Revert "check_disk - show all disks if state is ok and option error only is used"
[monitoring-plugins.git] / plugins / check_ntp_time.c
blob391b2df2efdbcdea1d6eb3a79943ee87eb89b851
1 /*****************************************************************************
2 *
3 * Monitoring check_ntp_time plugin
4 *
5 * License: GPL
6 * Copyright (c) 2006 Sean Finney <seanius@seanius.net>
7 * Copyright (c) 2006-2008 Monitoring Plugins Development Team
8 *
9 * Description:
11 * This file contains the check_ntp_time plugin
13 * This plugin checks the clock offset between the local host and a
14 * remote NTP server. It is independent of any commandline programs or
15 * external libraries.
17 * If you'd rather want to monitor an NTP server, please use
18 * check_ntp_peer.
21 * This program is free software: you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License as published by
23 * the Free Software Foundation, either version 3 of the License, or
24 * (at your option) any later version.
26 * This program is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 * GNU General Public License for more details.
31 * You should have received a copy of the GNU General Public License
32 * along with this program. If not, see <http://www.gnu.org/licenses/>.
35 *****************************************************************************/
37 const char *progname = "check_ntp_time";
38 const char *copyright = "2006-2008";
39 const char *email = "devel@monitoring-plugins.org";
41 #include "common.h"
42 #include "netutils.h"
43 #include "utils.h"
45 static char *server_address=NULL;
46 static char *port="123";
47 static int verbose=0;
48 static int quiet=0;
49 static char *owarn="60";
50 static char *ocrit="120";
51 static int time_offset=0;
53 int process_arguments (int, char **);
54 thresholds *offset_thresholds = NULL;
55 void print_help (void);
56 void print_usage (void);
58 /* number of times to perform each request to get a good average. */
59 #ifndef AVG_NUM
60 #define AVG_NUM 4
61 #endif
63 /* max size of control message data */
64 #define MAX_CM_SIZE 468
66 /* this structure holds everything in an ntp request/response as per rfc1305 */
67 typedef struct {
68 uint8_t flags; /* byte with leapindicator,vers,mode. see macros */
69 uint8_t stratum; /* clock stratum */
70 int8_t poll; /* polling interval */
71 int8_t precision; /* precision of the local clock */
72 int32_t rtdelay; /* total rt delay, as a fixed point num. see macros */
73 uint32_t rtdisp; /* like above, but for max err to primary src */
74 uint32_t refid; /* ref clock identifier */
75 uint64_t refts; /* reference timestamp. local time local clock */
76 uint64_t origts; /* time at which request departed client */
77 uint64_t rxts; /* time at which request arrived at server */
78 uint64_t txts; /* time at which request departed server */
79 } ntp_message;
81 /* this structure holds data about results from querying offset from a peer */
82 typedef struct {
83 time_t waiting; /* ts set when we started waiting for a response */
84 int num_responses; /* number of successfully recieved responses */
85 uint8_t stratum; /* copied verbatim from the ntp_message */
86 double rtdelay; /* converted from the ntp_message */
87 double rtdisp; /* converted from the ntp_message */
88 double offset[AVG_NUM]; /* offsets from each response */
89 uint8_t flags; /* byte with leapindicator,vers,mode. see macros */
90 } ntp_server_results;
92 /* bits 1,2 are the leap indicator */
93 #define LI_MASK 0xc0
94 #define LI(x) ((x&LI_MASK)>>6)
95 #define LI_SET(x,y) do{ x |= ((y<<6)&LI_MASK); }while(0)
96 /* and these are the values of the leap indicator */
97 #define LI_NOWARNING 0x00
98 #define LI_EXTRASEC 0x01
99 #define LI_MISSINGSEC 0x02
100 #define LI_ALARM 0x03
101 /* bits 3,4,5 are the ntp version */
102 #define VN_MASK 0x38
103 #define VN(x) ((x&VN_MASK)>>3)
104 #define VN_SET(x,y) do{ x |= ((y<<3)&VN_MASK); }while(0)
105 #define VN_RESERVED 0x02
106 /* bits 6,7,8 are the ntp mode */
107 #define MODE_MASK 0x07
108 #define MODE(x) (x&MODE_MASK)
109 #define MODE_SET(x,y) do{ x |= (y&MODE_MASK); }while(0)
110 /* here are some values */
111 #define MODE_CLIENT 0x03
112 #define MODE_CONTROLMSG 0x06
113 /* In control message, bits 8-10 are R,E,M bits */
114 #define REM_MASK 0xe0
115 #define REM_RESP 0x80
116 #define REM_ERROR 0x40
117 #define REM_MORE 0x20
118 /* In control message, bits 11 - 15 are opcode */
119 #define OP_MASK 0x1f
120 #define OP_SET(x,y) do{ x |= (y&OP_MASK); }while(0)
121 #define OP_READSTAT 0x01
122 #define OP_READVAR 0x02
123 /* In peer status bytes, bits 6,7,8 determine clock selection status */
124 #define PEER_SEL(x) ((ntohs(x)>>8)&0x07)
125 #define PEER_INCLUDED 0x04
126 #define PEER_SYNCSOURCE 0x06
129 ** a note about the 32-bit "fixed point" numbers:
131 they are divided into halves, each being a 16-bit int in network byte order:
132 - the first 16 bits are an int on the left side of a decimal point.
133 - the second 16 bits represent a fraction n/(2^16)
134 likewise for the 64-bit "fixed point" numbers with everything doubled :)
137 /* macros to access the left/right 16 bits of a 32-bit ntp "fixed point"
138 number. note that these can be used as lvalues too */
139 #define L16(x) (((uint16_t*)&x)[0])
140 #define R16(x) (((uint16_t*)&x)[1])
141 /* macros to access the left/right 32 bits of a 64-bit ntp "fixed point"
142 number. these too can be used as lvalues */
143 #define L32(x) (((uint32_t*)&x)[0])
144 #define R32(x) (((uint32_t*)&x)[1])
146 /* ntp wants seconds since 1/1/00, epoch is 1/1/70. this is the difference */
147 #define EPOCHDIFF 0x83aa7e80UL
149 /* extract a 32-bit ntp fixed point number into a double */
150 #define NTP32asDOUBLE(x) (ntohs(L16(x)) + (double)ntohs(R16(x))/65536.0)
152 /* likewise for a 64-bit ntp fp number */
153 #define NTP64asDOUBLE(n) (double)(((uint64_t)n)?\
154 (ntohl(L32(n))-EPOCHDIFF) + \
155 (.00000001*(0.5+(double)(ntohl(R32(n))/42.94967296))):\
158 /* convert a struct timeval to a double */
159 #define TVasDOUBLE(x) (double)(x.tv_sec+(0.000001*x.tv_usec))
161 /* convert an ntp 64-bit fp number to a struct timeval */
162 #define NTP64toTV(n,t) \
163 do{ if(!n) t.tv_sec = t.tv_usec = 0; \
164 else { \
165 t.tv_sec=ntohl(L32(n))-EPOCHDIFF; \
166 t.tv_usec=(int)(0.5+(double)(ntohl(R32(n))/4294.967296)); \
168 }while(0)
170 /* convert a struct timeval to an ntp 64-bit fp number */
171 #define TVtoNTP64(t,n) \
172 do{ if(!t.tv_usec && !t.tv_sec) n=0x0UL; \
173 else { \
174 L32(n)=htonl(t.tv_sec + EPOCHDIFF); \
175 R32(n)=htonl((uint64_t)((4294.967296*t.tv_usec)+.5)); \
177 } while(0)
179 /* NTP control message header is 12 bytes, plus any data in the data
180 * field, plus null padding to the nearest 32-bit boundary per rfc.
182 #define SIZEOF_NTPCM(m) (12+ntohs(m.count)+((m.count)?4-(ntohs(m.count)%4):0))
184 /* finally, a little helper or two for debugging: */
185 #define DBG(x) do{if(verbose>1){ x; }}while(0);
186 #define PRINTSOCKADDR(x) \
187 do{ \
188 printf("%u.%u.%u.%u", (x>>24)&0xff, (x>>16)&0xff, (x>>8)&0xff, x&0xff);\
189 }while(0);
191 /* calculate the offset of the local clock */
192 static inline double calc_offset(const ntp_message *m, const struct timeval *t){
193 double client_tx, peer_rx, peer_tx, client_rx;
194 client_tx = NTP64asDOUBLE(m->origts);
195 peer_rx = NTP64asDOUBLE(m->rxts);
196 peer_tx = NTP64asDOUBLE(m->txts);
197 client_rx=TVasDOUBLE((*t));
198 return (.5*((peer_tx-client_rx)+(peer_rx-client_tx)));
201 /* print out a ntp packet in human readable/debuggable format */
202 void print_ntp_message(const ntp_message *p){
203 struct timeval ref, orig, rx, tx;
205 NTP64toTV(p->refts,ref);
206 NTP64toTV(p->origts,orig);
207 NTP64toTV(p->rxts,rx);
208 NTP64toTV(p->txts,tx);
210 printf("packet contents:\n");
211 printf("\tflags: 0x%.2x\n", p->flags);
212 printf("\t li=%d (0x%.2x)\n", LI(p->flags), p->flags&LI_MASK);
213 printf("\t vn=%d (0x%.2x)\n", VN(p->flags), p->flags&VN_MASK);
214 printf("\t mode=%d (0x%.2x)\n", MODE(p->flags), p->flags&MODE_MASK);
215 printf("\tstratum = %d\n", p->stratum);
216 printf("\tpoll = %g\n", pow(2, p->poll));
217 printf("\tprecision = %g\n", pow(2, p->precision));
218 printf("\trtdelay = %-.16g\n", NTP32asDOUBLE(p->rtdelay));
219 printf("\trtdisp = %-.16g\n", NTP32asDOUBLE(p->rtdisp));
220 printf("\trefid = %x\n", p->refid);
221 printf("\trefts = %-.16g\n", NTP64asDOUBLE(p->refts));
222 printf("\torigts = %-.16g\n", NTP64asDOUBLE(p->origts));
223 printf("\trxts = %-.16g\n", NTP64asDOUBLE(p->rxts));
224 printf("\ttxts = %-.16g\n", NTP64asDOUBLE(p->txts));
227 void setup_request(ntp_message *p){
228 struct timeval t;
230 memset(p, 0, sizeof(ntp_message));
231 LI_SET(p->flags, LI_ALARM);
232 VN_SET(p->flags, 4);
233 MODE_SET(p->flags, MODE_CLIENT);
234 p->poll=4;
235 p->precision=(int8_t)0xfa;
236 L16(p->rtdelay)=htons(1);
237 L16(p->rtdisp)=htons(1);
239 gettimeofday(&t, NULL);
240 TVtoNTP64(t,p->txts);
243 /* select the "best" server from a list of servers, and return its index.
244 * this is done by filtering servers based on stratum, dispersion, and
245 * finally round-trip delay. */
246 int best_offset_server(const ntp_server_results *slist, int nservers){
247 int cserver=0, best_server=-1;
249 /* for each server */
250 for(cserver=0; cserver<nservers; cserver++){
251 /* We don't want any servers that fails these tests */
252 /* Sort out servers that didn't respond or responede with a 0 stratum;
253 * stratum 0 is for reference clocks so no NTP server should ever report
254 * a stratum 0 */
255 if ( slist[cserver].stratum == 0){
256 if (verbose) printf("discarding peer %d: stratum=%d\n", cserver, slist[cserver].stratum);
257 continue;
259 /* Sort out servers with error flags */
260 if ( LI(slist[cserver].flags) == LI_ALARM ){
261 if (verbose) printf("discarding peer %d: flags=%d\n", cserver, LI(slist[cserver].flags));
262 continue;
265 /* If we don't have a server yet, use the first one */
266 if (best_server == -1) {
267 best_server = cserver;
268 DBG(printf("using peer %d as our first candidate\n", best_server));
269 continue;
272 /* compare the server to the best one we've seen so far */
273 /* does it have an equal or better stratum? */
274 DBG(printf("comparing peer %d with peer %d\n", cserver, best_server));
275 if(slist[cserver].stratum <= slist[best_server].stratum){
276 DBG(printf("stratum for peer %d <= peer %d\n", cserver, best_server));
277 /* does it have an equal or better dispersion? */
278 if(slist[cserver].rtdisp <= slist[best_server].rtdisp){
279 DBG(printf("dispersion for peer %d <= peer %d\n", cserver, best_server));
280 /* does it have a better rtdelay? */
281 if(slist[cserver].rtdelay < slist[best_server].rtdelay){
282 DBG(printf("rtdelay for peer %d < peer %d\n", cserver, best_server));
283 best_server = cserver;
284 DBG(printf("peer %d is now our best candidate\n", best_server));
290 if(best_server >= 0) {
291 DBG(printf("best server selected: peer %d\n", best_server));
292 return best_server;
293 } else {
294 DBG(printf("no peers meeting synchronization criteria :(\n"));
295 return -1;
299 /* do everything we need to get the total average offset
300 * - we use a certain amount of parallelization with poll() to ensure
301 * we don't waste time sitting around waiting for single packets.
302 * - we also "manually" handle resolving host names and connecting, because
303 * we have to do it in a way that our lazy macros don't handle currently :( */
304 double offset_request(const char *host, int *status){
305 int i=0, j=0, ga_result=0, num_hosts=0, *socklist=NULL, respnum=0;
306 int servers_completed=0, one_read=0, servers_readable=0, best_index=-1;
307 time_t now_time=0, start_ts=0;
308 ntp_message *req=NULL;
309 double avg_offset=0.;
310 struct timeval recv_time;
311 struct addrinfo *ai=NULL, *ai_tmp=NULL, hints;
312 struct pollfd *ufds=NULL;
313 ntp_server_results *servers=NULL;
315 /* setup hints to only return results from getaddrinfo that we'd like */
316 memset(&hints, 0, sizeof(struct addrinfo));
317 hints.ai_family = address_family;
318 hints.ai_protocol = IPPROTO_UDP;
319 hints.ai_socktype = SOCK_DGRAM;
321 /* fill in ai with the list of hosts resolved by the host name */
322 ga_result = getaddrinfo(host, port, &hints, &ai);
323 if(ga_result!=0){
324 die(STATE_UNKNOWN, "error getting address for %s: %s\n",
325 host, gai_strerror(ga_result));
328 /* count the number of returned hosts, and allocate stuff accordingly */
329 for(ai_tmp=ai; ai_tmp!=NULL; ai_tmp=ai_tmp->ai_next){ num_hosts++; }
330 req=(ntp_message*)malloc(sizeof(ntp_message)*num_hosts);
331 if(req==NULL) die(STATE_UNKNOWN, "can not allocate ntp message array");
332 socklist=(int*)malloc(sizeof(int)*num_hosts);
333 if(socklist==NULL) die(STATE_UNKNOWN, "can not allocate socket array");
334 ufds=(struct pollfd*)malloc(sizeof(struct pollfd)*num_hosts);
335 if(ufds==NULL) die(STATE_UNKNOWN, "can not allocate socket array");
336 servers=(ntp_server_results*)malloc(sizeof(ntp_server_results)*num_hosts);
337 if(servers==NULL) die(STATE_UNKNOWN, "can not allocate server array");
338 memset(servers, 0, sizeof(ntp_server_results)*num_hosts);
339 DBG(printf("Found %d peers to check\n", num_hosts));
341 /* setup each socket for writing, and the corresponding struct pollfd */
342 ai_tmp=ai;
343 for(i=0;ai_tmp;i++){
344 socklist[i]=socket(ai_tmp->ai_family, SOCK_DGRAM, IPPROTO_UDP);
345 if(socklist[i] == -1) {
346 perror(NULL);
347 die(STATE_UNKNOWN, "can not create new socket");
349 if(connect(socklist[i], ai_tmp->ai_addr, ai_tmp->ai_addrlen)){
350 /* don't die here, because it is enough if there is one server
351 answering in time. This also would break for dual ipv4/6 stacked
352 ntp servers when the client only supports on of them.
354 DBG(printf("can't create socket connection on peer %i: %s\n", i, strerror(errno)));
355 } else {
356 ufds[i].fd=socklist[i];
357 ufds[i].events=POLLIN;
358 ufds[i].revents=0;
360 ai_tmp = ai_tmp->ai_next;
363 /* now do AVG_NUM checks to each host. We stop before timeout/2 seconds
364 * have passed in order to ensure post-processing and jitter time. */
365 now_time=start_ts=time(NULL);
366 while(servers_completed<num_hosts && now_time-start_ts <= socket_timeout/2){
367 /* loop through each server and find each one which hasn't
368 * been touched in the past second or so and is still lacking
369 * some responses. For each of these servers, send a new request,
370 * and update the "waiting" timestamp with the current time. */
371 now_time=time(NULL);
373 for(i=0; i<num_hosts; i++){
374 if(servers[i].waiting<now_time && servers[i].num_responses<AVG_NUM){
375 if(verbose && servers[i].waiting != 0) printf("re-");
376 if(verbose) printf("sending request to peer %d\n", i);
377 setup_request(&req[i]);
378 write(socklist[i], &req[i], sizeof(ntp_message));
379 servers[i].waiting=now_time;
380 break;
384 /* quickly poll for any sockets with pending data */
385 servers_readable=poll(ufds, num_hosts, 100);
386 if(servers_readable==-1){
387 perror("polling ntp sockets");
388 die(STATE_UNKNOWN, "communication errors");
391 /* read from any sockets with pending data */
392 for(i=0; servers_readable && i<num_hosts; i++){
393 if(ufds[i].revents&POLLIN && servers[i].num_responses < AVG_NUM){
394 if(verbose) {
395 printf("response from peer %d: ", i);
398 read(ufds[i].fd, &req[i], sizeof(ntp_message));
399 gettimeofday(&recv_time, NULL);
400 DBG(print_ntp_message(&req[i]));
401 respnum=servers[i].num_responses++;
402 servers[i].offset[respnum]=calc_offset(&req[i], &recv_time)+time_offset;
403 if(verbose) {
404 printf("offset %.10g\n", servers[i].offset[respnum]);
406 servers[i].stratum=req[i].stratum;
407 servers[i].rtdisp=NTP32asDOUBLE(req[i].rtdisp);
408 servers[i].rtdelay=NTP32asDOUBLE(req[i].rtdelay);
409 servers[i].waiting=0;
410 servers[i].flags=req[i].flags;
411 servers_readable--;
412 one_read = 1;
413 if(servers[i].num_responses==AVG_NUM) servers_completed++;
416 /* lather, rinse, repeat. */
419 if (one_read == 0) {
420 die(STATE_CRITICAL, "NTP CRITICAL: No response from NTP server\n");
423 /* now, pick the best server from the list */
424 best_index=best_offset_server(servers, num_hosts);
425 if(best_index < 0){
426 *status=STATE_UNKNOWN;
427 } else {
428 /* finally, calculate the average offset */
429 for(i=0; i<servers[best_index].num_responses;i++){
430 avg_offset+=servers[best_index].offset[i];
432 avg_offset/=servers[best_index].num_responses;
435 /* cleanup */
436 for(j=0; j<num_hosts; j++){ close(socklist[j]); }
437 free(socklist);
438 free(ufds);
439 free(servers);
440 free(req);
441 freeaddrinfo(ai);
443 if(verbose) printf("overall average offset: %.10g\n", avg_offset);
444 return avg_offset;
447 int process_arguments(int argc, char **argv){
448 int c;
449 int option=0;
450 static struct option longopts[] = {
451 {"version", no_argument, 0, 'V'},
452 {"help", no_argument, 0, 'h'},
453 {"verbose", no_argument, 0, 'v'},
454 {"use-ipv4", no_argument, 0, '4'},
455 {"use-ipv6", no_argument, 0, '6'},
456 {"quiet", no_argument, 0, 'q'},
457 {"time-offset", optional_argument, 0, 'o'},
458 {"warning", required_argument, 0, 'w'},
459 {"critical", required_argument, 0, 'c'},
460 {"timeout", required_argument, 0, 't'},
461 {"hostname", required_argument, 0, 'H'},
462 {"port", required_argument, 0, 'p'},
463 {0, 0, 0, 0}
467 if (argc < 2)
468 usage ("\n");
470 while (1) {
471 c = getopt_long (argc, argv, "Vhv46qw:c:t:H:p:o:", longopts, &option);
472 if (c == -1 || c == EOF || c == 1)
473 break;
475 switch (c) {
476 case 'h':
477 print_help();
478 exit(STATE_UNKNOWN);
479 break;
480 case 'V':
481 print_revision(progname, NP_VERSION);
482 exit(STATE_UNKNOWN);
483 break;
484 case 'v':
485 verbose++;
486 break;
487 case 'q':
488 quiet = 1;
489 break;
490 case 'w':
491 owarn = optarg;
492 break;
493 case 'c':
494 ocrit = optarg;
495 break;
496 case 'H':
497 if(is_host(optarg) == FALSE)
498 usage2(_("Invalid hostname/address"), optarg);
499 server_address = strdup(optarg);
500 break;
501 case 'p':
502 port = strdup(optarg);
503 break;
504 case 't':
505 socket_timeout=atoi(optarg);
506 break;
507 case 'o':
508 time_offset=atoi(optarg);
509 break;
510 case '4':
511 address_family = AF_INET;
512 break;
513 case '6':
514 #ifdef USE_IPV6
515 address_family = AF_INET6;
516 #else
517 usage4 (_("IPv6 support not available"));
518 #endif
519 break;
520 case '?':
521 /* print short usage statement if args not parsable */
522 usage5 ();
523 break;
527 if(server_address == NULL){
528 usage4(_("Hostname was not supplied"));
531 return 0;
534 char *perfd_offset (double offset)
536 return fperfdata ("offset", offset, "s",
537 TRUE, offset_thresholds->warning->end,
538 TRUE, offset_thresholds->critical->end,
539 FALSE, 0, FALSE, 0);
542 int main(int argc, char *argv[]){
543 int result, offset_result;
544 double offset=0;
545 char *result_line, *perfdata_line;
547 setlocale (LC_ALL, "");
548 bindtextdomain (PACKAGE, LOCALEDIR);
549 textdomain (PACKAGE);
551 result = offset_result = STATE_OK;
553 /* Parse extra opts if any */
554 argv=np_extra_opts (&argc, argv, progname);
556 if (process_arguments (argc, argv) == ERROR)
557 usage4 (_("Could not parse arguments"));
559 set_thresholds(&offset_thresholds, owarn, ocrit);
561 /* initialize alarm signal handling */
562 signal (SIGALRM, socket_timeout_alarm_handler);
564 /* set socket timeout */
565 alarm (socket_timeout);
567 offset = offset_request(server_address, &offset_result);
568 if (offset_result == STATE_UNKNOWN) {
569 result = (quiet == 1 ? STATE_UNKNOWN : STATE_CRITICAL);
570 } else {
571 result = get_status(fabs(offset), offset_thresholds);
574 switch (result) {
575 case STATE_CRITICAL :
576 xasprintf(&result_line, _("NTP CRITICAL:"));
577 break;
578 case STATE_WARNING :
579 xasprintf(&result_line, _("NTP WARNING:"));
580 break;
581 case STATE_OK :
582 xasprintf(&result_line, _("NTP OK:"));
583 break;
584 default :
585 xasprintf(&result_line, _("NTP UNKNOWN:"));
586 break;
588 if(offset_result == STATE_UNKNOWN){
589 xasprintf(&result_line, "%s %s", result_line, _("Offset unknown"));
590 xasprintf(&perfdata_line, "");
591 } else {
592 xasprintf(&result_line, "%s %s %.10g secs", result_line, _("Offset"), offset);
593 xasprintf(&perfdata_line, "%s", perfd_offset(offset));
595 printf("%s|%s\n", result_line, perfdata_line);
597 if(server_address!=NULL) free(server_address);
598 return result;
601 void print_help(void){
602 print_revision(progname, NP_VERSION);
604 printf ("Copyright (c) 2006 Sean Finney\n");
605 printf (COPYRIGHT, copyright, email);
607 printf ("%s\n", _("This plugin checks the clock offset with the ntp server"));
609 printf ("\n\n");
611 print_usage();
612 printf (UT_HELP_VRSN);
613 printf (UT_EXTRA_OPTS);
614 printf (UT_IPv46);
615 printf (UT_HOST_PORT, 'p', "123");
616 printf (" %s\n", "-q, --quiet");
617 printf (" %s\n", _("Returns UNKNOWN instead of CRITICAL if offset cannot be found"));
618 printf (" %s\n", "-w, --warning=THRESHOLD");
619 printf (" %s\n", _("Offset to result in warning status (seconds)"));
620 printf (" %s\n", "-c, --critical=THRESHOLD");
621 printf (" %s\n", _("Offset to result in critical status (seconds)"));
622 printf (" %s\n", "-o, --time_offset=INTEGER");
623 printf (" %s\n", _("Expected offset of the ntp server relative to local server (seconds)"));
624 printf (UT_CONN_TIMEOUT, DEFAULT_SOCKET_TIMEOUT);
625 printf (UT_VERBOSE);
627 printf("\n");
628 printf("%s\n", _("This plugin checks the clock offset between the local host and a"));
629 printf("%s\n", _("remote NTP server. It is independent of any commandline programs or"));
630 printf("%s\n", _("external libraries."));
632 printf("\n");
633 printf("%s\n", _("Notes:"));
634 printf(" %s\n", _("If you'd rather want to monitor an NTP server, please use"));
635 printf(" %s\n", _("check_ntp_peer."));
636 printf(" %s\n", _("--time-offset is useful for compensating for servers with known"));
637 printf(" %s\n", _("and expected clock skew."));
638 printf("\n");
639 printf(UT_THRESHOLDS_NOTES);
641 printf("\n");
642 printf("%s\n", _("Examples:"));
643 printf(" %s\n", ("./check_ntp_time -H ntpserv -w 0.5 -c 1"));
645 printf (UT_SUPPORT);
648 void
649 print_usage(void)
651 printf ("%s\n", _("Usage:"));
652 printf(" %s -H <host> [-4|-6] [-w <warn>] [-c <crit>] [-v verbose] [-o <time offset>]\n", progname);