Merge pull request #2798 from BrzVlad/fix-sgen-timestamp
[mono-project.git] / mono / sgen / sgen-gc.c
blobb91a9f4394884ed873958efc931b1d57aee7c1a8
1 /*
2 * sgen-gc.c: Simple generational GC.
4 * Author:
5 * Paolo Molaro (lupus@ximian.com)
6 * Rodrigo Kumpera (kumpera@gmail.com)
8 * Copyright 2005-2011 Novell, Inc (http://www.novell.com)
9 * Copyright 2011 Xamarin Inc (http://www.xamarin.com)
11 * Thread start/stop adapted from Boehm's GC:
12 * Copyright (c) 1994 by Xerox Corporation. All rights reserved.
13 * Copyright (c) 1996 by Silicon Graphics. All rights reserved.
14 * Copyright (c) 1998 by Fergus Henderson. All rights reserved.
15 * Copyright (c) 2000-2004 by Hewlett-Packard Company. All rights reserved.
16 * Copyright 2001-2003 Ximian, Inc
17 * Copyright 2003-2010 Novell, Inc.
18 * Copyright 2011 Xamarin, Inc.
19 * Copyright (C) 2012 Xamarin Inc
21 * This library is free software; you can redistribute it and/or
22 * modify it under the terms of the GNU Library General Public
23 * License 2.0 as published by the Free Software Foundation;
25 * This library is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28 * Library General Public License for more details.
30 * You should have received a copy of the GNU Library General Public
31 * License 2.0 along with this library; if not, write to the Free
32 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 * Important: allocation provides always zeroed memory, having to do
35 * a memset after allocation is deadly for performance.
36 * Memory usage at startup is currently as follows:
37 * 64 KB pinned space
38 * 64 KB internal space
39 * size of nursery
40 * We should provide a small memory config with half the sizes
42 * We currently try to make as few mono assumptions as possible:
43 * 1) 2-word header with no GC pointers in it (first vtable, second to store the
44 * forwarding ptr)
45 * 2) gc descriptor is the second word in the vtable (first word in the class)
46 * 3) 8 byte alignment is the minimum and enough (not true for special structures (SIMD), FIXME)
47 * 4) there is a function to get an object's size and the number of
48 * elements in an array.
49 * 5) we know the special way bounds are allocated for complex arrays
50 * 6) we know about proxies and how to treat them when domains are unloaded
52 * Always try to keep stack usage to a minimum: no recursive behaviour
53 * and no large stack allocs.
55 * General description.
56 * Objects are initially allocated in a nursery using a fast bump-pointer technique.
57 * When the nursery is full we start a nursery collection: this is performed with a
58 * copying GC.
59 * When the old generation is full we start a copying GC of the old generation as well:
60 * this will be changed to mark&sweep with copying when fragmentation becomes to severe
61 * in the future. Maybe we'll even do both during the same collection like IMMIX.
63 * The things that complicate this description are:
64 * *) pinned objects: we can't move them so we need to keep track of them
65 * *) no precise info of the thread stacks and registers: we need to be able to
66 * quickly find the objects that may be referenced conservatively and pin them
67 * (this makes the first issues more important)
68 * *) large objects are too expensive to be dealt with using copying GC: we handle them
69 * with mark/sweep during major collections
70 * *) some objects need to not move even if they are small (interned strings, Type handles):
71 * we use mark/sweep for them, too: they are not allocated in the nursery, but inside
72 * PinnedChunks regions
76 * TODO:
78 *) we could have a function pointer in MonoClass to implement
79 customized write barriers for value types
81 *) investigate the stuff needed to advance a thread to a GC-safe
82 point (single-stepping, read from unmapped memory etc) and implement it.
83 This would enable us to inline allocations and write barriers, for example,
84 or at least parts of them, like the write barrier checks.
85 We may need this also for handling precise info on stacks, even simple things
86 as having uninitialized data on the stack and having to wait for the prolog
87 to zero it. Not an issue for the last frame that we scan conservatively.
88 We could always not trust the value in the slots anyway.
90 *) modify the jit to save info about references in stack locations:
91 this can be done just for locals as a start, so that at least
92 part of the stack is handled precisely.
94 *) test/fix endianess issues
96 *) Implement a card table as the write barrier instead of remembered
97 sets? Card tables are not easy to implement with our current
98 memory layout. We have several different kinds of major heap
99 objects: Small objects in regular blocks, small objects in pinned
100 chunks and LOS objects. If we just have a pointer we have no way
101 to tell which kind of object it points into, therefore we cannot
102 know where its card table is. The least we have to do to make
103 this happen is to get rid of write barriers for indirect stores.
104 (See next item)
106 *) Get rid of write barriers for indirect stores. We can do this by
107 telling the GC to wbarrier-register an object once we do an ldloca
108 or ldelema on it, and to unregister it once it's not used anymore
109 (it can only travel downwards on the stack). The problem with
110 unregistering is that it needs to happen eventually no matter
111 what, even if exceptions are thrown, the thread aborts, etc.
112 Rodrigo suggested that we could do only the registering part and
113 let the collector find out (pessimistically) when it's safe to
114 unregister, namely when the stack pointer of the thread that
115 registered the object is higher than it was when the registering
116 happened. This might make for a good first implementation to get
117 some data on performance.
119 *) Some sort of blacklist support? Blacklists is a concept from the
120 Boehm GC: if during a conservative scan we find pointers to an
121 area which we might use as heap, we mark that area as unusable, so
122 pointer retention by random pinning pointers is reduced.
124 *) experiment with max small object size (very small right now - 2kb,
125 because it's tied to the max freelist size)
127 *) add an option to mmap the whole heap in one chunk: it makes for many
128 simplifications in the checks (put the nursery at the top and just use a single
129 check for inclusion/exclusion): the issue this has is that on 32 bit systems it's
130 not flexible (too much of the address space may be used by default or we can't
131 increase the heap as needed) and we'd need a race-free mechanism to return memory
132 back to the system (mprotect(PROT_NONE) will still keep the memory allocated if it
133 was written to, munmap is needed, but the following mmap may not find the same segment
134 free...)
136 *) memzero the major fragments after restarting the world and optionally a smaller
137 chunk at a time
139 *) investigate having fragment zeroing threads
141 *) separate locks for finalization and other minor stuff to reduce
142 lock contention
144 *) try a different copying order to improve memory locality
146 *) a thread abort after a store but before the write barrier will
147 prevent the write barrier from executing
149 *) specialized dynamically generated markers/copiers
151 *) Dynamically adjust TLAB size to the number of threads. If we have
152 too many threads that do allocation, we might need smaller TLABs,
153 and we might get better performance with larger TLABs if we only
154 have a handful of threads. We could sum up the space left in all
155 assigned TLABs and if that's more than some percentage of the
156 nursery size, reduce the TLAB size.
158 *) Explore placing unreachable objects on unused nursery memory.
159 Instead of memset'ng a region to zero, place an int[] covering it.
160 A good place to start is add_nursery_frag. The tricky thing here is
161 placing those objects atomically outside of a collection.
163 *) Allocation should use asymmetric Dekker synchronization:
164 http://blogs.oracle.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
165 This should help weak consistency archs.
167 #include "config.h"
168 #ifdef HAVE_SGEN_GC
170 #ifdef __MACH__
171 #undef _XOPEN_SOURCE
172 #define _XOPEN_SOURCE
173 #define _DARWIN_C_SOURCE
174 #endif
176 #ifdef HAVE_UNISTD_H
177 #include <unistd.h>
178 #endif
179 #ifdef HAVE_PTHREAD_H
180 #include <pthread.h>
181 #endif
182 #ifdef HAVE_PTHREAD_NP_H
183 #include <pthread_np.h>
184 #endif
185 #include <stdio.h>
186 #include <string.h>
187 #include <errno.h>
188 #include <assert.h>
189 #include <stdlib.h>
191 #include "mono/sgen/sgen-gc.h"
192 #include "mono/sgen/sgen-cardtable.h"
193 #include "mono/sgen/sgen-protocol.h"
194 #include "mono/sgen/sgen-memory-governor.h"
195 #include "mono/sgen/sgen-hash-table.h"
196 #include "mono/sgen/sgen-cardtable.h"
197 #include "mono/sgen/sgen-pinning.h"
198 #include "mono/sgen/sgen-workers.h"
199 #include "mono/sgen/sgen-client.h"
200 #include "mono/sgen/sgen-pointer-queue.h"
201 #include "mono/sgen/gc-internal-agnostic.h"
202 #include "mono/utils/mono-proclib.h"
203 #include "mono/utils/mono-memory-model.h"
204 #include "mono/utils/hazard-pointer.h"
206 #include <mono/utils/memcheck.h>
208 #undef pthread_create
209 #undef pthread_join
210 #undef pthread_detach
213 * ######################################################################
214 * ######## Types and constants used by the GC.
215 * ######################################################################
218 /* 0 means not initialized, 1 is initialized, -1 means in progress */
219 static int gc_initialized = 0;
220 /* If set, check if we need to do something every X allocations */
221 gboolean has_per_allocation_action;
222 /* If set, do a heap check every X allocation */
223 guint32 verify_before_allocs = 0;
224 /* If set, do a minor collection before every X allocation */
225 guint32 collect_before_allocs = 0;
226 /* If set, do a whole heap check before each collection */
227 static gboolean whole_heap_check_before_collection = FALSE;
228 /* If set, do a heap consistency check before each minor collection */
229 static gboolean consistency_check_at_minor_collection = FALSE;
230 /* If set, do a mod union consistency check before each finishing collection pause */
231 static gboolean mod_union_consistency_check = FALSE;
232 /* If set, check whether mark bits are consistent after major collections */
233 static gboolean check_mark_bits_after_major_collection = FALSE;
234 /* If set, check that all nursery objects are pinned/not pinned, depending on context */
235 static gboolean check_nursery_objects_pinned = FALSE;
236 /* If set, do a few checks when the concurrent collector is used */
237 static gboolean do_concurrent_checks = FALSE;
238 /* If set, do a plausibility check on the scan_starts before and after
239 each collection */
240 static gboolean do_scan_starts_check = FALSE;
242 static gboolean disable_minor_collections = FALSE;
243 static gboolean disable_major_collections = FALSE;
244 static gboolean do_verify_nursery = FALSE;
245 static gboolean do_dump_nursery_content = FALSE;
246 static gboolean enable_nursery_canaries = FALSE;
248 static gboolean precleaning_enabled = TRUE;
250 #ifdef HEAVY_STATISTICS
251 guint64 stat_objects_alloced_degraded = 0;
252 guint64 stat_bytes_alloced_degraded = 0;
254 guint64 stat_copy_object_called_nursery = 0;
255 guint64 stat_objects_copied_nursery = 0;
256 guint64 stat_copy_object_called_major = 0;
257 guint64 stat_objects_copied_major = 0;
259 guint64 stat_scan_object_called_nursery = 0;
260 guint64 stat_scan_object_called_major = 0;
262 guint64 stat_slots_allocated_in_vain;
264 guint64 stat_nursery_copy_object_failed_from_space = 0;
265 guint64 stat_nursery_copy_object_failed_forwarded = 0;
266 guint64 stat_nursery_copy_object_failed_pinned = 0;
267 guint64 stat_nursery_copy_object_failed_to_space = 0;
269 static guint64 stat_wbarrier_add_to_global_remset = 0;
270 static guint64 stat_wbarrier_arrayref_copy = 0;
271 static guint64 stat_wbarrier_generic_store = 0;
272 static guint64 stat_wbarrier_generic_store_atomic = 0;
273 static guint64 stat_wbarrier_set_root = 0;
274 #endif
276 static guint64 stat_pinned_objects = 0;
278 static guint64 time_minor_pre_collection_fragment_clear = 0;
279 static guint64 time_minor_pinning = 0;
280 static guint64 time_minor_scan_remsets = 0;
281 static guint64 time_minor_scan_pinned = 0;
282 static guint64 time_minor_scan_roots = 0;
283 static guint64 time_minor_finish_gray_stack = 0;
284 static guint64 time_minor_fragment_creation = 0;
286 static guint64 time_major_pre_collection_fragment_clear = 0;
287 static guint64 time_major_pinning = 0;
288 static guint64 time_major_scan_pinned = 0;
289 static guint64 time_major_scan_roots = 0;
290 static guint64 time_major_scan_mod_union = 0;
291 static guint64 time_major_finish_gray_stack = 0;
292 static guint64 time_major_free_bigobjs = 0;
293 static guint64 time_major_los_sweep = 0;
294 static guint64 time_major_sweep = 0;
295 static guint64 time_major_fragment_creation = 0;
297 static guint64 time_max = 0;
299 static SGEN_TV_DECLARE (time_major_conc_collection_start);
300 static SGEN_TV_DECLARE (time_major_conc_collection_end);
302 static SGEN_TV_DECLARE (last_minor_collection_start_tv);
303 static SGEN_TV_DECLARE (last_minor_collection_end_tv);
305 int gc_debug_level = 0;
306 FILE* gc_debug_file;
309 void
310 mono_gc_flush_info (void)
312 fflush (gc_debug_file);
316 #define TV_DECLARE SGEN_TV_DECLARE
317 #define TV_GETTIME SGEN_TV_GETTIME
318 #define TV_ELAPSED SGEN_TV_ELAPSED
320 static SGEN_TV_DECLARE (sgen_init_timestamp);
322 NurseryClearPolicy nursery_clear_policy = CLEAR_AT_TLAB_CREATION;
324 #define object_is_forwarded SGEN_OBJECT_IS_FORWARDED
325 #define object_is_pinned SGEN_OBJECT_IS_PINNED
326 #define pin_object SGEN_PIN_OBJECT
328 #define ptr_in_nursery sgen_ptr_in_nursery
330 #define LOAD_VTABLE SGEN_LOAD_VTABLE
332 gboolean
333 nursery_canaries_enabled (void)
335 return enable_nursery_canaries;
338 #define safe_object_get_size sgen_safe_object_get_size
341 * ######################################################################
342 * ######## Global data.
343 * ######################################################################
345 MonoCoopMutex gc_mutex;
346 gboolean sgen_try_free_some_memory;
348 #define SCAN_START_SIZE SGEN_SCAN_START_SIZE
350 size_t degraded_mode = 0;
352 static mword bytes_pinned_from_failed_allocation = 0;
354 GCMemSection *nursery_section = NULL;
355 static volatile mword lowest_heap_address = ~(mword)0;
356 static volatile mword highest_heap_address = 0;
358 MonoCoopMutex sgen_interruption_mutex;
360 int current_collection_generation = -1;
361 static volatile gboolean concurrent_collection_in_progress = FALSE;
363 /* objects that are ready to be finalized */
364 static SgenPointerQueue fin_ready_queue = SGEN_POINTER_QUEUE_INIT (INTERNAL_MEM_FINALIZE_READY);
365 static SgenPointerQueue critical_fin_queue = SGEN_POINTER_QUEUE_INIT (INTERNAL_MEM_FINALIZE_READY);
367 /* registered roots: the key to the hash is the root start address */
369 * Different kinds of roots are kept separate to speed up pin_from_roots () for example.
371 SgenHashTable roots_hash [ROOT_TYPE_NUM] = {
372 SGEN_HASH_TABLE_INIT (INTERNAL_MEM_ROOTS_TABLE, INTERNAL_MEM_ROOT_RECORD, sizeof (RootRecord), sgen_aligned_addr_hash, NULL),
373 SGEN_HASH_TABLE_INIT (INTERNAL_MEM_ROOTS_TABLE, INTERNAL_MEM_ROOT_RECORD, sizeof (RootRecord), sgen_aligned_addr_hash, NULL),
374 SGEN_HASH_TABLE_INIT (INTERNAL_MEM_ROOTS_TABLE, INTERNAL_MEM_ROOT_RECORD, sizeof (RootRecord), sgen_aligned_addr_hash, NULL)
376 static mword roots_size = 0; /* amount of memory in the root set */
378 /* The size of a TLAB */
379 /* The bigger the value, the less often we have to go to the slow path to allocate a new
380 * one, but the more space is wasted by threads not allocating much memory.
381 * FIXME: Tune this.
382 * FIXME: Make this self-tuning for each thread.
384 guint32 tlab_size = (1024 * 4);
386 #define MAX_SMALL_OBJ_SIZE SGEN_MAX_SMALL_OBJ_SIZE
388 #define ALLOC_ALIGN SGEN_ALLOC_ALIGN
390 #define ALIGN_UP SGEN_ALIGN_UP
392 #ifdef SGEN_DEBUG_INTERNAL_ALLOC
393 MonoNativeThreadId main_gc_thread = NULL;
394 #endif
396 /*Object was pinned during the current collection*/
397 static mword objects_pinned;
400 * ######################################################################
401 * ######## Macros and function declarations.
402 * ######################################################################
405 typedef SgenGrayQueue GrayQueue;
407 /* forward declarations */
408 static void scan_from_registered_roots (char *addr_start, char *addr_end, int root_type, ScanCopyContext ctx);
410 static void pin_from_roots (void *start_nursery, void *end_nursery, ScanCopyContext ctx);
411 static void finish_gray_stack (int generation, ScanCopyContext ctx);
414 SgenMajorCollector major_collector;
415 SgenMinorCollector sgen_minor_collector;
416 /* FIXME: get rid of this */
417 static GrayQueue gray_queue;
419 static SgenRememberedSet remset;
421 /* The gray queue to use from the main collection thread. */
422 #define WORKERS_DISTRIBUTE_GRAY_QUEUE (&gray_queue)
425 * The gray queue a worker job must use. If we're not parallel or
426 * concurrent, we use the main gray queue.
428 static SgenGrayQueue*
429 sgen_workers_get_job_gray_queue (WorkerData *worker_data)
431 return worker_data ? &worker_data->private_gray_queue : WORKERS_DISTRIBUTE_GRAY_QUEUE;
434 static void
435 gray_queue_redirect (SgenGrayQueue *queue)
437 gboolean wake = FALSE;
439 for (;;) {
440 GrayQueueSection *section = sgen_gray_object_dequeue_section (queue);
441 if (!section)
442 break;
443 sgen_section_gray_queue_enqueue ((SgenSectionGrayQueue *)queue->alloc_prepare_data, section);
444 wake = TRUE;
447 if (wake) {
448 g_assert (concurrent_collection_in_progress);
449 sgen_workers_ensure_awake ();
453 static void
454 gray_queue_enable_redirect (SgenGrayQueue *queue)
456 if (!concurrent_collection_in_progress)
457 return;
459 sgen_gray_queue_set_alloc_prepare (queue, gray_queue_redirect, sgen_workers_get_distribute_section_gray_queue ());
460 gray_queue_redirect (queue);
463 void
464 sgen_scan_area_with_callback (char *start, char *end, IterateObjectCallbackFunc callback, void *data, gboolean allow_flags, gboolean fail_on_canaries)
466 while (start < end) {
467 size_t size;
468 char *obj;
470 if (!*(void**)start) {
471 start += sizeof (void*); /* should be ALLOC_ALIGN, really */
472 continue;
475 if (allow_flags) {
476 if (!(obj = (char *)SGEN_OBJECT_IS_FORWARDED (start)))
477 obj = start;
478 } else {
479 obj = start;
482 if (!sgen_client_object_is_array_fill ((GCObject*)obj)) {
483 CHECK_CANARY_FOR_OBJECT ((GCObject*)obj, fail_on_canaries);
484 size = ALIGN_UP (safe_object_get_size ((GCObject*)obj));
485 callback ((GCObject*)obj, size, data);
486 CANARIFY_SIZE (size);
487 } else {
488 size = ALIGN_UP (safe_object_get_size ((GCObject*)obj));
491 start += size;
496 * sgen_add_to_global_remset:
498 * The global remset contains locations which point into newspace after
499 * a minor collection. This can happen if the objects they point to are pinned.
501 * LOCKING: If called from a parallel collector, the global remset
502 * lock must be held. For serial collectors that is not necessary.
504 void
505 sgen_add_to_global_remset (gpointer ptr, GCObject *obj)
507 SGEN_ASSERT (5, sgen_ptr_in_nursery (obj), "Target pointer of global remset must be in the nursery");
509 HEAVY_STAT (++stat_wbarrier_add_to_global_remset);
511 if (!major_collector.is_concurrent) {
512 SGEN_ASSERT (5, current_collection_generation != -1, "Global remsets can only be added during collections");
513 } else {
514 if (current_collection_generation == -1)
515 SGEN_ASSERT (5, sgen_concurrent_collection_in_progress (), "Global remsets outside of collection pauses can only be added by the concurrent collector");
518 if (!object_is_pinned (obj))
519 SGEN_ASSERT (5, sgen_minor_collector.is_split || sgen_concurrent_collection_in_progress (), "Non-pinned objects can only remain in nursery if it is a split nursery");
520 else if (sgen_cement_lookup_or_register (obj))
521 return;
523 remset.record_pointer (ptr);
525 sgen_pin_stats_register_global_remset (obj);
527 SGEN_LOG (8, "Adding global remset for %p", ptr);
528 binary_protocol_global_remset (ptr, obj, (gpointer)SGEN_LOAD_VTABLE (obj));
532 * sgen_drain_gray_stack:
534 * Scan objects in the gray stack until the stack is empty. This should be called
535 * frequently after each object is copied, to achieve better locality and cache
536 * usage.
539 gboolean
540 sgen_drain_gray_stack (ScanCopyContext ctx)
542 ScanObjectFunc scan_func = ctx.ops->scan_object;
543 GrayQueue *queue = ctx.queue;
545 if (ctx.ops->drain_gray_stack)
546 return ctx.ops->drain_gray_stack (queue);
548 for (;;) {
549 GCObject *obj;
550 SgenDescriptor desc;
551 GRAY_OBJECT_DEQUEUE (queue, &obj, &desc);
552 if (!obj)
553 return TRUE;
554 SGEN_LOG (9, "Precise gray object scan %p (%s)", obj, sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (obj)));
555 scan_func (obj, desc, queue);
557 return FALSE;
561 * Addresses in the pin queue are already sorted. This function finds
562 * the object header for each address and pins the object. The
563 * addresses must be inside the nursery section. The (start of the)
564 * address array is overwritten with the addresses of the actually
565 * pinned objects. Return the number of pinned objects.
567 static int
568 pin_objects_from_nursery_pin_queue (gboolean do_scan_objects, ScanCopyContext ctx)
570 GCMemSection *section = nursery_section;
571 void **start = sgen_pinning_get_entry (section->pin_queue_first_entry);
572 void **end = sgen_pinning_get_entry (section->pin_queue_last_entry);
573 void *start_nursery = section->data;
574 void *end_nursery = section->next_data;
575 void *last = NULL;
576 int count = 0;
577 void *search_start;
578 void *addr;
579 void *pinning_front = start_nursery;
580 size_t idx;
581 void **definitely_pinned = start;
582 ScanObjectFunc scan_func = ctx.ops->scan_object;
583 SgenGrayQueue *queue = ctx.queue;
585 sgen_nursery_allocator_prepare_for_pinning ();
587 while (start < end) {
588 GCObject *obj_to_pin = NULL;
589 size_t obj_to_pin_size = 0;
590 SgenDescriptor desc;
592 addr = *start;
594 SGEN_ASSERT (0, addr >= start_nursery && addr < end_nursery, "Potential pinning address out of range");
595 SGEN_ASSERT (0, addr >= last, "Pin queue not sorted");
597 if (addr == last) {
598 ++start;
599 continue;
602 SGEN_LOG (5, "Considering pinning addr %p", addr);
603 /* We've already processed everything up to pinning_front. */
604 if (addr < pinning_front) {
605 start++;
606 continue;
610 * Find the closest scan start <= addr. We might search backward in the
611 * scan_starts array because entries might be NULL. In the worst case we
612 * start at start_nursery.
614 idx = ((char*)addr - (char*)section->data) / SCAN_START_SIZE;
615 SGEN_ASSERT (0, idx < section->num_scan_start, "Scan start index out of range");
616 search_start = (void*)section->scan_starts [idx];
617 if (!search_start || search_start > addr) {
618 while (idx) {
619 --idx;
620 search_start = section->scan_starts [idx];
621 if (search_start && search_start <= addr)
622 break;
624 if (!search_start || search_start > addr)
625 search_start = start_nursery;
629 * If the pinning front is closer than the scan start we found, start
630 * searching at the front.
632 if (search_start < pinning_front)
633 search_start = pinning_front;
636 * Now addr should be in an object a short distance from search_start.
638 * search_start must point to zeroed mem or point to an object.
640 do {
641 size_t obj_size, canarified_obj_size;
643 /* Skip zeros. */
644 if (!*(void**)search_start) {
645 search_start = (void*)ALIGN_UP ((mword)search_start + sizeof (gpointer));
646 /* The loop condition makes sure we don't overrun addr. */
647 continue;
650 canarified_obj_size = obj_size = ALIGN_UP (safe_object_get_size ((GCObject*)search_start));
653 * Filler arrays are marked by an invalid sync word. We don't
654 * consider them for pinning. They are not delimited by canaries,
655 * either.
657 if (!sgen_client_object_is_array_fill ((GCObject*)search_start)) {
658 CHECK_CANARY_FOR_OBJECT (search_start, TRUE);
659 CANARIFY_SIZE (canarified_obj_size);
661 if (addr >= search_start && (char*)addr < (char*)search_start + obj_size) {
662 /* This is the object we're looking for. */
663 obj_to_pin = (GCObject*)search_start;
664 obj_to_pin_size = canarified_obj_size;
665 break;
669 /* Skip to the next object */
670 search_start = (void*)((char*)search_start + canarified_obj_size);
671 } while (search_start <= addr);
673 /* We've searched past the address we were looking for. */
674 if (!obj_to_pin) {
675 pinning_front = search_start;
676 goto next_pin_queue_entry;
680 * We've found an object to pin. It might still be a dummy array, but we
681 * can advance the pinning front in any case.
683 pinning_front = (char*)obj_to_pin + obj_to_pin_size;
686 * If this is a dummy array marking the beginning of a nursery
687 * fragment, we don't pin it.
689 if (sgen_client_object_is_array_fill (obj_to_pin))
690 goto next_pin_queue_entry;
693 * Finally - pin the object!
695 desc = sgen_obj_get_descriptor_safe (obj_to_pin);
696 if (do_scan_objects) {
697 scan_func (obj_to_pin, desc, queue);
698 } else {
699 SGEN_LOG (4, "Pinned object %p, vtable %p (%s), count %d\n",
700 obj_to_pin, *(void**)obj_to_pin, sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (obj_to_pin)), count);
701 binary_protocol_pin (obj_to_pin,
702 (gpointer)LOAD_VTABLE (obj_to_pin),
703 safe_object_get_size (obj_to_pin));
705 pin_object (obj_to_pin);
706 GRAY_OBJECT_ENQUEUE (queue, obj_to_pin, desc);
707 sgen_pin_stats_register_object (obj_to_pin, obj_to_pin_size);
708 definitely_pinned [count] = obj_to_pin;
709 count++;
712 next_pin_queue_entry:
713 last = addr;
714 ++start;
716 sgen_client_nursery_objects_pinned (definitely_pinned, count);
717 stat_pinned_objects += count;
718 return count;
721 static void
722 pin_objects_in_nursery (gboolean do_scan_objects, ScanCopyContext ctx)
724 size_t reduced_to;
726 if (nursery_section->pin_queue_first_entry == nursery_section->pin_queue_last_entry)
727 return;
729 reduced_to = pin_objects_from_nursery_pin_queue (do_scan_objects, ctx);
730 nursery_section->pin_queue_last_entry = nursery_section->pin_queue_first_entry + reduced_to;
734 * This function is only ever called (via `collector_pin_object()` in `sgen-copy-object.h`)
735 * when we can't promote an object because we're out of memory.
737 void
738 sgen_pin_object (GCObject *object, GrayQueue *queue)
741 * All pinned objects are assumed to have been staged, so we need to stage as well.
742 * Also, the count of staged objects shows that "late pinning" happened.
744 sgen_pin_stage_ptr (object);
746 SGEN_PIN_OBJECT (object);
747 binary_protocol_pin (object, (gpointer)LOAD_VTABLE (object), safe_object_get_size (object));
749 ++objects_pinned;
750 sgen_pin_stats_register_object (object, safe_object_get_size (object));
752 GRAY_OBJECT_ENQUEUE (queue, object, sgen_obj_get_descriptor_safe (object));
755 /* Sort the addresses in array in increasing order.
756 * Done using a by-the book heap sort. Which has decent and stable performance, is pretty cache efficient.
758 void
759 sgen_sort_addresses (void **array, size_t size)
761 size_t i;
762 void *tmp;
764 for (i = 1; i < size; ++i) {
765 size_t child = i;
766 while (child > 0) {
767 size_t parent = (child - 1) / 2;
769 if (array [parent] >= array [child])
770 break;
772 tmp = array [parent];
773 array [parent] = array [child];
774 array [child] = tmp;
776 child = parent;
780 for (i = size - 1; i > 0; --i) {
781 size_t end, root;
782 tmp = array [i];
783 array [i] = array [0];
784 array [0] = tmp;
786 end = i - 1;
787 root = 0;
789 while (root * 2 + 1 <= end) {
790 size_t child = root * 2 + 1;
792 if (child < end && array [child] < array [child + 1])
793 ++child;
794 if (array [root] >= array [child])
795 break;
797 tmp = array [root];
798 array [root] = array [child];
799 array [child] = tmp;
801 root = child;
807 * Scan the memory between start and end and queue values which could be pointers
808 * to the area between start_nursery and end_nursery for later consideration.
809 * Typically used for thread stacks.
811 void
812 sgen_conservatively_pin_objects_from (void **start, void **end, void *start_nursery, void *end_nursery, int pin_type)
814 int count = 0;
816 SGEN_ASSERT (0, ((mword)start & (SIZEOF_VOID_P - 1)) == 0, "Why are we scanning for references in unaligned memory ?");
818 #if defined(VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE) && !defined(_WIN64)
819 VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE (start, (char*)end - (char*)start);
820 #endif
822 while (start < end) {
824 * *start can point to the middle of an object
825 * note: should we handle pointing at the end of an object?
826 * pinning in C# code disallows pointing at the end of an object
827 * but there is some small chance that an optimizing C compiler
828 * may keep the only reference to an object by pointing
829 * at the end of it. We ignore this small chance for now.
830 * Pointers to the end of an object are indistinguishable
831 * from pointers to the start of the next object in memory
832 * so if we allow that we'd need to pin two objects...
833 * We queue the pointer in an array, the
834 * array will then be sorted and uniqued. This way
835 * we can coalesce several pinning pointers and it should
836 * be faster since we'd do a memory scan with increasing
837 * addresses. Note: we can align the address to the allocation
838 * alignment, so the unique process is more effective.
840 mword addr = (mword)*start;
841 addr &= ~(ALLOC_ALIGN - 1);
842 if (addr >= (mword)start_nursery && addr < (mword)end_nursery) {
843 SGEN_LOG (6, "Pinning address %p from %p", (void*)addr, start);
844 sgen_pin_stage_ptr ((void*)addr);
845 binary_protocol_pin_stage (start, (void*)addr);
846 sgen_pin_stats_register_address ((char*)addr, pin_type);
847 count++;
849 start++;
851 if (count)
852 SGEN_LOG (7, "found %d potential pinned heap pointers", count);
856 * The first thing we do in a collection is to identify pinned objects.
857 * This function considers all the areas of memory that need to be
858 * conservatively scanned.
860 static void
861 pin_from_roots (void *start_nursery, void *end_nursery, ScanCopyContext ctx)
863 void **start_root;
864 RootRecord *root;
865 SGEN_LOG (2, "Scanning pinned roots (%d bytes, %d/%d entries)", (int)roots_size, roots_hash [ROOT_TYPE_NORMAL].num_entries, roots_hash [ROOT_TYPE_PINNED].num_entries);
866 /* objects pinned from the API are inside these roots */
867 SGEN_HASH_TABLE_FOREACH (&roots_hash [ROOT_TYPE_PINNED], void **, start_root, RootRecord *, root) {
868 SGEN_LOG (6, "Pinned roots %p-%p", start_root, root->end_root);
869 sgen_conservatively_pin_objects_from (start_root, (void**)root->end_root, start_nursery, end_nursery, PIN_TYPE_OTHER);
870 } SGEN_HASH_TABLE_FOREACH_END;
871 /* now deal with the thread stacks
872 * in the future we should be able to conservatively scan only:
873 * *) the cpu registers
874 * *) the unmanaged stack frames
875 * *) the _last_ managed stack frame
876 * *) pointers slots in managed frames
878 sgen_client_scan_thread_data (start_nursery, end_nursery, FALSE, ctx);
881 static void
882 single_arg_user_copy_or_mark (GCObject **obj, void *gc_data)
884 ScanCopyContext *ctx = (ScanCopyContext *)gc_data;
885 ctx->ops->copy_or_mark_object (obj, ctx->queue);
889 * The memory area from start_root to end_root contains pointers to objects.
890 * Their position is precisely described by @desc (this means that the pointer
891 * can be either NULL or the pointer to the start of an object).
892 * This functions copies them to to_space updates them.
894 * This function is not thread-safe!
896 static void
897 precisely_scan_objects_from (void** start_root, void** end_root, char* n_start, char *n_end, SgenDescriptor desc, ScanCopyContext ctx)
899 CopyOrMarkObjectFunc copy_func = ctx.ops->copy_or_mark_object;
900 SgenGrayQueue *queue = ctx.queue;
902 switch (desc & ROOT_DESC_TYPE_MASK) {
903 case ROOT_DESC_BITMAP:
904 desc >>= ROOT_DESC_TYPE_SHIFT;
905 while (desc) {
906 if ((desc & 1) && *start_root) {
907 copy_func ((GCObject**)start_root, queue);
908 SGEN_LOG (9, "Overwrote root at %p with %p", start_root, *start_root);
910 desc >>= 1;
911 start_root++;
913 return;
914 case ROOT_DESC_COMPLEX: {
915 gsize *bitmap_data = (gsize *)sgen_get_complex_descriptor_bitmap (desc);
916 gsize bwords = (*bitmap_data) - 1;
917 void **start_run = start_root;
918 bitmap_data++;
919 while (bwords-- > 0) {
920 gsize bmap = *bitmap_data++;
921 void **objptr = start_run;
922 while (bmap) {
923 if ((bmap & 1) && *objptr) {
924 copy_func ((GCObject**)objptr, queue);
925 SGEN_LOG (9, "Overwrote root at %p with %p", objptr, *objptr);
927 bmap >>= 1;
928 ++objptr;
930 start_run += GC_BITS_PER_WORD;
932 break;
934 case ROOT_DESC_USER: {
935 SgenUserRootMarkFunc marker = sgen_get_user_descriptor_func (desc);
936 marker (start_root, single_arg_user_copy_or_mark, &ctx);
937 break;
939 case ROOT_DESC_RUN_LEN:
940 g_assert_not_reached ();
941 default:
942 g_assert_not_reached ();
946 static void
947 reset_heap_boundaries (void)
949 lowest_heap_address = ~(mword)0;
950 highest_heap_address = 0;
953 void
954 sgen_update_heap_boundaries (mword low, mword high)
956 mword old;
958 do {
959 old = lowest_heap_address;
960 if (low >= old)
961 break;
962 } while (SGEN_CAS_PTR ((gpointer*)&lowest_heap_address, (gpointer)low, (gpointer)old) != (gpointer)old);
964 do {
965 old = highest_heap_address;
966 if (high <= old)
967 break;
968 } while (SGEN_CAS_PTR ((gpointer*)&highest_heap_address, (gpointer)high, (gpointer)old) != (gpointer)old);
972 * Allocate and setup the data structures needed to be able to allocate objects
973 * in the nursery. The nursery is stored in nursery_section.
975 static void
976 alloc_nursery (void)
978 GCMemSection *section;
979 char *data;
980 size_t scan_starts;
981 size_t alloc_size;
983 if (nursery_section)
984 return;
985 SGEN_LOG (2, "Allocating nursery size: %zu", (size_t)sgen_nursery_size);
986 /* later we will alloc a larger area for the nursery but only activate
987 * what we need. The rest will be used as expansion if we have too many pinned
988 * objects in the existing nursery.
990 /* FIXME: handle OOM */
991 section = (GCMemSection *)sgen_alloc_internal (INTERNAL_MEM_SECTION);
993 alloc_size = sgen_nursery_size;
995 /* If there isn't enough space even for the nursery we should simply abort. */
996 g_assert (sgen_memgov_try_alloc_space (alloc_size, SPACE_NURSERY));
998 data = (char *)major_collector.alloc_heap (alloc_size, alloc_size, DEFAULT_NURSERY_BITS);
999 sgen_update_heap_boundaries ((mword)data, (mword)(data + sgen_nursery_size));
1000 SGEN_LOG (4, "Expanding nursery size (%p-%p): %lu, total: %lu", data, data + alloc_size, (unsigned long)sgen_nursery_size, (unsigned long)sgen_gc_get_total_heap_allocation ());
1001 section->data = section->next_data = data;
1002 section->size = alloc_size;
1003 section->end_data = data + sgen_nursery_size;
1004 scan_starts = (alloc_size + SCAN_START_SIZE - 1) / SCAN_START_SIZE;
1005 section->scan_starts = (char **)sgen_alloc_internal_dynamic (sizeof (char*) * scan_starts, INTERNAL_MEM_SCAN_STARTS, TRUE);
1006 section->num_scan_start = scan_starts;
1008 nursery_section = section;
1010 sgen_nursery_allocator_set_nursery_bounds (data, data + sgen_nursery_size);
1013 FILE *
1014 mono_gc_get_logfile (void)
1016 return gc_debug_file;
1019 static void
1020 scan_finalizer_entries (SgenPointerQueue *fin_queue, ScanCopyContext ctx)
1022 CopyOrMarkObjectFunc copy_func = ctx.ops->copy_or_mark_object;
1023 SgenGrayQueue *queue = ctx.queue;
1024 size_t i;
1026 for (i = 0; i < fin_queue->next_slot; ++i) {
1027 GCObject *obj = (GCObject *)fin_queue->data [i];
1028 if (!obj)
1029 continue;
1030 SGEN_LOG (5, "Scan of fin ready object: %p (%s)\n", obj, sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (obj)));
1031 copy_func ((GCObject**)&fin_queue->data [i], queue);
1035 static const char*
1036 generation_name (int generation)
1038 switch (generation) {
1039 case GENERATION_NURSERY: return "nursery";
1040 case GENERATION_OLD: return "old";
1041 default: g_assert_not_reached ();
1045 const char*
1046 sgen_generation_name (int generation)
1048 return generation_name (generation);
1051 static void
1052 finish_gray_stack (int generation, ScanCopyContext ctx)
1054 TV_DECLARE (atv);
1055 TV_DECLARE (btv);
1056 int done_with_ephemerons, ephemeron_rounds = 0;
1057 char *start_addr = generation == GENERATION_NURSERY ? sgen_get_nursery_start () : NULL;
1058 char *end_addr = generation == GENERATION_NURSERY ? sgen_get_nursery_end () : (char*)-1;
1059 SgenGrayQueue *queue = ctx.queue;
1061 binary_protocol_finish_gray_stack_start (sgen_timestamp (), generation);
1063 * We copied all the reachable objects. Now it's the time to copy
1064 * the objects that were not referenced by the roots, but by the copied objects.
1065 * we built a stack of objects pointed to by gray_start: they are
1066 * additional roots and we may add more items as we go.
1067 * We loop until gray_start == gray_objects which means no more objects have
1068 * been added. Note this is iterative: no recursion is involved.
1069 * We need to walk the LO list as well in search of marked big objects
1070 * (use a flag since this is needed only on major collections). We need to loop
1071 * here as well, so keep a counter of marked LO (increasing it in copy_object).
1072 * To achieve better cache locality and cache usage, we drain the gray stack
1073 * frequently, after each object is copied, and just finish the work here.
1075 sgen_drain_gray_stack (ctx);
1076 TV_GETTIME (atv);
1077 SGEN_LOG (2, "%s generation done", generation_name (generation));
1080 Reset bridge data, we might have lingering data from a previous collection if this is a major
1081 collection trigged by minor overflow.
1083 We must reset the gathered bridges since their original block might be evacuated due to major
1084 fragmentation in the meanwhile and the bridge code should not have to deal with that.
1086 if (sgen_client_bridge_need_processing ())
1087 sgen_client_bridge_reset_data ();
1090 * Walk the ephemeron tables marking all values with reachable keys. This must be completely done
1091 * before processing finalizable objects and non-tracking weak links to avoid finalizing/clearing
1092 * objects that are in fact reachable.
1094 done_with_ephemerons = 0;
1095 do {
1096 done_with_ephemerons = sgen_client_mark_ephemerons (ctx);
1097 sgen_drain_gray_stack (ctx);
1098 ++ephemeron_rounds;
1099 } while (!done_with_ephemerons);
1101 sgen_client_mark_togglerefs (start_addr, end_addr, ctx);
1103 if (sgen_client_bridge_need_processing ()) {
1104 /*Make sure the gray stack is empty before we process bridge objects so we get liveness right*/
1105 sgen_drain_gray_stack (ctx);
1106 sgen_collect_bridge_objects (generation, ctx);
1107 if (generation == GENERATION_OLD)
1108 sgen_collect_bridge_objects (GENERATION_NURSERY, ctx);
1111 Do the first bridge step here, as the collector liveness state will become useless after that.
1113 An important optimization is to only proccess the possibly dead part of the object graph and skip
1114 over all live objects as we transitively know everything they point must be alive too.
1116 The above invariant is completely wrong if we let the gray queue be drained and mark/copy everything.
1118 This has the unfortunate side effect of making overflow collections perform the first step twice, but
1119 given we now have heuristics that perform major GC in anticipation of minor overflows this should not
1120 be a big deal.
1122 sgen_client_bridge_processing_stw_step ();
1126 Make sure we drain the gray stack before processing disappearing links and finalizers.
1127 If we don't make sure it is empty we might wrongly see a live object as dead.
1129 sgen_drain_gray_stack (ctx);
1132 We must clear weak links that don't track resurrection before processing object ready for
1133 finalization so they can be cleared before that.
1135 sgen_null_link_in_range (generation, ctx, FALSE);
1136 if (generation == GENERATION_OLD)
1137 sgen_null_link_in_range (GENERATION_NURSERY, ctx, FALSE);
1140 /* walk the finalization queue and move also the objects that need to be
1141 * finalized: use the finalized objects as new roots so the objects they depend
1142 * on are also not reclaimed. As with the roots above, only objects in the nursery
1143 * are marked/copied.
1145 sgen_finalize_in_range (generation, ctx);
1146 if (generation == GENERATION_OLD)
1147 sgen_finalize_in_range (GENERATION_NURSERY, ctx);
1148 /* drain the new stack that might have been created */
1149 SGEN_LOG (6, "Precise scan of gray area post fin");
1150 sgen_drain_gray_stack (ctx);
1153 * This must be done again after processing finalizable objects since CWL slots are cleared only after the key is finalized.
1155 done_with_ephemerons = 0;
1156 do {
1157 done_with_ephemerons = sgen_client_mark_ephemerons (ctx);
1158 sgen_drain_gray_stack (ctx);
1159 ++ephemeron_rounds;
1160 } while (!done_with_ephemerons);
1162 sgen_client_clear_unreachable_ephemerons (ctx);
1165 * We clear togglerefs only after all possible chances of revival are done.
1166 * This is semantically more inline with what users expect and it allows for
1167 * user finalizers to correctly interact with TR objects.
1169 sgen_client_clear_togglerefs (start_addr, end_addr, ctx);
1171 TV_GETTIME (btv);
1172 SGEN_LOG (2, "Finalize queue handling scan for %s generation: %lld usecs %d ephemeron rounds", generation_name (generation), TV_ELAPSED (atv, btv), ephemeron_rounds);
1175 * handle disappearing links
1176 * Note we do this after checking the finalization queue because if an object
1177 * survives (at least long enough to be finalized) we don't clear the link.
1178 * This also deals with a possible issue with the monitor reclamation: with the Boehm
1179 * GC a finalized object my lose the monitor because it is cleared before the finalizer is
1180 * called.
1182 g_assert (sgen_gray_object_queue_is_empty (queue));
1183 for (;;) {
1184 sgen_null_link_in_range (generation, ctx, TRUE);
1185 if (generation == GENERATION_OLD)
1186 sgen_null_link_in_range (GENERATION_NURSERY, ctx, TRUE);
1187 if (sgen_gray_object_queue_is_empty (queue))
1188 break;
1189 sgen_drain_gray_stack (ctx);
1192 g_assert (sgen_gray_object_queue_is_empty (queue));
1194 sgen_gray_object_queue_trim_free_list (queue);
1195 binary_protocol_finish_gray_stack_end (sgen_timestamp (), generation);
1198 void
1199 sgen_check_section_scan_starts (GCMemSection *section)
1201 size_t i;
1202 for (i = 0; i < section->num_scan_start; ++i) {
1203 if (section->scan_starts [i]) {
1204 mword size = safe_object_get_size ((GCObject*) section->scan_starts [i]);
1205 SGEN_ASSERT (0, size >= SGEN_CLIENT_MINIMUM_OBJECT_SIZE && size <= MAX_SMALL_OBJ_SIZE, "Weird object size at scan starts.");
1210 static void
1211 check_scan_starts (void)
1213 if (!do_scan_starts_check)
1214 return;
1215 sgen_check_section_scan_starts (nursery_section);
1216 major_collector.check_scan_starts ();
1219 static void
1220 scan_from_registered_roots (char *addr_start, char *addr_end, int root_type, ScanCopyContext ctx)
1222 void **start_root;
1223 RootRecord *root;
1224 SGEN_HASH_TABLE_FOREACH (&roots_hash [root_type], void **, start_root, RootRecord *, root) {
1225 SGEN_LOG (6, "Precise root scan %p-%p (desc: %p)", start_root, root->end_root, (void*)root->root_desc);
1226 precisely_scan_objects_from (start_root, (void**)root->end_root, addr_start, addr_end, root->root_desc, ctx);
1227 } SGEN_HASH_TABLE_FOREACH_END;
1230 static void
1231 init_stats (void)
1233 static gboolean inited = FALSE;
1235 if (inited)
1236 return;
1238 mono_counters_register ("Collection max time", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME | MONO_COUNTER_MONOTONIC, &time_max);
1240 mono_counters_register ("Minor fragment clear", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_pre_collection_fragment_clear);
1241 mono_counters_register ("Minor pinning", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_pinning);
1242 mono_counters_register ("Minor scan remembered set", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_scan_remsets);
1243 mono_counters_register ("Minor scan pinned", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_scan_pinned);
1244 mono_counters_register ("Minor scan roots", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_scan_roots);
1245 mono_counters_register ("Minor fragment creation", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_minor_fragment_creation);
1247 mono_counters_register ("Major fragment clear", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_pre_collection_fragment_clear);
1248 mono_counters_register ("Major pinning", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_pinning);
1249 mono_counters_register ("Major scan pinned", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_scan_pinned);
1250 mono_counters_register ("Major scan roots", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_scan_roots);
1251 mono_counters_register ("Major scan mod union", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_scan_mod_union);
1252 mono_counters_register ("Major finish gray stack", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_finish_gray_stack);
1253 mono_counters_register ("Major free big objects", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_free_bigobjs);
1254 mono_counters_register ("Major LOS sweep", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_los_sweep);
1255 mono_counters_register ("Major sweep", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_sweep);
1256 mono_counters_register ("Major fragment creation", MONO_COUNTER_GC | MONO_COUNTER_ULONG | MONO_COUNTER_TIME, &time_major_fragment_creation);
1258 mono_counters_register ("Number of pinned objects", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_pinned_objects);
1260 #ifdef HEAVY_STATISTICS
1261 mono_counters_register ("WBarrier remember pointer", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_wbarrier_add_to_global_remset);
1262 mono_counters_register ("WBarrier arrayref copy", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_wbarrier_arrayref_copy);
1263 mono_counters_register ("WBarrier generic store called", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_wbarrier_generic_store);
1264 mono_counters_register ("WBarrier generic atomic store called", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_wbarrier_generic_store_atomic);
1265 mono_counters_register ("WBarrier set root", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_wbarrier_set_root);
1267 mono_counters_register ("# objects allocated degraded", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_objects_alloced_degraded);
1268 mono_counters_register ("bytes allocated degraded", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_bytes_alloced_degraded);
1270 mono_counters_register ("# copy_object() called (nursery)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_copy_object_called_nursery);
1271 mono_counters_register ("# objects copied (nursery)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_objects_copied_nursery);
1272 mono_counters_register ("# copy_object() called (major)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_copy_object_called_major);
1273 mono_counters_register ("# objects copied (major)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_objects_copied_major);
1275 mono_counters_register ("# scan_object() called (nursery)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_scan_object_called_nursery);
1276 mono_counters_register ("# scan_object() called (major)", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_scan_object_called_major);
1278 mono_counters_register ("Slots allocated in vain", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_slots_allocated_in_vain);
1280 mono_counters_register ("# nursery copy_object() failed from space", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_nursery_copy_object_failed_from_space);
1281 mono_counters_register ("# nursery copy_object() failed forwarded", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_nursery_copy_object_failed_forwarded);
1282 mono_counters_register ("# nursery copy_object() failed pinned", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_nursery_copy_object_failed_pinned);
1283 mono_counters_register ("# nursery copy_object() failed to space", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_nursery_copy_object_failed_to_space);
1285 sgen_nursery_allocator_init_heavy_stats ();
1286 #endif
1288 inited = TRUE;
1292 static void
1293 reset_pinned_from_failed_allocation (void)
1295 bytes_pinned_from_failed_allocation = 0;
1298 void
1299 sgen_set_pinned_from_failed_allocation (mword objsize)
1301 bytes_pinned_from_failed_allocation += objsize;
1304 gboolean
1305 sgen_collection_is_concurrent (void)
1307 switch (current_collection_generation) {
1308 case GENERATION_NURSERY:
1309 return FALSE;
1310 case GENERATION_OLD:
1311 return concurrent_collection_in_progress;
1312 default:
1313 g_error ("Invalid current generation %d", current_collection_generation);
1315 return FALSE;
1318 gboolean
1319 sgen_concurrent_collection_in_progress (void)
1321 return concurrent_collection_in_progress;
1324 typedef struct {
1325 SgenThreadPoolJob job;
1326 SgenObjectOperations *ops;
1327 } ScanJob;
1329 static void
1330 job_remembered_set_scan (void *worker_data_untyped, SgenThreadPoolJob *job)
1332 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1333 ScanJob *job_data = (ScanJob*)job;
1334 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1335 remset.scan_remsets (ctx);
1338 typedef struct {
1339 SgenThreadPoolJob job;
1340 SgenObjectOperations *ops;
1341 char *heap_start;
1342 char *heap_end;
1343 int root_type;
1344 } ScanFromRegisteredRootsJob;
1346 static void
1347 job_scan_from_registered_roots (void *worker_data_untyped, SgenThreadPoolJob *job)
1349 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1350 ScanFromRegisteredRootsJob *job_data = (ScanFromRegisteredRootsJob*)job;
1351 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1353 scan_from_registered_roots (job_data->heap_start, job_data->heap_end, job_data->root_type, ctx);
1356 typedef struct {
1357 SgenThreadPoolJob job;
1358 SgenObjectOperations *ops;
1359 char *heap_start;
1360 char *heap_end;
1361 } ScanThreadDataJob;
1363 static void
1364 job_scan_thread_data (void *worker_data_untyped, SgenThreadPoolJob *job)
1366 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1367 ScanThreadDataJob *job_data = (ScanThreadDataJob*)job;
1368 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1370 sgen_client_scan_thread_data (job_data->heap_start, job_data->heap_end, TRUE, ctx);
1373 typedef struct {
1374 SgenThreadPoolJob job;
1375 SgenObjectOperations *ops;
1376 SgenPointerQueue *queue;
1377 } ScanFinalizerEntriesJob;
1379 static void
1380 job_scan_finalizer_entries (void *worker_data_untyped, SgenThreadPoolJob *job)
1382 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1383 ScanFinalizerEntriesJob *job_data = (ScanFinalizerEntriesJob*)job;
1384 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1386 scan_finalizer_entries (job_data->queue, ctx);
1389 static void
1390 job_scan_major_mod_union_card_table (void *worker_data_untyped, SgenThreadPoolJob *job)
1392 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1393 ScanJob *job_data = (ScanJob*)job;
1394 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1396 g_assert (concurrent_collection_in_progress);
1397 major_collector.scan_card_table (CARDTABLE_SCAN_MOD_UNION, ctx);
1400 static void
1401 job_scan_los_mod_union_card_table (void *worker_data_untyped, SgenThreadPoolJob *job)
1403 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1404 ScanJob *job_data = (ScanJob*)job;
1405 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1407 g_assert (concurrent_collection_in_progress);
1408 sgen_los_scan_card_table (CARDTABLE_SCAN_MOD_UNION, ctx);
1411 static void
1412 job_mod_union_preclean (void *worker_data_untyped, SgenThreadPoolJob *job)
1414 WorkerData *worker_data = (WorkerData *)worker_data_untyped;
1415 ScanJob *job_data = (ScanJob*)job;
1416 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (job_data->ops, sgen_workers_get_job_gray_queue (worker_data));
1418 g_assert (concurrent_collection_in_progress);
1420 major_collector.scan_card_table (CARDTABLE_SCAN_MOD_UNION_PRECLEAN, ctx);
1421 sgen_los_scan_card_table (CARDTABLE_SCAN_MOD_UNION_PRECLEAN, ctx);
1424 static void
1425 init_gray_queue (gboolean use_workers)
1427 if (use_workers)
1428 sgen_workers_init_distribute_gray_queue ();
1429 sgen_gray_object_queue_init (&gray_queue, NULL);
1432 static void
1433 enqueue_scan_from_roots_jobs (char *heap_start, char *heap_end, SgenObjectOperations *ops, gboolean enqueue)
1435 ScanFromRegisteredRootsJob *scrrj;
1436 ScanThreadDataJob *stdj;
1437 ScanFinalizerEntriesJob *sfej;
1439 /* registered roots, this includes static fields */
1441 scrrj = (ScanFromRegisteredRootsJob*)sgen_thread_pool_job_alloc ("scan from registered roots normal", job_scan_from_registered_roots, sizeof (ScanFromRegisteredRootsJob));
1442 scrrj->ops = ops;
1443 scrrj->heap_start = heap_start;
1444 scrrj->heap_end = heap_end;
1445 scrrj->root_type = ROOT_TYPE_NORMAL;
1446 sgen_workers_enqueue_job (&scrrj->job, enqueue);
1448 scrrj = (ScanFromRegisteredRootsJob*)sgen_thread_pool_job_alloc ("scan from registered roots wbarrier", job_scan_from_registered_roots, sizeof (ScanFromRegisteredRootsJob));
1449 scrrj->ops = ops;
1450 scrrj->heap_start = heap_start;
1451 scrrj->heap_end = heap_end;
1452 scrrj->root_type = ROOT_TYPE_WBARRIER;
1453 sgen_workers_enqueue_job (&scrrj->job, enqueue);
1455 /* Threads */
1457 stdj = (ScanThreadDataJob*)sgen_thread_pool_job_alloc ("scan thread data", job_scan_thread_data, sizeof (ScanThreadDataJob));
1458 stdj->heap_start = heap_start;
1459 stdj->heap_end = heap_end;
1460 sgen_workers_enqueue_job (&stdj->job, enqueue);
1462 /* Scan the list of objects ready for finalization. */
1464 sfej = (ScanFinalizerEntriesJob*)sgen_thread_pool_job_alloc ("scan finalizer entries", job_scan_finalizer_entries, sizeof (ScanFinalizerEntriesJob));
1465 sfej->queue = &fin_ready_queue;
1466 sfej->ops = ops;
1467 sgen_workers_enqueue_job (&sfej->job, enqueue);
1469 sfej = (ScanFinalizerEntriesJob*)sgen_thread_pool_job_alloc ("scan critical finalizer entries", job_scan_finalizer_entries, sizeof (ScanFinalizerEntriesJob));
1470 sfej->queue = &critical_fin_queue;
1471 sfej->ops = ops;
1472 sgen_workers_enqueue_job (&sfej->job, enqueue);
1476 * Perform a nursery collection.
1478 * Return whether any objects were late-pinned due to being out of memory.
1480 static gboolean
1481 collect_nursery (SgenGrayQueue *unpin_queue, gboolean finish_up_concurrent_mark)
1483 gboolean needs_major;
1484 size_t max_garbage_amount;
1485 char *nursery_next;
1486 mword fragment_total;
1487 ScanJob *sj;
1488 SgenObjectOperations *object_ops = &sgen_minor_collector.serial_ops;
1489 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (object_ops, &gray_queue);
1490 TV_DECLARE (atv);
1491 TV_DECLARE (btv);
1493 if (disable_minor_collections)
1494 return TRUE;
1496 TV_GETTIME (last_minor_collection_start_tv);
1497 atv = last_minor_collection_start_tv;
1499 binary_protocol_collection_begin (gc_stats.minor_gc_count, GENERATION_NURSERY);
1501 if (do_verify_nursery || do_dump_nursery_content)
1502 sgen_debug_verify_nursery (do_dump_nursery_content);
1504 current_collection_generation = GENERATION_NURSERY;
1506 SGEN_ASSERT (0, !sgen_collection_is_concurrent (), "Why is the nursery collection concurrent?");
1508 reset_pinned_from_failed_allocation ();
1510 check_scan_starts ();
1512 sgen_nursery_alloc_prepare_for_minor ();
1514 degraded_mode = 0;
1515 objects_pinned = 0;
1516 nursery_next = sgen_nursery_alloc_get_upper_alloc_bound ();
1517 /* FIXME: optimize later to use the higher address where an object can be present */
1518 nursery_next = MAX (nursery_next, sgen_get_nursery_end ());
1520 SGEN_LOG (1, "Start nursery collection %d %p-%p, size: %d", gc_stats.minor_gc_count, sgen_get_nursery_start (), nursery_next, (int)(nursery_next - sgen_get_nursery_start ()));
1521 max_garbage_amount = nursery_next - sgen_get_nursery_start ();
1522 g_assert (nursery_section->size >= max_garbage_amount);
1524 /* world must be stopped already */
1525 TV_GETTIME (btv);
1526 time_minor_pre_collection_fragment_clear += TV_ELAPSED (atv, btv);
1528 sgen_client_pre_collection_checks ();
1530 nursery_section->next_data = nursery_next;
1532 major_collector.start_nursery_collection ();
1534 sgen_memgov_minor_collection_start ();
1536 init_gray_queue (FALSE);
1538 gc_stats.minor_gc_count ++;
1540 if (whole_heap_check_before_collection) {
1541 sgen_clear_nursery_fragments ();
1542 sgen_check_whole_heap (finish_up_concurrent_mark);
1544 if (consistency_check_at_minor_collection)
1545 sgen_check_consistency ();
1547 sgen_process_fin_stage_entries ();
1549 /* pin from pinned handles */
1550 sgen_init_pinning ();
1551 sgen_client_binary_protocol_mark_start (GENERATION_NURSERY);
1552 pin_from_roots (sgen_get_nursery_start (), nursery_next, ctx);
1553 /* pin cemented objects */
1554 sgen_pin_cemented_objects ();
1555 /* identify pinned objects */
1556 sgen_optimize_pin_queue ();
1557 sgen_pinning_setup_section (nursery_section);
1559 pin_objects_in_nursery (FALSE, ctx);
1560 sgen_pinning_trim_queue_to_section (nursery_section);
1562 TV_GETTIME (atv);
1563 time_minor_pinning += TV_ELAPSED (btv, atv);
1564 SGEN_LOG (2, "Finding pinned pointers: %zd in %lld usecs", sgen_get_pinned_count (), TV_ELAPSED (btv, atv));
1565 SGEN_LOG (4, "Start scan with %zd pinned objects", sgen_get_pinned_count ());
1567 sj = (ScanJob*)sgen_thread_pool_job_alloc ("scan remset", job_remembered_set_scan, sizeof (ScanJob));
1568 sj->ops = object_ops;
1569 sgen_workers_enqueue_job (&sj->job, FALSE);
1571 /* we don't have complete write barrier yet, so we scan all the old generation sections */
1572 TV_GETTIME (btv);
1573 time_minor_scan_remsets += TV_ELAPSED (atv, btv);
1574 SGEN_LOG (2, "Old generation scan: %lld usecs", TV_ELAPSED (atv, btv));
1576 sgen_pin_stats_print_class_stats ();
1578 /* FIXME: Why do we do this at this specific, seemingly random, point? */
1579 sgen_client_collecting_minor (&fin_ready_queue, &critical_fin_queue);
1581 TV_GETTIME (atv);
1582 time_minor_scan_pinned += TV_ELAPSED (btv, atv);
1584 enqueue_scan_from_roots_jobs (sgen_get_nursery_start (), nursery_next, object_ops, FALSE);
1586 TV_GETTIME (btv);
1587 time_minor_scan_roots += TV_ELAPSED (atv, btv);
1589 finish_gray_stack (GENERATION_NURSERY, ctx);
1591 TV_GETTIME (atv);
1592 time_minor_finish_gray_stack += TV_ELAPSED (btv, atv);
1593 sgen_client_binary_protocol_mark_end (GENERATION_NURSERY);
1595 if (objects_pinned) {
1596 sgen_optimize_pin_queue ();
1597 sgen_pinning_setup_section (nursery_section);
1600 /* walk the pin_queue, build up the fragment list of free memory, unmark
1601 * pinned objects as we go, memzero() the empty fragments so they are ready for the
1602 * next allocations.
1604 sgen_client_binary_protocol_reclaim_start (GENERATION_NURSERY);
1605 fragment_total = sgen_build_nursery_fragments (nursery_section, unpin_queue);
1606 if (!fragment_total)
1607 degraded_mode = 1;
1609 /* Clear TLABs for all threads */
1610 sgen_clear_tlabs ();
1612 sgen_client_binary_protocol_reclaim_end (GENERATION_NURSERY);
1613 TV_GETTIME (btv);
1614 time_minor_fragment_creation += TV_ELAPSED (atv, btv);
1615 SGEN_LOG (2, "Fragment creation: %lld usecs, %lu bytes available", TV_ELAPSED (atv, btv), (unsigned long)fragment_total);
1617 if (consistency_check_at_minor_collection)
1618 sgen_check_major_refs ();
1620 major_collector.finish_nursery_collection ();
1622 TV_GETTIME (last_minor_collection_end_tv);
1623 gc_stats.minor_gc_time += TV_ELAPSED (last_minor_collection_start_tv, last_minor_collection_end_tv);
1625 sgen_debug_dump_heap ("minor", gc_stats.minor_gc_count - 1, NULL);
1627 /* prepare the pin queue for the next collection */
1628 sgen_finish_pinning ();
1629 if (sgen_have_pending_finalizers ()) {
1630 SGEN_LOG (4, "Finalizer-thread wakeup");
1631 sgen_client_finalize_notify ();
1633 sgen_pin_stats_reset ();
1634 /* clear cemented hash */
1635 sgen_cement_clear_below_threshold ();
1637 g_assert (sgen_gray_object_queue_is_empty (&gray_queue));
1639 remset.finish_minor_collection ();
1641 check_scan_starts ();
1643 binary_protocol_flush_buffers (FALSE);
1645 sgen_memgov_minor_collection_end ();
1647 /*objects are late pinned because of lack of memory, so a major is a good call*/
1648 needs_major = objects_pinned > 0;
1649 current_collection_generation = -1;
1650 objects_pinned = 0;
1652 binary_protocol_collection_end (gc_stats.minor_gc_count - 1, GENERATION_NURSERY, 0, 0);
1654 if (check_nursery_objects_pinned && !sgen_minor_collector.is_split)
1655 sgen_check_nursery_objects_pinned (unpin_queue != NULL);
1657 return needs_major;
1660 typedef enum {
1661 COPY_OR_MARK_FROM_ROOTS_SERIAL,
1662 COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT,
1663 COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT
1664 } CopyOrMarkFromRootsMode;
1666 static void
1667 major_copy_or_mark_from_roots (size_t *old_next_pin_slot, CopyOrMarkFromRootsMode mode, SgenObjectOperations *object_ops)
1669 LOSObject *bigobj;
1670 TV_DECLARE (atv);
1671 TV_DECLARE (btv);
1672 /* FIXME: only use these values for the precise scan
1673 * note that to_space pointers should be excluded anyway...
1675 char *heap_start = NULL;
1676 char *heap_end = (char*)-1;
1677 ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (object_ops, WORKERS_DISTRIBUTE_GRAY_QUEUE);
1678 gboolean concurrent = mode != COPY_OR_MARK_FROM_ROOTS_SERIAL;
1680 SGEN_ASSERT (0, !!concurrent == !!concurrent_collection_in_progress, "We've been called with the wrong mode.");
1682 if (mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT) {
1683 /*This cleans up unused fragments */
1684 sgen_nursery_allocator_prepare_for_pinning ();
1686 if (do_concurrent_checks)
1687 sgen_debug_check_nursery_is_clean ();
1688 } else {
1689 /* The concurrent collector doesn't touch the nursery. */
1690 sgen_nursery_alloc_prepare_for_major ();
1693 init_gray_queue (mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT);
1695 TV_GETTIME (atv);
1697 /* Pinning depends on this */
1698 sgen_clear_nursery_fragments ();
1700 if (whole_heap_check_before_collection)
1701 sgen_check_whole_heap (mode == COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT);
1703 TV_GETTIME (btv);
1704 time_major_pre_collection_fragment_clear += TV_ELAPSED (atv, btv);
1706 if (!sgen_collection_is_concurrent ())
1707 nursery_section->next_data = sgen_get_nursery_end ();
1708 /* we should also coalesce scanning from sections close to each other
1709 * and deal with pointers outside of the sections later.
1712 objects_pinned = 0;
1714 sgen_client_pre_collection_checks ();
1716 if (!concurrent) {
1717 /* Remsets are not useful for a major collection */
1718 remset.clear_cards ();
1721 sgen_process_fin_stage_entries ();
1723 TV_GETTIME (atv);
1724 sgen_init_pinning ();
1725 SGEN_LOG (6, "Collecting pinned addresses");
1726 pin_from_roots ((void*)lowest_heap_address, (void*)highest_heap_address, ctx);
1728 sgen_optimize_pin_queue ();
1730 sgen_client_collecting_major_1 ();
1733 * pin_queue now contains all candidate pointers, sorted and
1734 * uniqued. We must do two passes now to figure out which
1735 * objects are pinned.
1737 * The first is to find within the pin_queue the area for each
1738 * section. This requires that the pin_queue be sorted. We
1739 * also process the LOS objects and pinned chunks here.
1741 * The second, destructive, pass is to reduce the section
1742 * areas to pointers to the actually pinned objects.
1744 SGEN_LOG (6, "Pinning from sections");
1745 /* first pass for the sections */
1746 sgen_find_section_pin_queue_start_end (nursery_section);
1747 /* identify possible pointers to the insize of large objects */
1748 SGEN_LOG (6, "Pinning from large objects");
1749 for (bigobj = los_object_list; bigobj; bigobj = bigobj->next) {
1750 size_t dummy;
1751 if (sgen_find_optimized_pin_queue_area ((char*)bigobj->data, (char*)bigobj->data + sgen_los_object_size (bigobj), &dummy, &dummy)) {
1752 binary_protocol_pin (bigobj->data, (gpointer)LOAD_VTABLE (bigobj->data), safe_object_get_size (bigobj->data));
1754 if (sgen_los_object_is_pinned (bigobj->data)) {
1755 SGEN_ASSERT (0, mode == COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT, "LOS objects can only be pinned here after concurrent marking.");
1756 continue;
1758 sgen_los_pin_object (bigobj->data);
1759 if (SGEN_OBJECT_HAS_REFERENCES (bigobj->data))
1760 GRAY_OBJECT_ENQUEUE (WORKERS_DISTRIBUTE_GRAY_QUEUE, bigobj->data, sgen_obj_get_descriptor ((GCObject*)bigobj->data));
1761 sgen_pin_stats_register_object (bigobj->data, safe_object_get_size (bigobj->data));
1762 SGEN_LOG (6, "Marked large object %p (%s) size: %lu from roots", bigobj->data,
1763 sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (bigobj->data)),
1764 (unsigned long)sgen_los_object_size (bigobj));
1766 sgen_client_pinned_los_object (bigobj->data);
1770 pin_objects_in_nursery (mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT, ctx);
1771 if (check_nursery_objects_pinned && !sgen_minor_collector.is_split)
1772 sgen_check_nursery_objects_pinned (mode != COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT);
1774 major_collector.pin_objects (WORKERS_DISTRIBUTE_GRAY_QUEUE);
1775 if (old_next_pin_slot)
1776 *old_next_pin_slot = sgen_get_pinned_count ();
1778 TV_GETTIME (btv);
1779 time_major_pinning += TV_ELAPSED (atv, btv);
1780 SGEN_LOG (2, "Finding pinned pointers: %zd in %lld usecs", sgen_get_pinned_count (), TV_ELAPSED (atv, btv));
1781 SGEN_LOG (4, "Start scan with %zd pinned objects", sgen_get_pinned_count ());
1783 major_collector.init_to_space ();
1785 SGEN_ASSERT (0, sgen_workers_all_done (), "Why are the workers not done when we start or finish a major collection?");
1787 * The concurrent collector doesn't move objects, neither on
1788 * the major heap nor in the nursery, so we can mark even
1789 * before pinning has finished. For the non-concurrent
1790 * collector we start the workers after pinning.
1792 if (mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT) {
1793 if (precleaning_enabled) {
1794 ScanJob *sj;
1795 /* Mod union preclean job */
1796 sj = (ScanJob*)sgen_thread_pool_job_alloc ("preclean mod union cardtable", job_mod_union_preclean, sizeof (ScanJob));
1797 sj->ops = object_ops;
1798 sgen_workers_start_all_workers (object_ops, &sj->job);
1799 } else {
1800 sgen_workers_start_all_workers (object_ops, NULL);
1802 gray_queue_enable_redirect (WORKERS_DISTRIBUTE_GRAY_QUEUE);
1803 } else if (mode == COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT) {
1804 if (sgen_workers_have_idle_work ()) {
1805 sgen_workers_start_all_workers (object_ops, NULL);
1806 sgen_workers_join ();
1810 #ifdef SGEN_DEBUG_INTERNAL_ALLOC
1811 main_gc_thread = mono_native_thread_self ();
1812 #endif
1814 sgen_client_collecting_major_2 ();
1816 TV_GETTIME (atv);
1817 time_major_scan_pinned += TV_ELAPSED (btv, atv);
1819 sgen_client_collecting_major_3 (&fin_ready_queue, &critical_fin_queue);
1822 * FIXME: is this the right context? It doesn't seem to contain a copy function
1823 * unless we're concurrent.
1825 enqueue_scan_from_roots_jobs (heap_start, heap_end, object_ops, mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT);
1827 TV_GETTIME (btv);
1828 time_major_scan_roots += TV_ELAPSED (atv, btv);
1830 if (mode == COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT) {
1831 ScanJob *sj;
1833 /* Mod union card table */
1834 sj = (ScanJob*)sgen_thread_pool_job_alloc ("scan mod union cardtable", job_scan_major_mod_union_card_table, sizeof (ScanJob));
1835 sj->ops = object_ops;
1836 sgen_workers_enqueue_job (&sj->job, FALSE);
1838 sj = (ScanJob*)sgen_thread_pool_job_alloc ("scan LOS mod union cardtable", job_scan_los_mod_union_card_table, sizeof (ScanJob));
1839 sj->ops = object_ops;
1840 sgen_workers_enqueue_job (&sj->job, FALSE);
1842 TV_GETTIME (atv);
1843 time_major_scan_mod_union += TV_ELAPSED (btv, atv);
1846 sgen_pin_stats_print_class_stats ();
1849 static void
1850 major_finish_copy_or_mark (CopyOrMarkFromRootsMode mode)
1852 if (mode == COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT) {
1854 * Prepare the pin queue for the next collection. Since pinning runs on the worker
1855 * threads we must wait for the jobs to finish before we can reset it.
1857 sgen_workers_wait_for_jobs_finished ();
1858 sgen_finish_pinning ();
1860 sgen_pin_stats_reset ();
1862 if (do_concurrent_checks)
1863 sgen_debug_check_nursery_is_clean ();
1867 static void
1868 major_start_collection (gboolean concurrent, size_t *old_next_pin_slot)
1870 SgenObjectOperations *object_ops;
1872 binary_protocol_collection_begin (gc_stats.major_gc_count, GENERATION_OLD);
1874 current_collection_generation = GENERATION_OLD;
1876 g_assert (sgen_section_gray_queue_is_empty (sgen_workers_get_distribute_section_gray_queue ()));
1878 if (!concurrent)
1879 sgen_cement_reset ();
1881 if (concurrent) {
1882 g_assert (major_collector.is_concurrent);
1883 concurrent_collection_in_progress = TRUE;
1885 object_ops = &major_collector.major_ops_concurrent_start;
1886 } else {
1887 object_ops = &major_collector.major_ops_serial;
1890 reset_pinned_from_failed_allocation ();
1892 sgen_memgov_major_collection_start ();
1894 //count_ref_nonref_objs ();
1895 //consistency_check ();
1897 check_scan_starts ();
1899 degraded_mode = 0;
1900 SGEN_LOG (1, "Start major collection %d", gc_stats.major_gc_count);
1901 gc_stats.major_gc_count ++;
1903 if (major_collector.start_major_collection)
1904 major_collector.start_major_collection ();
1906 major_copy_or_mark_from_roots (old_next_pin_slot, concurrent ? COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT : COPY_OR_MARK_FROM_ROOTS_SERIAL, object_ops);
1907 major_finish_copy_or_mark (concurrent ? COPY_OR_MARK_FROM_ROOTS_START_CONCURRENT : COPY_OR_MARK_FROM_ROOTS_SERIAL);
1910 static void
1911 major_finish_collection (const char *reason, size_t old_next_pin_slot, gboolean forced)
1913 ScannedObjectCounts counts;
1914 SgenObjectOperations *object_ops;
1915 mword fragment_total;
1916 TV_DECLARE (atv);
1917 TV_DECLARE (btv);
1919 TV_GETTIME (btv);
1921 if (concurrent_collection_in_progress) {
1922 object_ops = &major_collector.major_ops_concurrent_finish;
1924 major_copy_or_mark_from_roots (NULL, COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT, object_ops);
1926 major_finish_copy_or_mark (COPY_OR_MARK_FROM_ROOTS_FINISH_CONCURRENT);
1928 #ifdef SGEN_DEBUG_INTERNAL_ALLOC
1929 main_gc_thread = NULL;
1930 #endif
1931 } else {
1932 object_ops = &major_collector.major_ops_serial;
1935 g_assert (sgen_section_gray_queue_is_empty (sgen_workers_get_distribute_section_gray_queue ()));
1937 /* all the objects in the heap */
1938 finish_gray_stack (GENERATION_OLD, CONTEXT_FROM_OBJECT_OPERATIONS (object_ops, &gray_queue));
1939 TV_GETTIME (atv);
1940 time_major_finish_gray_stack += TV_ELAPSED (btv, atv);
1942 SGEN_ASSERT (0, sgen_workers_all_done (), "Can't have workers working after joining");
1944 if (objects_pinned) {
1945 g_assert (!concurrent_collection_in_progress);
1948 * This is slow, but we just OOM'd.
1950 * See comment at `sgen_pin_queue_clear_discarded_entries` for how the pin
1951 * queue is laid out at this point.
1953 sgen_pin_queue_clear_discarded_entries (nursery_section, old_next_pin_slot);
1955 * We need to reestablish all pinned nursery objects in the pin queue
1956 * because they're needed for fragment creation. Unpinning happens by
1957 * walking the whole queue, so it's not necessary to reestablish where major
1958 * heap block pins are - all we care is that they're still in there
1959 * somewhere.
1961 sgen_optimize_pin_queue ();
1962 sgen_find_section_pin_queue_start_end (nursery_section);
1963 objects_pinned = 0;
1966 reset_heap_boundaries ();
1967 sgen_update_heap_boundaries ((mword)sgen_get_nursery_start (), (mword)sgen_get_nursery_end ());
1969 /* walk the pin_queue, build up the fragment list of free memory, unmark
1970 * pinned objects as we go, memzero() the empty fragments so they are ready for the
1971 * next allocations.
1973 fragment_total = sgen_build_nursery_fragments (nursery_section, NULL);
1974 if (!fragment_total)
1975 degraded_mode = 1;
1976 SGEN_LOG (4, "Free space in nursery after major %ld", (long)fragment_total);
1978 if (do_concurrent_checks && concurrent_collection_in_progress)
1979 sgen_debug_check_nursery_is_clean ();
1981 /* prepare the pin queue for the next collection */
1982 sgen_finish_pinning ();
1984 /* Clear TLABs for all threads */
1985 sgen_clear_tlabs ();
1987 sgen_pin_stats_reset ();
1989 sgen_cement_clear_below_threshold ();
1991 if (check_mark_bits_after_major_collection)
1992 sgen_check_heap_marked (concurrent_collection_in_progress);
1994 TV_GETTIME (btv);
1995 time_major_fragment_creation += TV_ELAPSED (atv, btv);
1997 binary_protocol_sweep_begin (GENERATION_OLD, !major_collector.sweeps_lazily);
1998 sgen_memgov_major_pre_sweep ();
2000 TV_GETTIME (atv);
2001 time_major_free_bigobjs += TV_ELAPSED (btv, atv);
2003 sgen_los_sweep ();
2005 TV_GETTIME (btv);
2006 time_major_los_sweep += TV_ELAPSED (atv, btv);
2008 major_collector.sweep ();
2010 binary_protocol_sweep_end (GENERATION_OLD, !major_collector.sweeps_lazily);
2012 TV_GETTIME (atv);
2013 time_major_sweep += TV_ELAPSED (btv, atv);
2015 sgen_debug_dump_heap ("major", gc_stats.major_gc_count - 1, reason);
2017 if (sgen_have_pending_finalizers ()) {
2018 SGEN_LOG (4, "Finalizer-thread wakeup");
2019 sgen_client_finalize_notify ();
2022 g_assert (sgen_gray_object_queue_is_empty (&gray_queue));
2024 sgen_memgov_major_collection_end (forced);
2025 current_collection_generation = -1;
2027 memset (&counts, 0, sizeof (ScannedObjectCounts));
2028 major_collector.finish_major_collection (&counts);
2030 g_assert (sgen_section_gray_queue_is_empty (sgen_workers_get_distribute_section_gray_queue ()));
2032 SGEN_ASSERT (0, sgen_workers_all_done (), "Can't have workers working after major collection has finished");
2033 if (concurrent_collection_in_progress)
2034 concurrent_collection_in_progress = FALSE;
2036 check_scan_starts ();
2038 binary_protocol_flush_buffers (FALSE);
2040 //consistency_check ();
2042 binary_protocol_collection_end (gc_stats.major_gc_count - 1, GENERATION_OLD, counts.num_scanned_objects, counts.num_unique_scanned_objects);
2045 static gboolean
2046 major_do_collection (const char *reason, gboolean forced)
2048 TV_DECLARE (time_start);
2049 TV_DECLARE (time_end);
2050 size_t old_next_pin_slot;
2052 if (disable_major_collections)
2053 return FALSE;
2055 if (major_collector.get_and_reset_num_major_objects_marked) {
2056 long long num_marked = major_collector.get_and_reset_num_major_objects_marked ();
2057 g_assert (!num_marked);
2060 /* world must be stopped already */
2061 TV_GETTIME (time_start);
2063 major_start_collection (FALSE, &old_next_pin_slot);
2064 major_finish_collection (reason, old_next_pin_slot, forced);
2066 TV_GETTIME (time_end);
2067 gc_stats.major_gc_time += TV_ELAPSED (time_start, time_end);
2069 /* FIXME: also report this to the user, preferably in gc-end. */
2070 if (major_collector.get_and_reset_num_major_objects_marked)
2071 major_collector.get_and_reset_num_major_objects_marked ();
2073 return bytes_pinned_from_failed_allocation > 0;
2076 static void
2077 major_start_concurrent_collection (const char *reason)
2079 TV_DECLARE (time_start);
2080 TV_DECLARE (time_end);
2081 long long num_objects_marked;
2083 if (disable_major_collections)
2084 return;
2086 TV_GETTIME (time_start);
2087 SGEN_TV_GETTIME (time_major_conc_collection_start);
2089 num_objects_marked = major_collector.get_and_reset_num_major_objects_marked ();
2090 g_assert (num_objects_marked == 0);
2092 binary_protocol_concurrent_start ();
2094 // FIXME: store reason and pass it when finishing
2095 major_start_collection (TRUE, NULL);
2097 gray_queue_redirect (&gray_queue);
2099 num_objects_marked = major_collector.get_and_reset_num_major_objects_marked ();
2101 TV_GETTIME (time_end);
2102 gc_stats.major_gc_time += TV_ELAPSED (time_start, time_end);
2104 current_collection_generation = -1;
2108 * Returns whether the major collection has finished.
2110 static gboolean
2111 major_should_finish_concurrent_collection (void)
2113 SGEN_ASSERT (0, sgen_gray_object_queue_is_empty (&gray_queue), "Why is the gray queue not empty before we have started doing anything?");
2114 return sgen_workers_all_done ();
2117 static void
2118 major_update_concurrent_collection (void)
2120 TV_DECLARE (total_start);
2121 TV_DECLARE (total_end);
2123 TV_GETTIME (total_start);
2125 binary_protocol_concurrent_update ();
2127 major_collector.update_cardtable_mod_union ();
2128 sgen_los_update_cardtable_mod_union ();
2130 TV_GETTIME (total_end);
2131 gc_stats.major_gc_time += TV_ELAPSED (total_start, total_end);
2134 static void
2135 major_finish_concurrent_collection (gboolean forced)
2137 TV_DECLARE (total_start);
2138 TV_DECLARE (total_end);
2140 TV_GETTIME (total_start);
2142 binary_protocol_concurrent_finish ();
2145 * We need to stop all workers since we're updating the cardtable below.
2146 * The workers will be resumed with a finishing pause context to avoid
2147 * additional cardtable and object scanning.
2149 sgen_workers_stop_all_workers ();
2151 SGEN_TV_GETTIME (time_major_conc_collection_end);
2152 gc_stats.major_gc_time_concurrent += SGEN_TV_ELAPSED (time_major_conc_collection_start, time_major_conc_collection_end);
2154 major_collector.update_cardtable_mod_union ();
2155 sgen_los_update_cardtable_mod_union ();
2157 if (mod_union_consistency_check)
2158 sgen_check_mod_union_consistency ();
2160 current_collection_generation = GENERATION_OLD;
2161 sgen_cement_reset ();
2162 major_finish_collection ("finishing", -1, forced);
2164 if (whole_heap_check_before_collection)
2165 sgen_check_whole_heap (FALSE);
2167 TV_GETTIME (total_end);
2168 gc_stats.major_gc_time += TV_ELAPSED (total_start, total_end) - TV_ELAPSED (last_minor_collection_start_tv, last_minor_collection_end_tv);
2170 current_collection_generation = -1;
2174 * Ensure an allocation request for @size will succeed by freeing enough memory.
2176 * LOCKING: The GC lock MUST be held.
2178 void
2179 sgen_ensure_free_space (size_t size, int generation)
2181 int generation_to_collect = -1;
2182 const char *reason = NULL;
2184 if (generation == GENERATION_OLD) {
2185 if (sgen_need_major_collection (size)) {
2186 reason = "LOS overflow";
2187 generation_to_collect = GENERATION_OLD;
2189 } else {
2190 if (degraded_mode) {
2191 if (sgen_need_major_collection (size)) {
2192 reason = "Degraded mode overflow";
2193 generation_to_collect = GENERATION_OLD;
2195 } else if (sgen_need_major_collection (size)) {
2196 reason = concurrent_collection_in_progress ? "Forced finish concurrent collection" : "Minor allowance";
2197 generation_to_collect = GENERATION_OLD;
2198 } else {
2199 generation_to_collect = GENERATION_NURSERY;
2200 reason = "Nursery full";
2204 if (generation_to_collect == -1) {
2205 if (concurrent_collection_in_progress && sgen_workers_all_done ()) {
2206 generation_to_collect = GENERATION_OLD;
2207 reason = "Finish concurrent collection";
2211 if (generation_to_collect == -1)
2212 return;
2213 sgen_perform_collection (size, generation_to_collect, reason, FALSE);
2217 * LOCKING: Assumes the GC lock is held.
2219 void
2220 sgen_perform_collection (size_t requested_size, int generation_to_collect, const char *reason, gboolean wait_to_finish)
2222 TV_DECLARE (gc_start);
2223 TV_DECLARE (gc_end);
2224 TV_DECLARE (gc_total_start);
2225 TV_DECLARE (gc_total_end);
2226 GGTimingInfo infos [2];
2227 int overflow_generation_to_collect = -1;
2228 int oldest_generation_collected = generation_to_collect;
2229 const char *overflow_reason = NULL;
2231 binary_protocol_collection_requested (generation_to_collect, requested_size, wait_to_finish ? 1 : 0);
2233 SGEN_ASSERT (0, generation_to_collect == GENERATION_NURSERY || generation_to_collect == GENERATION_OLD, "What generation is this?");
2235 TV_GETTIME (gc_start);
2237 sgen_stop_world (generation_to_collect);
2239 TV_GETTIME (gc_total_start);
2241 if (concurrent_collection_in_progress) {
2243 * If the concurrent worker is finished or we are asked to do a major collection
2244 * then we finish the concurrent collection.
2246 gboolean finish = major_should_finish_concurrent_collection () || generation_to_collect == GENERATION_OLD;
2248 if (finish) {
2249 major_finish_concurrent_collection (wait_to_finish);
2250 oldest_generation_collected = GENERATION_OLD;
2251 } else {
2252 SGEN_ASSERT (0, generation_to_collect == GENERATION_NURSERY, "Why aren't we finishing the concurrent collection?");
2253 major_update_concurrent_collection ();
2254 collect_nursery (NULL, FALSE);
2257 goto done;
2260 SGEN_ASSERT (0, !concurrent_collection_in_progress, "Why did this not get handled above?");
2263 * There's no concurrent collection in progress. Collect the generation we're asked
2264 * to collect. If the major collector is concurrent and we're not forced to wait,
2265 * start a concurrent collection.
2267 // FIXME: extract overflow reason
2268 if (generation_to_collect == GENERATION_NURSERY) {
2269 if (collect_nursery (NULL, FALSE)) {
2270 overflow_generation_to_collect = GENERATION_OLD;
2271 overflow_reason = "Minor overflow";
2273 } else {
2274 if (major_collector.is_concurrent && !wait_to_finish) {
2275 collect_nursery (NULL, FALSE);
2276 major_start_concurrent_collection (reason);
2277 // FIXME: set infos[0] properly
2278 goto done;
2281 if (major_do_collection (reason, wait_to_finish)) {
2282 overflow_generation_to_collect = GENERATION_NURSERY;
2283 overflow_reason = "Excessive pinning";
2287 TV_GETTIME (gc_end);
2289 memset (infos, 0, sizeof (infos));
2290 infos [0].generation = generation_to_collect;
2291 infos [0].reason = reason;
2292 infos [0].is_overflow = FALSE;
2293 infos [1].generation = -1;
2294 infos [0].total_time = SGEN_TV_ELAPSED (gc_start, gc_end);
2296 SGEN_ASSERT (0, !concurrent_collection_in_progress, "Why did this not get handled above?");
2298 if (overflow_generation_to_collect != -1) {
2300 * We need to do an overflow collection, either because we ran out of memory
2301 * or the nursery is fully pinned.
2304 infos [1].generation = overflow_generation_to_collect;
2305 infos [1].reason = overflow_reason;
2306 infos [1].is_overflow = TRUE;
2307 gc_start = gc_end;
2309 if (overflow_generation_to_collect == GENERATION_NURSERY)
2310 collect_nursery (NULL, FALSE);
2311 else
2312 major_do_collection (overflow_reason, wait_to_finish);
2314 TV_GETTIME (gc_end);
2315 infos [1].total_time = SGEN_TV_ELAPSED (gc_start, gc_end);
2317 oldest_generation_collected = MAX (oldest_generation_collected, overflow_generation_to_collect);
2320 SGEN_LOG (2, "Heap size: %lu, LOS size: %lu", (unsigned long)sgen_gc_get_total_heap_allocation (), (unsigned long)los_memory_usage);
2322 /* this also sets the proper pointers for the next allocation */
2323 if (generation_to_collect == GENERATION_NURSERY && !sgen_can_alloc_size (requested_size)) {
2324 /* TypeBuilder and MonoMethod are killing mcs with fragmentation */
2325 SGEN_LOG (1, "nursery collection didn't find enough room for %zd alloc (%zd pinned)", requested_size, sgen_get_pinned_count ());
2326 sgen_dump_pin_queue ();
2327 degraded_mode = 1;
2330 done:
2331 g_assert (sgen_gray_object_queue_is_empty (&gray_queue));
2333 TV_GETTIME (gc_total_end);
2334 time_max = MAX (time_max, TV_ELAPSED (gc_total_start, gc_total_end));
2336 sgen_restart_world (oldest_generation_collected, infos);
2340 * ######################################################################
2341 * ######## Memory allocation from the OS
2342 * ######################################################################
2343 * This section of code deals with getting memory from the OS and
2344 * allocating memory for GC-internal data structures.
2345 * Internal memory can be handled with a freelist for small objects.
2349 * Debug reporting.
2351 G_GNUC_UNUSED static void
2352 report_internal_mem_usage (void)
2354 printf ("Internal memory usage:\n");
2355 sgen_report_internal_mem_usage ();
2356 printf ("Pinned memory usage:\n");
2357 major_collector.report_pinned_memory_usage ();
2361 * ######################################################################
2362 * ######## Finalization support
2363 * ######################################################################
2367 * If the object has been forwarded it means it's still referenced from a root.
2368 * If it is pinned it's still alive as well.
2369 * A LOS object is only alive if we have pinned it.
2370 * Return TRUE if @obj is ready to be finalized.
2372 static inline gboolean
2373 sgen_is_object_alive (GCObject *object)
2375 if (ptr_in_nursery (object))
2376 return sgen_nursery_is_object_alive (object);
2378 return sgen_major_is_object_alive (object);
2382 * This function returns true if @object is either alive and belongs to the
2383 * current collection - major collections are full heap, so old gen objects
2384 * are never alive during a minor collection.
2386 static inline int
2387 sgen_is_object_alive_and_on_current_collection (GCObject *object)
2389 if (ptr_in_nursery (object))
2390 return sgen_nursery_is_object_alive (object);
2392 if (current_collection_generation == GENERATION_NURSERY)
2393 return FALSE;
2395 return sgen_major_is_object_alive (object);
2399 gboolean
2400 sgen_gc_is_object_ready_for_finalization (GCObject *object)
2402 return !sgen_is_object_alive (object);
2405 void
2406 sgen_queue_finalization_entry (GCObject *obj)
2408 gboolean critical = sgen_client_object_has_critical_finalizer (obj);
2410 sgen_pointer_queue_add (critical ? &critical_fin_queue : &fin_ready_queue, obj);
2412 sgen_client_object_queued_for_finalization (obj);
2415 gboolean
2416 sgen_object_is_live (GCObject *obj)
2418 return sgen_is_object_alive_and_on_current_collection (obj);
2422 * `System.GC.WaitForPendingFinalizers` first checks `sgen_have_pending_finalizers()` to
2423 * determine whether it can exit quickly. The latter must therefore only return FALSE if
2424 * all finalizers have really finished running.
2426 * `sgen_gc_invoke_finalizers()` first dequeues a finalizable object, and then finalizes it.
2427 * This means that just checking whether the queues are empty leaves the possibility that an
2428 * object might have been dequeued but not yet finalized. That's why we need the additional
2429 * flag `pending_unqueued_finalizer`.
2432 static volatile gboolean pending_unqueued_finalizer = FALSE;
2435 sgen_gc_invoke_finalizers (void)
2437 int count = 0;
2439 g_assert (!pending_unqueued_finalizer);
2441 /* FIXME: batch to reduce lock contention */
2442 while (sgen_have_pending_finalizers ()) {
2443 GCObject *obj;
2445 LOCK_GC;
2448 * We need to set `pending_unqueued_finalizer` before dequeing the
2449 * finalizable object.
2451 if (!sgen_pointer_queue_is_empty (&fin_ready_queue)) {
2452 pending_unqueued_finalizer = TRUE;
2453 mono_memory_write_barrier ();
2454 obj = (GCObject *)sgen_pointer_queue_pop (&fin_ready_queue);
2455 } else if (!sgen_pointer_queue_is_empty (&critical_fin_queue)) {
2456 pending_unqueued_finalizer = TRUE;
2457 mono_memory_write_barrier ();
2458 obj = (GCObject *)sgen_pointer_queue_pop (&critical_fin_queue);
2459 } else {
2460 obj = NULL;
2463 if (obj)
2464 SGEN_LOG (7, "Finalizing object %p (%s)", obj, sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (obj)));
2466 UNLOCK_GC;
2468 if (!obj)
2469 break;
2471 count++;
2472 /* the object is on the stack so it is pinned */
2473 /*g_print ("Calling finalizer for object: %p (%s)\n", obj, sgen_client_object_safe_name (obj));*/
2474 sgen_client_run_finalize (obj);
2477 if (pending_unqueued_finalizer) {
2478 mono_memory_write_barrier ();
2479 pending_unqueued_finalizer = FALSE;
2482 return count;
2485 gboolean
2486 sgen_have_pending_finalizers (void)
2488 return pending_unqueued_finalizer || !sgen_pointer_queue_is_empty (&fin_ready_queue) || !sgen_pointer_queue_is_empty (&critical_fin_queue);
2492 * ######################################################################
2493 * ######## registered roots support
2494 * ######################################################################
2498 * We do not coalesce roots.
2501 sgen_register_root (char *start, size_t size, SgenDescriptor descr, int root_type, int source, const char *msg)
2503 RootRecord new_root;
2504 int i;
2505 LOCK_GC;
2506 for (i = 0; i < ROOT_TYPE_NUM; ++i) {
2507 RootRecord *root = (RootRecord *)sgen_hash_table_lookup (&roots_hash [i], start);
2508 /* we allow changing the size and the descriptor (for thread statics etc) */
2509 if (root) {
2510 size_t old_size = root->end_root - start;
2511 root->end_root = start + size;
2512 SGEN_ASSERT (0, !!root->root_desc == !!descr, "Can't change whether a root is precise or conservative.");
2513 SGEN_ASSERT (0, root->source == source, "Can't change a root's source identifier.");
2514 SGEN_ASSERT (0, !!root->msg == !!msg, "Can't change a root's message.");
2515 root->root_desc = descr;
2516 roots_size += size;
2517 roots_size -= old_size;
2518 UNLOCK_GC;
2519 return TRUE;
2523 new_root.end_root = start + size;
2524 new_root.root_desc = descr;
2525 new_root.source = source;
2526 new_root.msg = msg;
2528 sgen_hash_table_replace (&roots_hash [root_type], start, &new_root, NULL);
2529 roots_size += size;
2531 SGEN_LOG (3, "Added root for range: %p-%p, descr: %llx (%d/%d bytes)", start, new_root.end_root, (long long)descr, (int)size, (int)roots_size);
2533 UNLOCK_GC;
2534 return TRUE;
2537 void
2538 sgen_deregister_root (char* addr)
2540 int root_type;
2541 RootRecord root;
2543 LOCK_GC;
2544 for (root_type = 0; root_type < ROOT_TYPE_NUM; ++root_type) {
2545 if (sgen_hash_table_remove (&roots_hash [root_type], addr, &root))
2546 roots_size -= (root.end_root - addr);
2548 UNLOCK_GC;
2552 * ######################################################################
2553 * ######## Thread handling (stop/start code)
2554 * ######################################################################
2558 sgen_get_current_collection_generation (void)
2560 return current_collection_generation;
2563 void*
2564 sgen_thread_register (SgenThreadInfo* info, void *stack_bottom_fallback)
2566 #ifndef HAVE_KW_THREAD
2567 info->tlab_start = info->tlab_next = info->tlab_temp_end = info->tlab_real_end = NULL;
2568 #endif
2570 sgen_init_tlab_info (info);
2572 sgen_client_thread_register (info, stack_bottom_fallback);
2574 return info;
2577 void
2578 sgen_thread_unregister (SgenThreadInfo *p)
2580 sgen_client_thread_unregister (p);
2584 * ######################################################################
2585 * ######## Write barriers
2586 * ######################################################################
2590 * Note: the write barriers first do the needed GC work and then do the actual store:
2591 * this way the value is visible to the conservative GC scan after the write barrier
2592 * itself. If a GC interrupts the barrier in the middle, value will be kept alive by
2593 * the conservative scan, otherwise by the remembered set scan.
2596 void
2597 mono_gc_wbarrier_arrayref_copy (gpointer dest_ptr, gpointer src_ptr, int count)
2599 HEAVY_STAT (++stat_wbarrier_arrayref_copy);
2600 /*This check can be done without taking a lock since dest_ptr array is pinned*/
2601 if (ptr_in_nursery (dest_ptr) || count <= 0) {
2602 mono_gc_memmove_aligned (dest_ptr, src_ptr, count * sizeof (gpointer));
2603 return;
2606 #ifdef SGEN_HEAVY_BINARY_PROTOCOL
2607 if (binary_protocol_is_heavy_enabled ()) {
2608 int i;
2609 for (i = 0; i < count; ++i) {
2610 gpointer dest = (gpointer*)dest_ptr + i;
2611 gpointer obj = *((gpointer*)src_ptr + i);
2612 if (obj)
2613 binary_protocol_wbarrier (dest, obj, (gpointer)LOAD_VTABLE (obj));
2616 #endif
2618 remset.wbarrier_arrayref_copy (dest_ptr, src_ptr, count);
2621 void
2622 mono_gc_wbarrier_generic_nostore (gpointer ptr)
2624 gpointer obj;
2626 HEAVY_STAT (++stat_wbarrier_generic_store);
2628 sgen_client_wbarrier_generic_nostore_check (ptr);
2630 obj = *(gpointer*)ptr;
2631 if (obj)
2632 binary_protocol_wbarrier (ptr, obj, (gpointer)LOAD_VTABLE (obj));
2635 * We need to record old->old pointer locations for the
2636 * concurrent collector.
2638 if (!ptr_in_nursery (obj) && !concurrent_collection_in_progress) {
2639 SGEN_LOG (8, "Skipping remset at %p", ptr);
2640 return;
2643 SGEN_LOG (8, "Adding remset at %p", ptr);
2645 remset.wbarrier_generic_nostore (ptr);
2648 void
2649 mono_gc_wbarrier_generic_store (gpointer ptr, GCObject* value)
2651 SGEN_LOG (8, "Wbarrier store at %p to %p (%s)", ptr, value, value ? sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (value)) : "null");
2652 SGEN_UPDATE_REFERENCE_ALLOW_NULL (ptr, value);
2653 if (ptr_in_nursery (value) || concurrent_collection_in_progress)
2654 mono_gc_wbarrier_generic_nostore (ptr);
2655 sgen_dummy_use (value);
2658 /* Same as mono_gc_wbarrier_generic_store () but performs the store
2659 * as an atomic operation with release semantics.
2661 void
2662 mono_gc_wbarrier_generic_store_atomic (gpointer ptr, GCObject *value)
2664 HEAVY_STAT (++stat_wbarrier_generic_store_atomic);
2666 SGEN_LOG (8, "Wbarrier atomic store at %p to %p (%s)", ptr, value, value ? sgen_client_vtable_get_name (SGEN_LOAD_VTABLE (value)) : "null");
2668 InterlockedWritePointer ((volatile gpointer *)ptr, value);
2670 if (ptr_in_nursery (value) || concurrent_collection_in_progress)
2671 mono_gc_wbarrier_generic_nostore (ptr);
2673 sgen_dummy_use (value);
2676 void
2677 sgen_wbarrier_value_copy_bitmap (gpointer _dest, gpointer _src, int size, unsigned bitmap)
2679 GCObject **dest = (GCObject **)_dest;
2680 GCObject **src = (GCObject **)_src;
2682 while (size) {
2683 if (bitmap & 0x1)
2684 mono_gc_wbarrier_generic_store (dest, *src);
2685 else
2686 *dest = *src;
2687 ++src;
2688 ++dest;
2689 size -= SIZEOF_VOID_P;
2690 bitmap >>= 1;
2695 * ######################################################################
2696 * ######## Other mono public interface functions.
2697 * ######################################################################
2700 void
2701 sgen_gc_collect (int generation)
2703 LOCK_GC;
2704 if (generation > 1)
2705 generation = 1;
2706 sgen_perform_collection (0, generation, "user request", TRUE);
2707 UNLOCK_GC;
2711 sgen_gc_collection_count (int generation)
2713 if (generation == 0)
2714 return gc_stats.minor_gc_count;
2715 return gc_stats.major_gc_count;
2718 size_t
2719 sgen_gc_get_used_size (void)
2721 gint64 tot = 0;
2722 LOCK_GC;
2723 tot = los_memory_usage;
2724 tot += nursery_section->next_data - nursery_section->data;
2725 tot += major_collector.get_used_size ();
2726 /* FIXME: account for pinned objects */
2727 UNLOCK_GC;
2728 return tot;
2731 void
2732 sgen_env_var_error (const char *env_var, const char *fallback, const char *description_format, ...)
2734 va_list ap;
2736 va_start (ap, description_format);
2738 fprintf (stderr, "Warning: In environment variable `%s': ", env_var);
2739 vfprintf (stderr, description_format, ap);
2740 if (fallback)
2741 fprintf (stderr, " - %s", fallback);
2742 fprintf (stderr, "\n");
2744 va_end (ap);
2747 static gboolean
2748 parse_double_in_interval (const char *env_var, const char *opt_name, const char *opt, double min, double max, double *result)
2750 char *endptr;
2751 double val = strtod (opt, &endptr);
2752 if (endptr == opt) {
2753 sgen_env_var_error (env_var, "Using default value.", "`%s` must be a number.", opt_name);
2754 return FALSE;
2756 else if (val < min || val > max) {
2757 sgen_env_var_error (env_var, "Using default value.", "`%s` must be between %.2f - %.2f.", opt_name, min, max);
2758 return FALSE;
2760 *result = val;
2761 return TRUE;
2764 void
2765 sgen_gc_init (void)
2767 const char *env;
2768 char **opts, **ptr;
2769 char *major_collector_opt = NULL;
2770 char *minor_collector_opt = NULL;
2771 size_t max_heap = 0;
2772 size_t soft_limit = 0;
2773 int result;
2774 gboolean debug_print_allowance = FALSE;
2775 double allowance_ratio = 0, save_target = 0;
2776 gboolean cement_enabled = TRUE;
2778 do {
2779 result = InterlockedCompareExchange (&gc_initialized, -1, 0);
2780 switch (result) {
2781 case 1:
2782 /* already inited */
2783 return;
2784 case -1:
2785 /* being inited by another thread */
2786 mono_thread_info_usleep (1000);
2787 break;
2788 case 0:
2789 /* we will init it */
2790 break;
2791 default:
2792 g_assert_not_reached ();
2794 } while (result != 0);
2796 SGEN_TV_GETTIME (sgen_init_timestamp);
2798 #ifdef SGEN_WITHOUT_MONO
2799 mono_thread_smr_init ();
2800 #endif
2802 mono_coop_mutex_init (&gc_mutex);
2804 gc_debug_file = stderr;
2806 mono_coop_mutex_init (&sgen_interruption_mutex);
2808 if ((env = g_getenv (MONO_GC_PARAMS_NAME))) {
2809 opts = g_strsplit (env, ",", -1);
2810 for (ptr = opts; *ptr; ++ptr) {
2811 char *opt = *ptr;
2812 if (g_str_has_prefix (opt, "major=")) {
2813 opt = strchr (opt, '=') + 1;
2814 major_collector_opt = g_strdup (opt);
2815 } else if (g_str_has_prefix (opt, "minor=")) {
2816 opt = strchr (opt, '=') + 1;
2817 minor_collector_opt = g_strdup (opt);
2820 } else {
2821 opts = NULL;
2824 init_stats ();
2825 sgen_init_internal_allocator ();
2826 sgen_init_nursery_allocator ();
2827 sgen_init_fin_weak_hash ();
2828 sgen_init_hash_table ();
2829 sgen_init_descriptors ();
2830 sgen_init_gray_queues ();
2831 sgen_init_allocator ();
2832 sgen_init_gchandles ();
2834 sgen_register_fixed_internal_mem_type (INTERNAL_MEM_SECTION, SGEN_SIZEOF_GC_MEM_SECTION);
2835 sgen_register_fixed_internal_mem_type (INTERNAL_MEM_GRAY_QUEUE, sizeof (GrayQueueSection));
2837 sgen_client_init ();
2839 if (!minor_collector_opt) {
2840 sgen_simple_nursery_init (&sgen_minor_collector);
2841 } else {
2842 if (!strcmp (minor_collector_opt, "simple")) {
2843 use_simple_nursery:
2844 sgen_simple_nursery_init (&sgen_minor_collector);
2845 } else if (!strcmp (minor_collector_opt, "split")) {
2846 sgen_split_nursery_init (&sgen_minor_collector);
2847 } else {
2848 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Using `simple` instead.", "Unknown minor collector `%s'.", minor_collector_opt);
2849 goto use_simple_nursery;
2853 if (!major_collector_opt || !strcmp (major_collector_opt, "marksweep")) {
2854 use_marksweep_major:
2855 sgen_marksweep_init (&major_collector);
2856 } else if (!major_collector_opt || !strcmp (major_collector_opt, "marksweep-conc")) {
2857 sgen_marksweep_conc_init (&major_collector);
2858 } else {
2859 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Using `marksweep` instead.", "Unknown major collector `%s'.", major_collector_opt);
2860 goto use_marksweep_major;
2863 sgen_nursery_size = DEFAULT_NURSERY_SIZE;
2865 if (opts) {
2866 gboolean usage_printed = FALSE;
2868 for (ptr = opts; *ptr; ++ptr) {
2869 char *opt = *ptr;
2870 if (!strcmp (opt, ""))
2871 continue;
2872 if (g_str_has_prefix (opt, "major="))
2873 continue;
2874 if (g_str_has_prefix (opt, "minor="))
2875 continue;
2876 if (g_str_has_prefix (opt, "max-heap-size=")) {
2877 size_t page_size = mono_pagesize ();
2878 size_t max_heap_candidate = 0;
2879 opt = strchr (opt, '=') + 1;
2880 if (*opt && mono_gc_parse_environment_string_extract_number (opt, &max_heap_candidate)) {
2881 max_heap = (max_heap_candidate + page_size - 1) & ~(size_t)(page_size - 1);
2882 if (max_heap != max_heap_candidate)
2883 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Rounding up.", "`max-heap-size` size must be a multiple of %d.", page_size);
2884 } else {
2885 sgen_env_var_error (MONO_GC_PARAMS_NAME, NULL, "`max-heap-size` must be an integer.");
2887 continue;
2889 if (g_str_has_prefix (opt, "soft-heap-limit=")) {
2890 opt = strchr (opt, '=') + 1;
2891 if (*opt && mono_gc_parse_environment_string_extract_number (opt, &soft_limit)) {
2892 if (soft_limit <= 0) {
2893 sgen_env_var_error (MONO_GC_PARAMS_NAME, NULL, "`soft-heap-limit` must be positive.");
2894 soft_limit = 0;
2896 } else {
2897 sgen_env_var_error (MONO_GC_PARAMS_NAME, NULL, "`soft-heap-limit` must be an integer.");
2899 continue;
2902 #ifdef USER_CONFIG
2903 if (g_str_has_prefix (opt, "nursery-size=")) {
2904 size_t val;
2905 opt = strchr (opt, '=') + 1;
2906 if (*opt && mono_gc_parse_environment_string_extract_number (opt, &val)) {
2907 if ((val & (val - 1))) {
2908 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Using default value.", "`nursery-size` must be a power of two.");
2909 continue;
2912 if (val < SGEN_MAX_NURSERY_WASTE) {
2913 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Using default value.",
2914 "`nursery-size` must be at least %d bytes.", SGEN_MAX_NURSERY_WASTE);
2915 continue;
2918 sgen_nursery_size = val;
2919 sgen_nursery_bits = 0;
2920 while (ONE_P << (++ sgen_nursery_bits) != sgen_nursery_size)
2922 } else {
2923 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Using default value.", "`nursery-size` must be an integer.");
2924 continue;
2926 continue;
2928 #endif
2929 if (g_str_has_prefix (opt, "save-target-ratio=")) {
2930 double val;
2931 opt = strchr (opt, '=') + 1;
2932 if (parse_double_in_interval (MONO_GC_PARAMS_NAME, "save-target-ratio", opt,
2933 SGEN_MIN_SAVE_TARGET_RATIO, SGEN_MAX_SAVE_TARGET_RATIO, &val)) {
2934 save_target = val;
2936 continue;
2938 if (g_str_has_prefix (opt, "default-allowance-ratio=")) {
2939 double val;
2940 opt = strchr (opt, '=') + 1;
2941 if (parse_double_in_interval (MONO_GC_PARAMS_NAME, "default-allowance-ratio", opt,
2942 SGEN_MIN_ALLOWANCE_NURSERY_SIZE_RATIO, SGEN_MIN_ALLOWANCE_NURSERY_SIZE_RATIO, &val)) {
2943 allowance_ratio = val;
2945 continue;
2948 if (!strcmp (opt, "cementing")) {
2949 cement_enabled = TRUE;
2950 continue;
2952 if (!strcmp (opt, "no-cementing")) {
2953 cement_enabled = FALSE;
2954 continue;
2957 if (!strcmp (opt, "precleaning")) {
2958 precleaning_enabled = TRUE;
2959 continue;
2961 if (!strcmp (opt, "no-precleaning")) {
2962 precleaning_enabled = FALSE;
2963 continue;
2966 if (major_collector.handle_gc_param && major_collector.handle_gc_param (opt))
2967 continue;
2969 if (sgen_minor_collector.handle_gc_param && sgen_minor_collector.handle_gc_param (opt))
2970 continue;
2972 if (sgen_client_handle_gc_param (opt))
2973 continue;
2975 sgen_env_var_error (MONO_GC_PARAMS_NAME, "Ignoring.", "Unknown option `%s`.", opt);
2977 if (usage_printed)
2978 continue;
2980 fprintf (stderr, "\n%s must be a comma-delimited list of one or more of the following:\n", MONO_GC_PARAMS_NAME);
2981 fprintf (stderr, " max-heap-size=N (where N is an integer, possibly with a k, m or a g suffix)\n");
2982 fprintf (stderr, " soft-heap-limit=n (where N is an integer, possibly with a k, m or a g suffix)\n");
2983 fprintf (stderr, " nursery-size=N (where N is an integer, possibly with a k, m or a g suffix)\n");
2984 fprintf (stderr, " major=COLLECTOR (where COLLECTOR is `marksweep', `marksweep-conc', `marksweep-par')\n");
2985 fprintf (stderr, " minor=COLLECTOR (where COLLECTOR is `simple' or `split')\n");
2986 fprintf (stderr, " wbarrier=WBARRIER (where WBARRIER is `remset' or `cardtable')\n");
2987 fprintf (stderr, " [no-]cementing\n");
2988 if (major_collector.print_gc_param_usage)
2989 major_collector.print_gc_param_usage ();
2990 if (sgen_minor_collector.print_gc_param_usage)
2991 sgen_minor_collector.print_gc_param_usage ();
2992 sgen_client_print_gc_params_usage ();
2993 fprintf (stderr, " Experimental options:\n");
2994 fprintf (stderr, " save-target-ratio=R (where R must be between %.2f - %.2f).\n", SGEN_MIN_SAVE_TARGET_RATIO, SGEN_MAX_SAVE_TARGET_RATIO);
2995 fprintf (stderr, " default-allowance-ratio=R (where R must be between %.2f - %.2f).\n", SGEN_MIN_ALLOWANCE_NURSERY_SIZE_RATIO, SGEN_MAX_ALLOWANCE_NURSERY_SIZE_RATIO);
2996 fprintf (stderr, "\n");
2998 usage_printed = TRUE;
3000 g_strfreev (opts);
3003 if (major_collector_opt)
3004 g_free (major_collector_opt);
3006 if (minor_collector_opt)
3007 g_free (minor_collector_opt);
3009 alloc_nursery ();
3011 sgen_cement_init (cement_enabled);
3013 if ((env = g_getenv (MONO_GC_DEBUG_NAME))) {
3014 gboolean usage_printed = FALSE;
3016 opts = g_strsplit (env, ",", -1);
3017 for (ptr = opts; ptr && *ptr; ptr ++) {
3018 char *opt = *ptr;
3019 if (!strcmp (opt, ""))
3020 continue;
3021 if (opt [0] >= '0' && opt [0] <= '9') {
3022 gc_debug_level = atoi (opt);
3023 opt++;
3024 if (opt [0] == ':')
3025 opt++;
3026 if (opt [0]) {
3027 char *rf = g_strdup_printf ("%s.%d", opt, mono_process_current_pid ());
3028 gc_debug_file = fopen (rf, "wb");
3029 if (!gc_debug_file)
3030 gc_debug_file = stderr;
3031 g_free (rf);
3033 } else if (!strcmp (opt, "print-allowance")) {
3034 debug_print_allowance = TRUE;
3035 } else if (!strcmp (opt, "print-pinning")) {
3036 sgen_pin_stats_enable ();
3037 } else if (!strcmp (opt, "verify-before-allocs")) {
3038 verify_before_allocs = 1;
3039 has_per_allocation_action = TRUE;
3040 } else if (g_str_has_prefix (opt, "verify-before-allocs=")) {
3041 char *arg = strchr (opt, '=') + 1;
3042 verify_before_allocs = atoi (arg);
3043 has_per_allocation_action = TRUE;
3044 } else if (!strcmp (opt, "collect-before-allocs")) {
3045 collect_before_allocs = 1;
3046 has_per_allocation_action = TRUE;
3047 } else if (g_str_has_prefix (opt, "collect-before-allocs=")) {
3048 char *arg = strchr (opt, '=') + 1;
3049 has_per_allocation_action = TRUE;
3050 collect_before_allocs = atoi (arg);
3051 } else if (!strcmp (opt, "verify-before-collections")) {
3052 whole_heap_check_before_collection = TRUE;
3053 } else if (!strcmp (opt, "check-at-minor-collections")) {
3054 consistency_check_at_minor_collection = TRUE;
3055 nursery_clear_policy = CLEAR_AT_GC;
3056 } else if (!strcmp (opt, "mod-union-consistency-check")) {
3057 if (!major_collector.is_concurrent) {
3058 sgen_env_var_error (MONO_GC_DEBUG_NAME, "Ignoring.", "`mod-union-consistency-check` only works with concurrent major collector.");
3059 continue;
3061 mod_union_consistency_check = TRUE;
3062 } else if (!strcmp (opt, "check-mark-bits")) {
3063 check_mark_bits_after_major_collection = TRUE;
3064 } else if (!strcmp (opt, "check-nursery-pinned")) {
3065 check_nursery_objects_pinned = TRUE;
3066 } else if (!strcmp (opt, "clear-at-gc")) {
3067 nursery_clear_policy = CLEAR_AT_GC;
3068 } else if (!strcmp (opt, "clear-nursery-at-gc")) {
3069 nursery_clear_policy = CLEAR_AT_GC;
3070 } else if (!strcmp (opt, "clear-at-tlab-creation")) {
3071 nursery_clear_policy = CLEAR_AT_TLAB_CREATION;
3072 } else if (!strcmp (opt, "debug-clear-at-tlab-creation")) {
3073 nursery_clear_policy = CLEAR_AT_TLAB_CREATION_DEBUG;
3074 } else if (!strcmp (opt, "check-scan-starts")) {
3075 do_scan_starts_check = TRUE;
3076 } else if (!strcmp (opt, "verify-nursery-at-minor-gc")) {
3077 do_verify_nursery = TRUE;
3078 } else if (!strcmp (opt, "check-concurrent")) {
3079 if (!major_collector.is_concurrent) {
3080 sgen_env_var_error (MONO_GC_DEBUG_NAME, "Ignoring.", "`check-concurrent` only works with concurrent major collectors.");
3081 continue;
3083 nursery_clear_policy = CLEAR_AT_GC;
3084 do_concurrent_checks = TRUE;
3085 } else if (!strcmp (opt, "dump-nursery-at-minor-gc")) {
3086 do_dump_nursery_content = TRUE;
3087 } else if (!strcmp (opt, "disable-minor")) {
3088 disable_minor_collections = TRUE;
3089 } else if (!strcmp (opt, "disable-major")) {
3090 disable_major_collections = TRUE;
3091 } else if (g_str_has_prefix (opt, "heap-dump=")) {
3092 char *filename = strchr (opt, '=') + 1;
3093 nursery_clear_policy = CLEAR_AT_GC;
3094 sgen_debug_enable_heap_dump (filename);
3095 } else if (g_str_has_prefix (opt, "binary-protocol=")) {
3096 char *filename = strchr (opt, '=') + 1;
3097 char *colon = strrchr (filename, ':');
3098 size_t limit = 0;
3099 if (colon) {
3100 if (!mono_gc_parse_environment_string_extract_number (colon + 1, &limit)) {
3101 sgen_env_var_error (MONO_GC_DEBUG_NAME, "Ignoring limit.", "Binary protocol file size limit must be an integer.");
3102 limit = -1;
3104 *colon = '\0';
3106 binary_protocol_init (filename, (long long)limit);
3107 } else if (!strcmp (opt, "nursery-canaries")) {
3108 do_verify_nursery = TRUE;
3109 enable_nursery_canaries = TRUE;
3110 } else if (!sgen_client_handle_gc_debug (opt)) {
3111 sgen_env_var_error (MONO_GC_DEBUG_NAME, "Ignoring.", "Unknown option `%s`.", opt);
3113 if (usage_printed)
3114 continue;
3116 fprintf (stderr, "\n%s must be of the format [<l>[:<filename>]|<option>]+ where <l> is a debug level 0-9.\n", MONO_GC_DEBUG_NAME);
3117 fprintf (stderr, "Valid <option>s are:\n");
3118 fprintf (stderr, " collect-before-allocs[=<n>]\n");
3119 fprintf (stderr, " verify-before-allocs[=<n>]\n");
3120 fprintf (stderr, " check-at-minor-collections\n");
3121 fprintf (stderr, " check-mark-bits\n");
3122 fprintf (stderr, " check-nursery-pinned\n");
3123 fprintf (stderr, " verify-before-collections\n");
3124 fprintf (stderr, " verify-nursery-at-minor-gc\n");
3125 fprintf (stderr, " dump-nursery-at-minor-gc\n");
3126 fprintf (stderr, " disable-minor\n");
3127 fprintf (stderr, " disable-major\n");
3128 fprintf (stderr, " check-concurrent\n");
3129 fprintf (stderr, " clear-[nursery-]at-gc\n");
3130 fprintf (stderr, " clear-at-tlab-creation\n");
3131 fprintf (stderr, " debug-clear-at-tlab-creation\n");
3132 fprintf (stderr, " check-scan-starts\n");
3133 fprintf (stderr, " print-allowance\n");
3134 fprintf (stderr, " print-pinning\n");
3135 fprintf (stderr, " heap-dump=<filename>\n");
3136 fprintf (stderr, " binary-protocol=<filename>[:<file-size-limit>]\n");
3137 fprintf (stderr, " nursery-canaries\n");
3138 sgen_client_print_gc_debug_usage ();
3139 fprintf (stderr, "\n");
3141 usage_printed = TRUE;
3144 g_strfreev (opts);
3147 if (check_mark_bits_after_major_collection)
3148 nursery_clear_policy = CLEAR_AT_GC;
3150 if (major_collector.post_param_init)
3151 major_collector.post_param_init (&major_collector);
3153 if (major_collector.needs_thread_pool)
3154 sgen_workers_init (1);
3156 sgen_memgov_init (max_heap, soft_limit, debug_print_allowance, allowance_ratio, save_target);
3158 memset (&remset, 0, sizeof (remset));
3160 sgen_card_table_init (&remset);
3162 sgen_register_root (NULL, 0, sgen_make_user_root_descriptor (sgen_mark_normal_gc_handles), ROOT_TYPE_NORMAL, MONO_ROOT_SOURCE_GC_HANDLE, "normal gc handles");
3164 gc_initialized = 1;
3167 NurseryClearPolicy
3168 sgen_get_nursery_clear_policy (void)
3170 return nursery_clear_policy;
3173 void
3174 sgen_gc_lock (void)
3176 mono_coop_mutex_lock (&gc_mutex);
3179 void
3180 sgen_gc_unlock (void)
3182 gboolean try_free = sgen_try_free_some_memory;
3183 sgen_try_free_some_memory = FALSE;
3184 mono_coop_mutex_unlock (&gc_mutex);
3185 if (try_free)
3186 mono_thread_hazardous_try_free_some ();
3189 void
3190 sgen_major_collector_iterate_live_block_ranges (sgen_cardtable_block_callback callback)
3192 major_collector.iterate_live_block_ranges (callback);
3195 SgenMajorCollector*
3196 sgen_get_major_collector (void)
3198 return &major_collector;
3201 SgenRememberedSet*
3202 sgen_get_remset (void)
3204 return &remset;
3207 static void
3208 count_cards (long long *major_total, long long *major_marked, long long *los_total, long long *los_marked)
3210 sgen_get_major_collector ()->count_cards (major_total, major_marked);
3211 sgen_los_count_cards (los_total, los_marked);
3214 static gboolean world_is_stopped = FALSE;
3216 /* LOCKING: assumes the GC lock is held */
3217 void
3218 sgen_stop_world (int generation)
3220 long long major_total = -1, major_marked = -1, los_total = -1, los_marked = -1;
3222 SGEN_ASSERT (0, !world_is_stopped, "Why are we stopping a stopped world?");
3224 binary_protocol_world_stopping (generation, sgen_timestamp (), (gpointer) (gsize) mono_native_thread_id_get ());
3226 sgen_client_stop_world (generation);
3228 world_is_stopped = TRUE;
3230 if (binary_protocol_is_heavy_enabled ())
3231 count_cards (&major_total, &major_marked, &los_total, &los_marked);
3232 binary_protocol_world_stopped (generation, sgen_timestamp (), major_total, major_marked, los_total, los_marked);
3235 /* LOCKING: assumes the GC lock is held */
3236 void
3237 sgen_restart_world (int generation, GGTimingInfo *timing)
3239 long long major_total = -1, major_marked = -1, los_total = -1, los_marked = -1;
3241 SGEN_ASSERT (0, world_is_stopped, "Why are we restarting a running world?");
3243 if (binary_protocol_is_heavy_enabled ())
3244 count_cards (&major_total, &major_marked, &los_total, &los_marked);
3245 binary_protocol_world_restarting (generation, sgen_timestamp (), major_total, major_marked, los_total, los_marked);
3247 sgen_client_restart_world (generation, timing);
3249 world_is_stopped = FALSE;
3251 binary_protocol_world_restarted (generation, sgen_timestamp ());
3253 sgen_try_free_some_memory = TRUE;
3255 if (sgen_client_bridge_need_processing ())
3256 sgen_client_bridge_processing_finish (generation);
3258 sgen_memgov_collection_end (generation, timing, timing ? 2 : 0);
3261 gboolean
3262 sgen_is_world_stopped (void)
3264 return world_is_stopped;
3267 void
3268 sgen_check_whole_heap_stw (void)
3270 sgen_stop_world (0);
3271 sgen_clear_nursery_fragments ();
3272 sgen_check_whole_heap (FALSE);
3273 sgen_restart_world (0, NULL);
3276 gint64
3277 sgen_timestamp (void)
3279 SGEN_TV_DECLARE (timestamp);
3280 SGEN_TV_GETTIME (timestamp);
3281 return SGEN_TV_ELAPSED (sgen_init_timestamp, timestamp);
3284 #endif /* HAVE_SGEN_GC */