking reads: It will hold */
2977 /* the allocation lock for the entire duration of the call. Multithreaded */
2978 /* clients should really ensure that it won't block, either by setting */
2979 /* the descriptor nonblocking, or by calling select or poll first, to */
2980 /* make sure that input is available. */
2981 /* Another, preferred alternative is to ensure that system calls never */
2982 /* write to the protected heap (see above). */
2983 # if defined(__STDC__) && !defined(SUNOS4)
2984 # include <unistd.h>
2985 # include <sys/uio.h>
2986 ssize_t read(int fd, void *buf, size_t nbyte)
2987 # else
2988 # ifndef LINT
2989 int read(fd, buf, nbyte)
2990 # else
2991 int GC_read(fd, buf, nbyte)
2992 # endif
2993 int fd;
2994 char *buf;
2995 int nbyte;
2996 # endif
2998 int result;
3000 GC_begin_syscall();
3001 GC_unprotect_range(buf, (word)nbyte);
3002 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
3003 /* Indirect system call may not always be easily available. */
3004 /* We could call _read, but that would interfere with the */
3005 /* libpthread interception of read. */
3006 /* On Linux, we have to be careful with the linuxthreads */
3007 /* read interception. */
3009 struct iovec iov;
3011 iov.iov_base = buf;
3012 iov.iov_len = nbyte;
3013 result = readv(fd, &iov, 1);
3015 # else
3016 # if defined(HURD)
3017 result = __read(fd, buf, nbyte);
3018 # else
3019 /* The two zero args at the end of this list are because one
3020 IA-64 syscall() implementation actually requires six args
3021 to be passed, even though they aren't always used. */
3022 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3023 # endif /* !HURD */
3024 # endif
3025 GC_end_syscall();
3026 return(result);
3028 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3030 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3031 /* We use the GNU ld call wrapping facility. */
3032 /* This requires that the linker be invoked with "--wrap read". */
3033 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3034 /* I'm not sure that this actually wraps whatever version of read */
3035 /* is called by stdio. That code also mentions __read. */
3036 # include <unistd.h>
3037 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3039 int result;
3041 GC_begin_syscall();
3042 GC_unprotect_range(buf, (word)nbyte);
3043 result = __real_read(fd, buf, nbyte);
3044 GC_end_syscall();
3045 return(result);
3048 /* We should probably also do this for __read, or whatever stdio */
3049 /* actually calls. */
3050 #endif
3052 #endif /* 0 */
3054 /*ARGSUSED*/
3055 GC_bool GC_page_was_ever_dirty(h)
3056 struct hblk *h;
3058 return(TRUE);
3061 /* Reset the n pages starting at h to "was never dirty" status. */
3062 /*ARGSUSED*/
3063 void GC_is_fresh(h, n)
3064 struct hblk *h;
3065 word n;
3069 # endif /* MPROTECT_VDB */
3071 # ifdef PROC_VDB
3074 * See DEFAULT_VDB for interface descriptions.
3078 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3079 * from which we can read page modified bits. This facility is far from
3080 * optimal (e.g. we would like to get the info for only some of the
3081 * address space), but it avoids intercepting system calls.
3084 #include <errno.h>
3085 #include <sys/types.h>
3086 #include <sys/signal.h>
3087 #include <sys/fault.h>
3088 #include <sys/syscall.h>
3089 #include <sys/procfs.h>
3090 #include <sys/stat.h>
3092 #define INITIAL_BUF_SZ 16384
3093 word GC_proc_buf_size = INITIAL_BUF_SZ;
3094 char *GC_proc_buf;
3096 #ifdef GC_SOLARIS_THREADS
3097 /* We don't have exact sp values for threads. So we count on */
3098 /* occasionally declaring stack pages to be fresh. Thus we */
3099 /* need a real implementation of GC_is_fresh. We can't clear */
3100 /* entries in GC_written_pages, since that would declare all */
3101 /* pages with the given hash address to be fresh. */
3102 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3103 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3104 /* Collisions are dropped. */
3106 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3107 # define ADD_FRESH_PAGE(h) \
3108 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3109 # define PAGE_IS_FRESH(h) \
3110 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3111 #endif
3113 /* Add all pages in pht2 to pht1 */
3114 void GC_or_pages(pht1, pht2)
3115 page_hash_table pht1, pht2;
3117 register int i;
3119 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3122 int GC_proc_fd;
3124 void GC_dirty_init()
3126 int fd;
3127 char buf[30];
3129 GC_dirty_maintained = TRUE;
3130 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3131 register int i;
3133 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3134 # ifdef PRINTSTATS
3135 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3136 (unsigned long)
3137 (GC_words_allocd + GC_words_allocd_before_gc));
3138 # endif
3140 sprintf(buf, "/proc/%d", getpid());
3141 fd = open(buf, O_RDONLY);
3142 if (fd < 0) {
3143 ABORT("/proc open failed");
3145 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3146 close(fd);
3147 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3148 if (GC_proc_fd < 0) {
3149 ABORT("/proc ioctl failed");
3151 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3152 # ifdef GC_SOLARIS_THREADS
3153 GC_fresh_pages = (struct hblk **)
3154 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3155 if (GC_fresh_pages == 0) {
3156 GC_err_printf0("No space for fresh pages\n");
3157 EXIT();
3159 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3160 # endif
3163 /* Ignore write hints. They don't help us here. */
3164 /*ARGSUSED*/
3165 void GC_remove_protection(h, nblocks, is_ptrfree)
3166 struct hblk *h;
3167 word nblocks;
3168 GC_bool is_ptrfree;
3172 #ifdef GC_SOLARIS_THREADS
3173 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3174 #else
3175 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3176 #endif
3178 void GC_read_dirty()
3180 unsigned long ps, np;
3181 int nmaps;
3182 ptr_t vaddr;
3183 struct prasmap * map;
3184 char * bufp;
3185 ptr_t current_addr, limit;
3186 int i;
3187 int dummy;
3189 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3191 bufp = GC_proc_buf;
3192 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3193 # ifdef PRINTSTATS
3194 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3195 GC_proc_buf_size);
3196 # endif
3198 /* Retry with larger buffer. */
3199 word new_size = 2 * GC_proc_buf_size;
3200 char * new_buf = GC_scratch_alloc(new_size);
3202 if (new_buf != 0) {
3203 GC_proc_buf = bufp = new_buf;
3204 GC_proc_buf_size = new_size;
3206 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3207 WARN("Insufficient space for /proc read\n", 0);
3208 /* Punt: */
3209 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3210 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3211 # ifdef GC_SOLARIS_THREADS
3212 BZERO(GC_fresh_pages,
3213 MAX_FRESH_PAGES * sizeof (struct hblk *));
3214 # endif
3215 return;
3219 /* Copy dirty bits into GC_grungy_pages */
3220 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3221 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3222 nmaps, PG_REFERENCED, PG_MODIFIED); */
3223 bufp = bufp + sizeof(struct prpageheader);
3224 for (i = 0; i < nmaps; i++) {
3225 map = (struct prasmap *)bufp;
3226 vaddr = (ptr_t)(map -> pr_vaddr);
3227 ps = map -> pr_pagesize;
3228 np = map -> pr_npage;
3229 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3230 limit = vaddr + ps * np;
3231 bufp += sizeof (struct prasmap);
3232 for (current_addr = vaddr;
3233 current_addr < limit; current_addr += ps){
3234 if ((*bufp++) & PG_MODIFIED) {
3235 register struct hblk * h = (struct hblk *) current_addr;
3237 while ((ptr_t)h < current_addr + ps) {
3238 register word index = PHT_HASH(h);
3240 set_pht_entry_from_index(GC_grungy_pages, index);
3241 # ifdef GC_SOLARIS_THREADS
3243 register int slot = FRESH_PAGE_SLOT(h);
3245 if (GC_fresh_pages[slot] == h) {
3246 GC_fresh_pages[slot] = 0;
3249 # endif
3250 h++;
3254 bufp += sizeof(long) - 1;
3255 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3257 /* Update GC_written_pages. */
3258 GC_or_pages(GC_written_pages, GC_grungy_pages);
3259 # ifdef GC_SOLARIS_THREADS
3260 /* Make sure that old stacks are considered completely clean */
3261 /* unless written again. */
3262 GC_old_stacks_are_fresh();
3263 # endif
3266 #undef READ
3268 GC_bool GC_page_was_dirty(h)
3269 struct hblk *h;
3271 register word index = PHT_HASH(h);
3272 register GC_bool result;
3274 result = get_pht_entry_from_index(GC_grungy_pages, index);
3275 # ifdef GC_SOLARIS_THREADS
3276 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3277 /* This happens only if page was declared fresh since */
3278 /* the read_dirty call, e.g. because it's in an unused */
3279 /* thread stack. It's OK to treat it as clean, in */
3280 /* that case. And it's consistent with */
3281 /* GC_page_was_ever_dirty. */
3282 # endif
3283 return(result);
3286 GC_bool GC_page_was_ever_dirty(h)
3287 struct hblk *h;
3289 register word index = PHT_HASH(h);
3290 register GC_bool result;
3292 result = get_pht_entry_from_index(GC_written_pages, index);
3293 # ifdef GC_SOLARIS_THREADS
3294 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3295 # endif
3296 return(result);
3299 /* Caller holds allocation lock. */
3300 void GC_is_fresh(h, n)
3301 struct hblk *h;
3302 word n;
3305 register word index;
3307 # ifdef GC_SOLARIS_THREADS
3308 register word i;
3310 if (GC_fresh_pages != 0) {
3311 for (i = 0; i < n; i++) {
3312 ADD_FRESH_PAGE(h + i);
3315 # endif
3318 # endif /* PROC_VDB */
3321 # ifdef PCR_VDB
3323 # include "vd/PCR_VD.h"
3325 # define NPAGES (32*1024) /* 128 MB */
3327 PCR_VD_DB GC_grungy_bits[NPAGES];
3329 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3330 /* HBLKSIZE aligned. */
3332 void GC_dirty_init()
3334 GC_dirty_maintained = TRUE;
3335 /* For the time being, we assume the heap generally grows up */
3336 GC_vd_base = GC_heap_sects[0].hs_start;
3337 if (GC_vd_base == 0) {
3338 ABORT("Bad initial heap segment");
3340 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3341 != PCR_ERes_okay) {
3342 ABORT("dirty bit initialization failed");
3346 void GC_read_dirty()
3348 /* lazily enable dirty bits on newly added heap sects */
3350 static int onhs = 0;
3351 int nhs = GC_n_heap_sects;
3352 for( ; onhs < nhs; onhs++ ) {
3353 PCR_VD_WriteProtectEnable(
3354 GC_heap_sects[onhs].hs_start,
3355 GC_heap_sects[onhs].hs_bytes );
3360 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3361 != PCR_ERes_okay) {
3362 ABORT("dirty bit read failed");
3366 GC_bool GC_page_was_dirty(h)
3367 struct hblk *h;
3369 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3370 return(TRUE);
3372 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3375 /*ARGSUSED*/
3376 void GC_remove_protection(h, nblocks, is_ptrfree)
3377 struct hblk *h;
3378 word nblocks;
3379 GC_bool is_ptrfree;
3381 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3382 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3385 # endif /* PCR_VDB */
3387 #if defined(MPROTECT_VDB) && defined(DARWIN)
3388 /* The following sources were used as a *reference* for this exception handling
3389 code:
3390 1. Apple's mach/xnu documentation
3391 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3392 omnigroup's macosx-dev list.
3393 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3394 3. macosx-nat.c from Apple's GDB source code.
3397 /* The bug that caused all this trouble should now be fixed. This should
3398 eventually be removed if all goes well. */
3399 /* define BROKEN_EXCEPTION_HANDLING */
3401 #include <mach/mach.h>
3402 #include <mach/mach_error.h>
3403 #include <mach/thread_status.h>
3404 #include <mach/exception.h>
3405 #include <mach/task.h>
3406 #include <pthread.h>
3408 /* These are not defined in any header, although they are documented */
3409 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3410 extern kern_return_t exception_raise(
3411 mach_port_t,mach_port_t,mach_port_t,
3412 exception_type_t,exception_data_t,mach_msg_type_number_t);
3413 extern kern_return_t exception_raise_state(
3414 mach_port_t,mach_port_t,mach_port_t,
3415 exception_type_t,exception_data_t,mach_msg_type_number_t,
3416 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3417 thread_state_t,mach_msg_type_number_t*);
3418 extern kern_return_t exception_raise_state_identity(
3419 mach_port_t,mach_port_t,mach_port_t,
3420 exception_type_t,exception_data_t,mach_msg_type_number_t,
3421 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3422 thread_state_t,mach_msg_type_number_t*);
3425 #define MAX_EXCEPTION_PORTS 16
3427 static struct {
3428 mach_msg_type_number_t count;
3429 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3430 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3431 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3432 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3433 } GC_old_exc_ports;
3435 static struct {
3436 mach_port_t exception;
3437 #if defined(THREADS)
3438 mach_port_t reply;
3439 #endif
3440 } GC_ports;
3442 typedef struct {
3443 mach_msg_header_t head;
3444 } GC_msg_t;
3446 typedef enum {
3447 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3448 } GC_mprotect_state_t;
3450 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3451 but it isn't documented. Use the source and see if they
3452 should be ok. */
3453 #define ID_STOP 1
3454 #define ID_RESUME 2
3456 /* These values are only used on the reply port */
3457 #define ID_ACK 3
3459 #if defined(THREADS)
3461 GC_mprotect_state_t GC_mprotect_state;
3463 /* The following should ONLY be called when the world is stopped */
3464 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3465 struct {
3466 GC_msg_t msg;
3467 mach_msg_trailer_t trailer;
3468 } buf;
3469 mach_msg_return_t r;
3470 /* remote, local */
3471 buf.msg.head.msgh_bits =
3472 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3473 buf.msg.head.msgh_size = sizeof(buf.msg);
3474 buf.msg.head.msgh_remote_port = GC_ports.exception;
3475 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3476 buf.msg.head.msgh_id = id;
3478 r = mach_msg(
3479 &buf.msg.head,
3480 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3481 sizeof(buf.msg),
3482 sizeof(buf),
3483 GC_ports.reply,
3484 MACH_MSG_TIMEOUT_NONE,
3485 MACH_PORT_NULL);
3486 if(r != MACH_MSG_SUCCESS)
3487 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3488 if(buf.msg.head.msgh_id != ID_ACK)
3489 ABORT("invalid ack in GC_mprotect_thread_notify");
3492 /* Should only be called by the mprotect thread */
3493 static void GC_mprotect_thread_reply() {
3494 GC_msg_t msg;
3495 mach_msg_return_t r;
3496 /* remote, local */
3497 msg.head.msgh_bits =
3498 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3499 msg.head.msgh_size = sizeof(msg);
3500 msg.head.msgh_remote_port = GC_ports.reply;
3501 msg.head.msgh_local_port = MACH_PORT_NULL;
3502 msg.head.msgh_id = ID_ACK;
3504 r = mach_msg(
3505 &msg.head,
3506 MACH_SEND_MSG,
3507 sizeof(msg),
3509 MACH_PORT_NULL,
3510 MACH_MSG_TIMEOUT_NONE,
3511 MACH_PORT_NULL);
3512 if(r != MACH_MSG_SUCCESS)
3513 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3516 void GC_mprotect_stop() {
3517 GC_mprotect_thread_notify(ID_STOP);
3519 void GC_mprotect_resume() {
3520 GC_mprotect_thread_notify(ID_RESUME);
3523 #else /* !THREADS */
3524 /* The compiler should optimize away any GC_mprotect_state computations */
3525 #define GC_mprotect_state GC_MP_NORMAL
3526 #endif
3528 static void *GC_mprotect_thread(void *arg) {
3529 mach_msg_return_t r;
3530 /* These two structures contain some private kernel data. We don't need to
3531 access any of it so we don't bother defining a proper struct. The
3532 correct definitions are in the xnu source code. */
3533 struct {
3534 mach_msg_header_t head;
3535 char data[256];
3536 } reply;
3537 struct {
3538 mach_msg_header_t head;
3539 mach_msg_body_t msgh_body;
3540 char data[1024];
3541 } msg;
3543 mach_msg_id_t id;
3545 GC_darwin_register_mach_handler_thread(mach_thread_self());
3547 for(;;) {
3548 r = mach_msg(
3549 &msg.head,
3550 MACH_RCV_MSG|MACH_RCV_LARGE|
3551 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3553 sizeof(msg),
3554 GC_ports.exception,
3555 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3556 MACH_PORT_NULL);
3558 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3560 #if defined(THREADS)
3561 if(GC_mprotect_state == GC_MP_DISCARDING) {
3562 if(r == MACH_RCV_TIMED_OUT) {
3563 GC_mprotect_state = GC_MP_STOPPED;
3564 GC_mprotect_thread_reply();
3565 continue;
3567 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3568 ABORT("out of order mprotect thread request");
3570 #endif
3572 if(r != MACH_MSG_SUCCESS) {
3573 GC_err_printf2("mach_msg failed with %d %s\n",
3574 (int)r,mach_error_string(r));
3575 ABORT("mach_msg failed");
3578 switch(id) {
3579 #if defined(THREADS)
3580 case ID_STOP:
3581 if(GC_mprotect_state != GC_MP_NORMAL)
3582 ABORT("Called mprotect_stop when state wasn't normal");
3583 GC_mprotect_state = GC_MP_DISCARDING;
3584 break;
3585 case ID_RESUME:
3586 if(GC_mprotect_state != GC_MP_STOPPED)
3587 ABORT("Called mprotect_resume when state wasn't stopped");
3588 GC_mprotect_state = GC_MP_NORMAL;
3589 GC_mprotect_thread_reply();
3590 break;
3591 #endif /* THREADS */
3592 default:
3593 /* Handle the message (calls catch_exception_raise) */
3594 if(!exc_server(&msg.head,&reply.head))
3595 ABORT("exc_server failed");
3596 /* Send the reply */
3597 r = mach_msg(
3598 &reply.head,
3599 MACH_SEND_MSG,
3600 reply.head.msgh_size,
3602 MACH_PORT_NULL,
3603 MACH_MSG_TIMEOUT_NONE,
3604 MACH_PORT_NULL);
3605 if(r != MACH_MSG_SUCCESS) {
3606 /* This will fail if the thread dies, but the thread shouldn't
3607 die... */
3608 #ifdef BROKEN_EXCEPTION_HANDLING
3609 GC_err_printf2(
3610 "mach_msg failed with %d %s while sending exc reply\n",
3611 (int)r,mach_error_string(r));
3612 #else
3613 ABORT("mach_msg failed while sending exception reply");
3614 #endif
3616 } /* switch */
3617 } /* for(;;) */
3618 /* NOT REACHED */
3619 return NULL;
3622 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3623 be going throught the mach exception handler. However, it seems a SIGBUS is
3624 occasionally sent for some unknown reason. Even more odd, it seems to be
3625 meaningless and safe to ignore. */
3626 #ifdef BROKEN_EXCEPTION_HANDLING
3628 typedef void (* SIG_PF)();
3629 static SIG_PF GC_old_bus_handler;
3631 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3632 Even if this doesn't get updated property, it isn't really a problem */
3633 static int GC_sigbus_count;
3635 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3636 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3638 /* Ugh... some seem safe to ignore, but too many in a row probably means
3639 trouble. GC_sigbus_count is reset for each mach exception that is
3640 handled */
3641 if(GC_sigbus_count >= 8) {
3642 ABORT("Got more than 8 SIGBUSs in a row!");
3643 } else {
3644 GC_sigbus_count++;
3645 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3648 #endif /* BROKEN_EXCEPTION_HANDLING */
3650 void GC_dirty_init() {
3651 kern_return_t r;
3652 mach_port_t me;
3653 pthread_t thread;
3654 pthread_attr_t attr;
3655 exception_mask_t mask;
3657 # ifdef PRINTSTATS
3658 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3659 "implementation\n");
3660 # endif
3661 # ifdef BROKEN_EXCEPTION_HANDLING
3662 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3663 "exception handling bugs.\n");
3664 # endif
3665 GC_dirty_maintained = TRUE;
3666 if (GC_page_size % HBLKSIZE != 0) {
3667 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3668 ABORT("Page size not multiple of HBLKSIZE");
3671 GC_task_self = me = mach_task_self();
3673 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3674 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3676 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3677 MACH_MSG_TYPE_MAKE_SEND);
3678 if(r != KERN_SUCCESS)
3679 ABORT("mach_port_insert_right failed (exception port)");
3681 #if defined(THREADS)
3682 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3683 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3684 #endif
3686 /* The exceptions we want to catch */
3687 mask = EXC_MASK_BAD_ACCESS;
3689 r = task_get_exception_ports(
3691 mask,
3692 GC_old_exc_ports.masks,
3693 &GC_old_exc_ports.count,
3694 GC_old_exc_ports.ports,
3695 GC_old_exc_ports.behaviors,
3696 GC_old_exc_ports.flavors
3698 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3700 r = task_set_exception_ports(
3702 mask,
3703 GC_ports.exception,
3704 EXCEPTION_DEFAULT,
3705 GC_MACH_THREAD_STATE_FLAVOR
3707 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3709 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3710 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3711 ABORT("pthread_attr_setdetachedstate failed");
3713 # undef pthread_create
3714 /* This will call the real pthread function, not our wrapper */
3715 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3716 ABORT("pthread_create failed");
3717 pthread_attr_destroy(&attr);
3719 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3720 #ifdef BROKEN_EXCEPTION_HANDLING
3722 struct sigaction sa, oldsa;
3723 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3724 sigemptyset(&sa.sa_mask);
3725 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3726 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3727 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3728 if (GC_old_bus_handler != SIG_DFL) {
3729 # ifdef PRINTSTATS
3730 GC_err_printf0("Replaced other SIGBUS handler\n");
3731 # endif
3734 #endif /* BROKEN_EXCEPTION_HANDLING */
3737 /* The source code for Apple's GDB was used as a reference for the exception
3738 forwarding code. This code is similar to be GDB code only because there is
3739 only one way to do it. */
3740 static kern_return_t GC_forward_exception(
3741 mach_port_t thread,
3742 mach_port_t task,
3743 exception_type_t exception,
3744 exception_data_t data,
3745 mach_msg_type_number_t data_count
3747 int i;
3748 kern_return_t r;
3749 mach_port_t port;
3750 exception_behavior_t behavior;
3751 thread_state_flavor_t flavor;
3753 thread_state_t thread_state;
3754 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3756 for(i=0;i<GC_old_exc_ports.count;i++)
3757 if(GC_old_exc_ports.masks[i] & (1 << exception))
3758 break;
3759 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3761 port = GC_old_exc_ports.ports[i];
3762 behavior = GC_old_exc_ports.behaviors[i];
3763 flavor = GC_old_exc_ports.flavors[i];
3765 if(behavior != EXCEPTION_DEFAULT) {
3766 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3767 if(r != KERN_SUCCESS)
3768 ABORT("thread_get_state failed in forward_exception");
3771 switch(behavior) {
3772 case EXCEPTION_DEFAULT:
3773 r = exception_raise(port,thread,task,exception,data,data_count);
3774 break;
3775 case EXCEPTION_STATE:
3776 r = exception_raise_state(port,thread,task,exception,data,
3777 data_count,&flavor,thread_state,thread_state_count,
3778 thread_state,&thread_state_count);
3779 break;
3780 case EXCEPTION_STATE_IDENTITY:
3781 r = exception_raise_state_identity(port,thread,task,exception,data,
3782 data_count,&flavor,thread_state,thread_state_count,
3783 thread_state,&thread_state_count);
3784 break;
3785 default:
3786 r = KERN_FAILURE; /* make gcc happy */
3787 ABORT("forward_exception: unknown behavior");
3788 break;
3791 if(behavior != EXCEPTION_DEFAULT) {
3792 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3793 if(r != KERN_SUCCESS)
3794 ABORT("thread_set_state failed in forward_exception");
3797 return r;
3800 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3802 /* This violates the namespace rules but there isn't anything that can be done
3803 about it. The exception handling stuff is hard coded to call this */
3804 kern_return_t
3805 catch_exception_raise(
3806 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3807 exception_type_t exception,exception_data_t code,
3808 mach_msg_type_number_t code_count
3810 kern_return_t r;
3811 char *addr;
3812 struct hblk *h;
3813 int i;
3814 # if defined(POWERPC)
3815 # if CPP_WORDSZ == 32
3816 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3817 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3818 ppc_exception_state_t exc_state;
3819 # else
3820 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3821 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3822 ppc_exception_state64_t exc_state;
3823 # endif
3824 # elif defined(I386)
3825 thread_state_flavor_t flavor = i386_EXCEPTION_STATE;
3826 mach_msg_type_number_t exc_state_count = i386_EXCEPTION_STATE_COUNT;
3827 i386_exception_state_t exc_state;
3828 # else
3829 # error FIXME for non-ppc darwin
3830 # endif
3833 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3834 #ifdef DEBUG_EXCEPTION_HANDLING
3835 /* We aren't interested, pass it on to the old handler */
3836 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3837 exception,
3838 code_count > 0 ? code[0] : -1,
3839 code_count > 1 ? code[1] : -1);
3840 #endif
3841 return FWD();
3844 r = thread_get_state(thread,flavor,
3845 (natural_t*)&exc_state,&exc_state_count);
3846 if(r != KERN_SUCCESS) {
3847 /* The thread is supposed to be suspended while the exception handler
3848 is called. This shouldn't fail. */
3849 #ifdef BROKEN_EXCEPTION_HANDLING
3850 GC_err_printf0("thread_get_state failed in "
3851 "catch_exception_raise\n");
3852 return KERN_SUCCESS;
3853 #else
3854 ABORT("thread_get_state failed in catch_exception_raise");
3855 #endif
3858 /* This is the address that caused the fault */
3859 #if defined(POWERPC)
3860 addr = (char*) exc_state.dar;
3861 #elif defined (I386)
3862 addr = (char*) exc_state.faultvaddr;
3863 #else
3864 # error FIXME for non POWERPC/I386
3865 #endif
3867 if((HDR(addr)) == 0) {
3868 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3869 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3870 a bunch in a row before doing anything about it. If a "real" fault
3871 ever occurres it'll just keep faulting over and over and we'll hit
3872 the limit pretty quickly. */
3873 #ifdef BROKEN_EXCEPTION_HANDLING
3874 static char *last_fault;
3875 static int last_fault_count;
3877 if(addr != last_fault) {
3878 last_fault = addr;
3879 last_fault_count = 0;
3881 if(++last_fault_count < 32) {
3882 if(last_fault_count == 1)
3883 GC_err_printf1(
3884 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3885 addr);
3886 return KERN_SUCCESS;
3889 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3890 /* Can't pass it along to the signal handler because that is
3891 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3892 signals don't always work too well from the exception handler. */
3893 GC_err_printf0("Aborting\n");
3894 exit(EXIT_FAILURE);
3895 #else /* BROKEN_EXCEPTION_HANDLING */
3896 /* Pass it along to the next exception handler
3897 (which should call SIGBUS/SIGSEGV) */
3898 return FWD();
3899 #endif /* !BROKEN_EXCEPTION_HANDLING */
3902 #ifdef BROKEN_EXCEPTION_HANDLING
3903 /* Reset the number of consecutive SIGBUSs */
3904 GC_sigbus_count = 0;
3905 #endif
3907 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3908 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3909 UNPROTECT(h, GC_page_size);
3910 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3911 register int index = PHT_HASH(h+i);
3912 async_set_pht_entry_from_index(GC_dirty_pages, index);
3914 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3915 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3916 when we're just going to PROTECT() it again later. The thread
3917 will just fault again once it resumes */
3918 } else {
3919 /* Shouldn't happen, i don't think */
3920 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3921 return FWD();
3923 return KERN_SUCCESS;
3925 #undef FWD
3927 /* These should never be called, but just in case... */
3928 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3929 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3930 int flavor, thread_state_t old_state, int old_stateCnt,
3931 thread_state_t new_state, int new_stateCnt)
3933 ABORT("catch_exception_raise_state");
3934 return(KERN_INVALID_ARGUMENT);
3936 kern_return_t catch_exception_raise_state_identity(
3937 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3938 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3939 int flavor, thread_state_t old_state, int old_stateCnt,
3940 thread_state_t new_state, int new_stateCnt)
3942 ABORT("catch_exception_raise_state_identity");
3943 return(KERN_INVALID_ARGUMENT);
3947 #endif /* DARWIN && MPROTECT_VDB */
3949 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3950 int GC_incremental_protection_needs()
3952 return GC_PROTECTS_NONE;
3954 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3957 * Call stack save code for debugging.
3958 * Should probably be in mach_dep.c, but that requires reorganization.
3961 /* I suspect the following works for most X86 *nix variants, so */
3962 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3963 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3964 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3965 # include <features.h>
3967 struct frame {
3968 struct frame *fr_savfp;
3969 long fr_savpc;
3970 long fr_arg[NARGS]; /* All the arguments go here. */
3972 #endif
3974 #if defined(SPARC)
3975 # if defined(LINUX)
3976 # include <features.h>
3978 struct frame {
3979 long fr_local[8];
3980 long fr_arg[6];
3981 struct frame *fr_savfp;
3982 long fr_savpc;
3983 # ifndef __arch64__
3984 char *fr_stret;
3985 # endif
3986 long fr_argd[6];
3987 long fr_argx[0];
3989 # else
3990 # if defined(SUNOS4)
3991 # include <machine/frame.h>
3992 # else
3993 # if defined (DRSNX)
3994 # include <sys/sparc/frame.h>
3995 # else
3996 # if defined(OPENBSD)
3997 # include <frame.h>
3998 # else
3999 # if defined(FREEBSD) || defined(NETBSD)
4000 # include <machine/frame.h>
4001 # else
4002 # include <sys/frame.h>
4003 # endif
4004 # endif
4005 # endif
4006 # endif
4007 # endif
4008 # if NARGS > 6
4009 --> We only know how to to get the first 6 arguments
4010 # endif
4011 #endif /* SPARC */
4013 #ifdef NEED_CALLINFO
4014 /* Fill in the pc and argument information for up to NFRAMES of my */
4015 /* callers. Ignore my frame and my callers frame. */
4017 #ifdef LINUX
4018 # include <unistd.h>
4019 #endif
4021 #endif /* NEED_CALLINFO */
4023 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4024 # include <execinfo.h>
4025 #endif
4027 #ifdef SAVE_CALL_CHAIN
4029 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4030 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4032 #ifdef REDIRECT_MALLOC
4033 /* Deal with possible malloc calls in backtrace by omitting */
4034 /* the infinitely recursing backtrace. */
4035 # ifdef THREADS
4036 __thread /* If your compiler doesn't understand this */
4037 /* you could use something like pthread_getspecific. */
4038 # endif
4039 GC_in_save_callers = FALSE;
4040 #endif
4042 void GC_save_callers (info)
4043 struct callinfo info[NFRAMES];
4045 void * tmp_info[NFRAMES + 1];
4046 int npcs, i;
4047 # define IGNORE_FRAMES 1
4049 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4050 /* points to our own frame. */
4051 # ifdef REDIRECT_MALLOC
4052 if (GC_in_save_callers) {
4053 info[0].ci_pc = (word)(&GC_save_callers);
4054 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4055 return;
4057 GC_in_save_callers = TRUE;
4058 # endif
4059 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4060 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4061 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4062 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4063 # ifdef REDIRECT_MALLOC
4064 GC_in_save_callers = FALSE;
4065 # endif
4068 #else /* No builtin backtrace; do it ourselves */
4070 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4071 # define FR_SAVFP fr_fp
4072 # define FR_SAVPC fr_pc
4073 #else
4074 # define FR_SAVFP fr_savfp
4075 # define FR_SAVPC fr_savpc
4076 #endif
4078 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4079 # define BIAS 2047
4080 #else
4081 # define BIAS 0
4082 #endif
4084 void GC_save_callers (info)
4085 struct callinfo info[NFRAMES];
4087 struct frame *frame;
4088 struct frame *fp;
4089 int nframes = 0;
4090 # ifdef I386
4091 /* We assume this is turned on only with gcc as the compiler. */
4092 asm("movl %%ebp,%0" : "=r"(frame));
4093 fp = frame;
4094 # else
4095 frame = (struct frame *) GC_save_regs_in_stack ();
4096 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4097 #endif
4099 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4100 && (nframes < NFRAMES));
4101 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4102 register int i;
4104 info[nframes].ci_pc = fp->FR_SAVPC;
4105 # if NARGS > 0
4106 for (i = 0; i < NARGS; i++) {
4107 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4109 # endif /* NARGS > 0 */
4111 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4114 #endif /* No builtin backtrace */
4116 #endif /* SAVE_CALL_CHAIN */
4118 #ifdef NEED_CALLINFO
4120 /* Print info to stderr. We do NOT hold the allocation lock */
4121 void GC_print_callers (info)
4122 struct callinfo info[NFRAMES];
4124 register int i;
4125 static int reentry_count = 0;
4126 GC_bool stop = FALSE;
4128 /* FIXME: This should probably use a different lock, so that we */
4129 /* become callable with or without the allocation lock. */
4130 LOCK();
4131 ++reentry_count;
4132 UNLOCK();
4134 # if NFRAMES == 1
4135 GC_err_printf0("\tCaller at allocation:\n");
4136 # else
4137 GC_err_printf0("\tCall chain at allocation:\n");
4138 # endif
4139 for (i = 0; i < NFRAMES && !stop ; i++) {
4140 if (info[i].ci_pc == 0) break;
4141 # if NARGS > 0
4143 int j;
4145 GC_err_printf0("\t\targs: ");
4146 for (j = 0; j < NARGS; j++) {
4147 if (j != 0) GC_err_printf0(", ");
4148 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4149 ~(info[i].ci_arg[j]));
4151 GC_err_printf0("\n");
4153 # endif
4154 if (reentry_count > 1) {
4155 /* We were called during an allocation during */
4156 /* a previous GC_print_callers call; punt. */
4157 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4158 continue;
4161 # ifdef LINUX
4162 FILE *pipe;
4163 # endif
4164 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4165 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4166 char **sym_name =
4167 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4168 char *name = sym_name[0];
4169 # else
4170 char buf[40];
4171 char *name = buf;
4172 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4173 # endif
4174 # if defined(LINUX) && !defined(SMALL_CONFIG)
4175 /* Try for a line number. */
4177 # define EXE_SZ 100
4178 static char exe_name[EXE_SZ];
4179 # define CMD_SZ 200
4180 char cmd_buf[CMD_SZ];
4181 # define RESULT_SZ 200
4182 static char result_buf[RESULT_SZ];
4183 size_t result_len;
4184 char *old_preload;
4185 # define PRELOAD_SZ 200
4186 char preload_buf[PRELOAD_SZ];
4187 static GC_bool found_exe_name = FALSE;
4188 static GC_bool will_fail = FALSE;
4189 int ret_code;
4190 /* Try to get it via a hairy and expensive scheme. */
4191 /* First we get the name of the executable: */
4192 if (will_fail) goto out;
4193 if (!found_exe_name) {
4194 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4195 if (ret_code < 0 || ret_code >= EXE_SZ
4196 || exe_name[0] != '/') {
4197 will_fail = TRUE; /* Dont try again. */
4198 goto out;
4200 exe_name[ret_code] = '\0';
4201 found_exe_name = TRUE;
4203 /* Then we use popen to start addr2line -e <exe> <addr> */
4204 /* There are faster ways to do this, but hopefully this */
4205 /* isn't time critical. */
4206 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4207 (unsigned long)info[i].ci_pc);
4208 old_preload = getenv ("LD_PRELOAD");
4209 if (0 != old_preload) {
4210 if (strlen (old_preload) >= PRELOAD_SZ) {
4211 will_fail = TRUE;
4212 goto out;
4214 strcpy (preload_buf, old_preload);
4215 unsetenv ("LD_PRELOAD");
4217 pipe = popen(cmd_buf, "r");
4218 if (0 != old_preload
4219 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4220 WARN("Failed to reset LD_PRELOAD\n", 0);
4222 if (pipe == NULL
4223 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4224 == 0) {
4225 if (pipe != NULL) pclose(pipe);
4226 will_fail = TRUE;
4227 goto out;
4229 if (result_buf[result_len - 1] == '\n') --result_len;
4230 result_buf[result_len] = 0;
4231 if (result_buf[0] == '?'
4232 || result_buf[result_len-2] == ':'
4233 && result_buf[result_len-1] == '0') {
4234 pclose(pipe);
4235 goto out;
4237 /* Get rid of embedded newline, if any. Test for "main" */
4239 char * nl = strchr(result_buf, '\n');
4240 if (nl != NULL && nl < result_buf + result_len) {
4241 *nl = ':';
4243 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4244 stop = TRUE;
4247 if (result_len < RESULT_SZ - 25) {
4248 /* Add in hex address */
4249 sprintf(result_buf + result_len, " [0x%lx]",
4250 (unsigned long)info[i].ci_pc);
4252 name = result_buf;
4253 pclose(pipe);
4254 out:;
4256 # endif /* LINUX */
4257 GC_err_printf1("\t\t%s\n", name);
4258 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4259 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4260 free(sym_name); /* May call GC_free; that's OK */
4261 # endif
4264 LOCK();
4265 --reentry_count;
4266 UNLOCK();
4269 #endif /* NEED_CALLINFO */
4273 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4275 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4276 addresses in FIND_LEAK output. */
4278 static word dump_maps(char *maps)
4280 GC_err_write(maps, strlen(maps));
4281 return 1;
4284 void GC_print_address_map()
4286 GC_err_printf0("---------- Begin address map ----------\n");
4287 GC_apply_to_maps(dump_maps);
4288 GC_err_printf0("---------- End address map ----------\n");
4291 #endif