Use the DISABLE_CAS_USE macro instead of MOBILE to disable CAS
[mono-project.git] / mono / sgen / sgen-split-nursery.c
blob3606607809e954c2888f1dceae8b70d0ea4cb135
1 /*
2 * sgen-splliy-nursery.c: 3-space based nursery collector.
4 * Author:
5 * Rodrigo Kumpera Kumpera <kumpera@gmail.com>
7 * Copyright 2001-2003 Ximian, Inc
8 * Copyright 2003-2010 Novell, Inc.
9 * Copyright 2011-2012 Xamarin Inc (http://www.xamarin.com)
10 * Copyright (C) 2012 Xamarin Inc
12 * Licensed under the MIT license. See LICENSE file in the project root for full license information.
15 #include "config.h"
16 #ifdef HAVE_SGEN_GC
18 #include <string.h>
19 #include <stdlib.h>
21 #include "mono/sgen/sgen-gc.h"
22 #include "mono/sgen/sgen-protocol.h"
23 #include "mono/sgen/sgen-layout-stats.h"
24 #include "mono/sgen/sgen-client.h"
25 #include "mono/utils/mono-memory-model.h"
28 The nursery is logically divided into 3 spaces: Allocator space and two Survivor spaces.
30 Objects are born (allocated by the mutator) in the Allocator Space.
32 The Survivor spaces are divided in a copying collector style From and To spaces.
33 The hole of each space switch on each collection.
35 On each collection we process objects from the nursery this way:
36 Objects from the Allocator Space are evacuated into the To Space.
37 Objects from the Survivor From Space are evacuated into the old generation.
40 The nursery is physically divided in two parts, set by the promotion barrier.
42 The Allocator Space takes the botton part of the nursery.
44 The Survivor spaces are intermingled in the top part of the nursery. It's done
45 this way since the required size for the To Space depends on the survivor rate
46 of objects from the Allocator Space.
48 During a collection when the object scan function see a nursery object it must
49 determine if the object needs to be evacuated or left in place. Originally, this
50 check was done by checking if a forwarding pointer is installed, but now an object
51 can be in the To Space, it won't have a forwarding pointer and it must be left in place.
53 In order to solve that we classify nursery memory been either in the From Space or in
54 the To Space. Since the Allocator Space has the same behavior as the Survivor From Space
55 they are unified for this purpoise - a bit confusing at first.
57 This from/to classification is done on a larger granule than object to make the check efficient
58 and, due to that, we must make sure that all fragemnts used to allocate memory from the To Space
59 are naturally aligned in both ends to that granule to avoid wronly classifying a From Space object.
61 TODO:
62 -The promotion barrier is statically defined to 50% of the nursery, it should be dinamically adjusted based
63 on survival rates;
64 -We apply the same promotion policy to all objects, finalizable ones should age longer in the nursery;
65 -We apply the same promotion policy to all stages of a collection, maybe we should promote more aggressively
66 objects from non-stack roots, specially those found in the remembered set;
67 -Fix our major collection trigger to happen before we do a minor GC and collect the nursery only once.
68 -Make the serial fragment allocator fast path inlineable
69 -Make aging threshold be based on survival rates and survivor occupancy;
70 -Change promotion barrier to be size and not address based;
71 -Pre allocate memory for young ages to make sure that on overflow only the older suffer;
72 -Get rid of par_alloc_buffer_refill_mutex so to the parallel collection of the nursery doesn't suck;
75 /*FIXME Move this to a separate header. */
76 #define _toi(ptr) ((size_t)ptr)
77 #define make_ptr_mask(bits) ((1 << bits) - 1)
78 #define align_down(ptr, bits) ((void*)(_toi(ptr) & ~make_ptr_mask (bits)))
79 #define align_up(ptr, bits) ((void*) ((_toi(ptr) + make_ptr_mask (bits)) & ~make_ptr_mask (bits)))
82 Even though the effective max age is 255, aging that much doesn't make sense.
83 It might even make sense to use nimbles for age recording.
85 #define MAX_AGE 15
88 * Each age has its allocation buffer. Whenever an object is to be
89 * aged we try to fit it into its new age's allocation buffer. If
90 * that is not possible we get new space from the fragment allocator
91 * and set the allocation buffer to that space (minus the space
92 * required for the object).
95 typedef struct {
96 char *next;
97 char *end;
98 } AgeAllocationBuffer;
100 /* Limits the ammount of memory the mutator can have. */
101 static char *promotion_barrier;
104 Promotion age and alloc ratio are the two nursery knobs to control
105 how much effort we want to spend on young objects.
107 Allocation ratio should be the inverse of the expected survivor rate.
108 The more objects surviver, the smaller the alloc ratio much be so we can
109 age all objects.
111 Promote age depends on how much effort we want to spend aging objects before
112 we promote them to the old generation. If addional ages don't somewhat improve
113 mortality, it's better avoid as they increase the cost of minor collections.
119 If we're evacuating an object with this age or more, promote it.
120 Age is the number of surviving collections of an object.
122 static int promote_age = 2;
125 Initial ratio of allocation and survivor spaces.
126 This should be read as the fraction of the whole nursery dedicated
127 for the allocator space.
129 static float alloc_ratio = 60.f/100.f;
132 static char *region_age;
133 static size_t region_age_size;
134 static AgeAllocationBuffer age_alloc_buffers [MAX_AGE];
136 /* The collector allocs from here. */
137 static SgenFragmentAllocator collector_allocator;
139 static inline int
140 get_object_age (GCObject *object)
142 size_t idx = ((char*)object - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
143 return region_age [idx];
146 static void
147 set_age_in_range (char *start, char *end, int age)
149 char *region_start;
150 size_t region_idx, length;
151 region_idx = (start - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
152 region_start = &region_age [region_idx];
153 length = (end - start) >> SGEN_TO_SPACE_GRANULE_BITS;
154 memset (region_start, age, length);
157 static inline void
158 mark_bit (char *space_bitmap, char *pos)
160 size_t idx = (pos - sgen_nursery_start) >> SGEN_TO_SPACE_GRANULE_BITS;
161 size_t byte = idx / 8;
162 int bit = idx & 0x7;
164 g_assert (byte < sgen_space_bitmap_size);
165 space_bitmap [byte] |= 1 << bit;
168 static void
169 mark_bits_in_range (char *space_bitmap, char *start, char *end)
171 start = (char *)align_down (start, SGEN_TO_SPACE_GRANULE_BITS);
172 end = (char *)align_up (end, SGEN_TO_SPACE_GRANULE_BITS);
174 for (;start < end; start += SGEN_TO_SPACE_GRANULE_IN_BYTES)
175 mark_bit (space_bitmap, start);
179 * This splits the fragments at the point of the promotion barrier.
180 * Two allocator are actually involved here: The mutator allocator and
181 * the collector allocator. This function is called with the
182 * collector, but it's a copy of the mutator allocator and contains
183 * all the fragments in the nursery. The fragments below the
184 * promotion barrier are left with the mutator allocator and the ones
185 * above are put into the collector allocator.
187 static void
188 fragment_list_split (SgenFragmentAllocator *allocator)
190 SgenFragment *prev = NULL, *list = allocator->region_head;
192 while (list) {
193 if (list->fragment_end > promotion_barrier) {
194 if (list->fragment_start < promotion_barrier) {
195 SgenFragment *res = sgen_fragment_allocator_alloc ();
197 res->fragment_start = promotion_barrier;
198 res->fragment_next = promotion_barrier;
199 res->fragment_end = list->fragment_end;
200 res->next = list->next;
201 res->next_in_order = list->next_in_order;
202 g_assert (res->fragment_end > res->fragment_start);
204 list->fragment_end = promotion_barrier;
205 list->next = list->next_in_order = NULL;
206 set_age_in_range (list->fragment_start, list->fragment_end, 0);
208 allocator->region_head = allocator->alloc_head = res;
209 return;
210 } else {
211 if (prev)
212 prev->next = prev->next_in_order = NULL;
213 allocator->region_head = allocator->alloc_head = list;
214 return;
217 set_age_in_range (list->fragment_start, list->fragment_end, 0);
218 prev = list;
219 list = list->next;
221 allocator->region_head = allocator->alloc_head = NULL;
224 /******************************************Minor Collector API ************************************************/
226 #define AGE_ALLOC_BUFFER_MIN_SIZE SGEN_TO_SPACE_GRANULE_IN_BYTES
227 #define AGE_ALLOC_BUFFER_DESIRED_SIZE (SGEN_TO_SPACE_GRANULE_IN_BYTES * 8)
229 static char*
230 alloc_for_promotion_slow_path (int age, size_t objsize)
232 char *p;
233 size_t allocated_size;
234 size_t aligned_objsize = (size_t)align_up (objsize, SGEN_TO_SPACE_GRANULE_BITS);
236 p = (char *)sgen_fragment_allocator_serial_range_alloc (
237 &collector_allocator,
238 MAX (aligned_objsize, AGE_ALLOC_BUFFER_DESIRED_SIZE),
239 MAX (aligned_objsize, AGE_ALLOC_BUFFER_MIN_SIZE),
240 &allocated_size);
241 if (p) {
242 set_age_in_range (p, p + allocated_size, age);
243 sgen_clear_range (age_alloc_buffers [age].next, age_alloc_buffers [age].end);
244 age_alloc_buffers [age].next = p + objsize;
245 age_alloc_buffers [age].end = p + allocated_size;
247 return p;
250 static inline GCObject*
251 alloc_for_promotion (GCVTable vtable, GCObject *obj, size_t objsize, gboolean has_references)
253 char *p = NULL;
254 int age;
256 age = get_object_age (obj);
257 if (age >= promote_age)
258 return major_collector.alloc_object (vtable, objsize, has_references);
260 /* Promote! */
261 ++age;
263 p = age_alloc_buffers [age].next;
264 if (G_LIKELY (p + objsize <= age_alloc_buffers [age].end)) {
265 age_alloc_buffers [age].next += objsize;
266 } else {
267 p = alloc_for_promotion_slow_path (age, objsize);
268 if (!p)
269 return major_collector.alloc_object (vtable, objsize, has_references);
272 /* FIXME: assumes object layout */
273 *(GCVTable*)p = vtable;
275 return (GCObject*)p;
278 static GCObject*
279 minor_alloc_for_promotion (GCVTable vtable, GCObject *obj, size_t objsize, gboolean has_references)
282 We only need to check for a non-nursery object if we're doing a major collection.
284 if (!sgen_ptr_in_nursery (obj))
285 return major_collector.alloc_object (vtable, objsize, has_references);
287 return alloc_for_promotion (vtable, obj, objsize, has_references);
290 static SgenFragment*
291 build_fragments_get_exclude_head (void)
293 int i;
294 for (i = 0; i < MAX_AGE; ++i) {
295 /*If we OOM'd on the last collection ->end might be null while ->next not.*/
296 if (age_alloc_buffers [i].end)
297 sgen_clear_range (age_alloc_buffers [i].next, age_alloc_buffers [i].end);
300 return collector_allocator.region_head;
303 static void
304 build_fragments_release_exclude_head (void)
306 sgen_fragment_allocator_release (&collector_allocator);
309 static void
310 build_fragments_finish (SgenFragmentAllocator *allocator)
312 /* We split the fragment list based on the promotion barrier. */
313 collector_allocator = *allocator;
314 fragment_list_split (&collector_allocator);
317 static void
318 prepare_to_space (char *to_space_bitmap, size_t space_bitmap_size)
320 SgenFragment **previous, *frag;
322 memset (to_space_bitmap, 0, space_bitmap_size);
323 memset (age_alloc_buffers, 0, sizeof (age_alloc_buffers));
325 previous = &collector_allocator.alloc_head;
327 for (frag = *previous; frag; frag = *previous) {
328 char *start = (char *)align_up (frag->fragment_next, SGEN_TO_SPACE_GRANULE_BITS);
329 char *end = (char *)align_down (frag->fragment_end, SGEN_TO_SPACE_GRANULE_BITS);
331 /* Fragment is too small to be usable. */
332 if ((end - start) < SGEN_MAX_NURSERY_WASTE) {
333 sgen_clear_range (frag->fragment_next, frag->fragment_end);
334 frag->fragment_next = frag->fragment_end = frag->fragment_start;
335 *previous = frag->next;
336 continue;
340 We need to insert 3 phony objects so the fragments build step can correctly
341 walk the nursery.
344 /* Clean the fragment range. */
345 sgen_clear_range (start, end);
346 /* We need a phony object in between the original fragment start and the effective one. */
347 if (start != frag->fragment_next)
348 sgen_clear_range (frag->fragment_next, start);
349 /* We need an phony object in between the new fragment end and the original fragment end. */
350 if (end != frag->fragment_end)
351 sgen_clear_range (end, frag->fragment_end);
353 frag->fragment_start = frag->fragment_next = start;
354 frag->fragment_end = end;
355 mark_bits_in_range (to_space_bitmap, start, end);
356 previous = &frag->next;
360 static void
361 clear_fragments (void)
363 sgen_clear_allocator_fragments (&collector_allocator);
366 static void
367 init_nursery (SgenFragmentAllocator *allocator, char *start, char *end)
369 int alloc_quote = (int)((end - start) * alloc_ratio);
370 promotion_barrier = (char *)align_down (start + alloc_quote, 3);
371 sgen_fragment_allocator_add (allocator, start, promotion_barrier);
372 sgen_fragment_allocator_add (&collector_allocator, promotion_barrier, end);
374 region_age_size = (end - start) >> SGEN_TO_SPACE_GRANULE_BITS;
375 region_age = (char *)g_malloc0 (region_age_size);
378 static gboolean
379 handle_gc_param (const char *opt)
381 if (g_str_has_prefix (opt, "alloc-ratio=")) {
382 const char *arg = strchr (opt, '=') + 1;
383 int percentage = atoi (arg);
384 if (percentage < 1 || percentage > 100) {
385 fprintf (stderr, "alloc-ratio must be an integer in the range 1-100.\n");
386 exit (1);
388 alloc_ratio = (float)percentage / 100.0f;
389 return TRUE;
392 if (g_str_has_prefix (opt, "promotion-age=")) {
393 const char *arg = strchr (opt, '=') + 1;
394 promote_age = atoi (arg);
395 if (promote_age < 1 || promote_age >= MAX_AGE) {
396 fprintf (stderr, "promotion-age must be an integer in the range 1-%d.\n", MAX_AGE - 1);
397 exit (1);
399 return TRUE;
401 return FALSE;
404 static void
405 print_gc_param_usage (void)
407 fprintf (stderr,
409 " alloc-ratio=P (where P is a percentage, an integer in 1-100)\n"
410 " promotion-age=P (where P is a number, an integer in 1-%d)\n",
411 MAX_AGE - 1
415 /******************************************Copy/Scan functins ************************************************/
417 #define SGEN_SPLIT_NURSERY
419 #define SERIAL_COPY_OBJECT split_nursery_serial_copy_object
420 #define SERIAL_COPY_OBJECT_FROM_OBJ split_nursery_serial_copy_object_from_obj
422 #include "sgen-minor-copy-object.h"
423 #include "sgen-minor-scan-object.h"
425 void
426 sgen_split_nursery_init (SgenMinorCollector *collector)
428 collector->is_split = TRUE;
430 collector->alloc_for_promotion = minor_alloc_for_promotion;
432 collector->prepare_to_space = prepare_to_space;
433 collector->clear_fragments = clear_fragments;
434 collector->build_fragments_get_exclude_head = build_fragments_get_exclude_head;
435 collector->build_fragments_release_exclude_head = build_fragments_release_exclude_head;
436 collector->build_fragments_finish = build_fragments_finish;
437 collector->init_nursery = init_nursery;
438 collector->handle_gc_param = handle_gc_param;
439 collector->print_gc_param_usage = print_gc_param_usage;
441 FILL_MINOR_COLLECTOR_COPY_OBJECT (collector);
442 FILL_MINOR_COLLECTOR_SCAN_OBJECT (collector);
446 #endif