svg_converted: fix build (zlib2 split)
[mldonkey.git] / src / utils / lib / md5_c.c
blobc30a3b78af4472ad72f43b7d42996380b8766b48
1 /*
2 Copyright (C) 1999 Aladdin Enterprises. All rights reserved.
4 This software is provided 'as-is', without any express or implied
5 warranty. In no event will the authors be held liable for any damages
6 arising from the use of this software.
8 Permission is granted to anyone to use this software for any purpose,
9 including commercial applications, and to alter it and redistribute it
10 freely, subject to the following restrictions:
12 1. The origin of this software must not be misrepresented; you must not
13 claim that you wrote the original software. If you use this software
14 in a product, an acknowledgment in the product documentation would be
15 appreciated but is not required.
16 2. Altered source versions must be plainly marked as such, and must not be
17 misrepresented as being the original software.
18 3. This notice may not be removed or altered from any source distribution.
20 L. Peter Deutsch
21 ghost@aladdin.com
25 Independent implementation of MD5 (RFC 1321).
27 This code implements the MD5 Algorithm defined in RFC 1321.
28 It is derived directly from the text of the RFC and not from the
29 reference implementation.
31 The original and principal author of md5.c is L. Peter Deutsch
32 <ghost@aladdin.com>. Other authors are noted in the change history
33 that follows (in reverse chronological order):
35 1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
36 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
37 1999-05-03 lpd Original version.
40 #include "md5.h"
41 #include "os_stubs.h"
42 #include <string.h>
43 #include <caml/config.h>
45 #ifdef TEST
47 * Compile with -DTEST to create a self-contained executable test program.
48 * The test program should print out the same values as given in section
49 * A.5 of RFC 1321, reproduced below.
51 #include <string.h>
52 main()
54 static const char *const test[7] = {
55 "", /*d41d8cd98f00b204e9800998ecf8427e*/
56 "945399884.61923487334tuvga", /*0cc175b9c0f1b6a831c399e269772661*/
57 "abc", /*900150983cd24fb0d6963f7d28e17f72*/
58 "message digest", /*f96b697d7cb7938d525a2f31aaf161d0*/
59 "abcdefghijklmnopqrstuvwxyz", /*c3fcd3d76192e4007dfb496cca67e13b*/
60 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
61 /*d174ab98d277d9f5a5611c2c9f419d9f*/
62 "12345678901234567890123456789012345678901234567890123456789012345678901234567890" /*57edf4a22be3c955ac49da2e2107b67a*/
64 int i;
66 for (i = 0; i < 7; ++i) {
67 md5_state_t state;
68 md5_byte_t digest[16];
69 int di;
71 md5_init(&state);
72 md5_append(&state, (const md5_byte_t *)test[i], strlen(test[i]));
73 md5_finish(&state, digest);
74 printf("MD5 (\"%s\") = ", test[i]);
75 for (di = 0; di < 16; ++di)
76 printf("%02x", digest[di]);
77 printf("\n");
79 return 0;
81 #endif /* TEST */
85 * For reference, here is the program that computed the T values.
87 #if 0
88 #include <math.h>
89 main()
91 int i;
92 for (i = 1; i <= 64; ++i) {
93 unsigned long v = (unsigned long)(4294967296.0 * fabs(sin((double)i)));
94 printf("#define T%d 0x%08lx\n", i, v);
96 return 0;
98 #endif
100 * End of T computation program.
102 #define T1 0xd76aa478
103 #define T2 0xe8c7b756
104 #define T3 0x242070db
105 #define T4 0xc1bdceee
106 #define T5 0xf57c0faf
107 #define T6 0x4787c62a
108 #define T7 0xa8304613
109 #define T8 0xfd469501
110 #define T9 0x698098d8
111 #define T10 0x8b44f7af
112 #define T11 0xffff5bb1
113 #define T12 0x895cd7be
114 #define T13 0x6b901122
115 #define T14 0xfd987193
116 #define T15 0xa679438e
117 #define T16 0x49b40821
118 #define T17 0xf61e2562
119 #define T18 0xc040b340
120 #define T19 0x265e5a51
121 #define T20 0xe9b6c7aa
122 #define T21 0xd62f105d
123 #define T22 0x02441453
124 #define T23 0xd8a1e681
125 #define T24 0xe7d3fbc8
126 #define T25 0x21e1cde6
127 #define T26 0xc33707d6
128 #define T27 0xf4d50d87
129 #define T28 0x455a14ed
130 #define T29 0xa9e3e905
131 #define T30 0xfcefa3f8
132 #define T31 0x676f02d9
133 #define T32 0x8d2a4c8a
134 #define T33 0xfffa3942
135 #define T34 0x8771f681
136 #define T35 0x6d9d6122
137 #define T36 0xfde5380c
138 #define T37 0xa4beea44
139 #define T38 0x4bdecfa9
140 #define T39 0xf6bb4b60
141 #define T40 0xbebfbc70
142 #define T41 0x289b7ec6
143 #define T42 0xeaa127fa
144 #define T43 0xd4ef3085
145 #define T44 0x04881d05
146 #define T45 0xd9d4d039
147 #define T46 0xe6db99e5
148 #define T47 0x1fa27cf8
149 #define T48 0xc4ac5665
150 #define T49 0xf4292244
151 #define T50 0x432aff97
152 #define T51 0xab9423a7
153 #define T52 0xfc93a039
154 #define T53 0x655b59c3
155 #define T54 0x8f0ccc92
156 #define T55 0xffeff47d
157 #define T56 0x85845dd1
158 #define T57 0x6fa87e4f
159 #define T58 0xfe2ce6e0
160 #define T59 0xa3014314
161 #define T60 0x4e0811a1
162 #define T61 0xf7537e82
163 #define T62 0xbd3af235
164 #define T63 0x2ad7d2bb
165 #define T64 0xeb86d391
167 static void
168 md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
170 md5_word_t
171 a = pms->abcd[0], b = pms->abcd[1],
172 c = pms->abcd[2], d = pms->abcd[3];
173 md5_word_t t;
175 #if defined(ARCH_BIG_ENDIAN)
178 * On big-endian machines, we must arrange the bytes in the right
179 * order. (This also works on machines of unknown byte order.)
181 md5_word_t X[16];
182 const md5_byte_t *xp = data;
183 int i;
185 for (i = 0; i < 16; ++i, xp += 4)
186 X[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
188 #else /* !ARCH_BIG_ENDIAN */
191 * On little-endian machines, we can process properly aligned data
192 * without copying it.
194 md5_word_t xbuf[16];
195 const md5_word_t *X;
197 if (!((data - (const md5_byte_t *)0) & 3)) {
198 /* data are properly aligned */
199 X = (const md5_word_t *)data;
200 } else {
201 /* not aligned */
202 memcpy(xbuf, data, 64);
203 X = xbuf;
205 #endif
207 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
209 /* Round 1. */
210 /* Let [abcd k s i] denote the operation
211 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
212 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
213 #define SET(a, b, c, d, k, s, Ti)\
214 t = a + F(b,c,d) + X[k] + Ti;\
215 a = ROTATE_LEFT(t, s) + b
216 /* Do the following 16 operations. */
217 SET(a, b, c, d, 0, 7, T1);
218 SET(d, a, b, c, 1, 12, T2);
219 SET(c, d, a, b, 2, 17, T3);
220 SET(b, c, d, a, 3, 22, T4);
221 SET(a, b, c, d, 4, 7, T5);
222 SET(d, a, b, c, 5, 12, T6);
223 SET(c, d, a, b, 6, 17, T7);
224 SET(b, c, d, a, 7, 22, T8);
225 SET(a, b, c, d, 8, 7, T9);
226 SET(d, a, b, c, 9, 12, T10);
227 SET(c, d, a, b, 10, 17, T11);
228 SET(b, c, d, a, 11, 22, T12);
229 SET(a, b, c, d, 12, 7, T13);
230 SET(d, a, b, c, 13, 12, T14);
231 SET(c, d, a, b, 14, 17, T15);
232 SET(b, c, d, a, 15, 22, T16);
233 #undef SET
235 /* Round 2. */
236 /* Let [abcd k s i] denote the operation
237 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
238 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
239 #define SET(a, b, c, d, k, s, Ti)\
240 t = a + G(b,c,d) + X[k] + Ti;\
241 a = ROTATE_LEFT(t, s) + b
242 /* Do the following 16 operations. */
243 SET(a, b, c, d, 1, 5, T17);
244 SET(d, a, b, c, 6, 9, T18);
245 SET(c, d, a, b, 11, 14, T19);
246 SET(b, c, d, a, 0, 20, T20);
247 SET(a, b, c, d, 5, 5, T21);
248 SET(d, a, b, c, 10, 9, T22);
249 SET(c, d, a, b, 15, 14, T23);
250 SET(b, c, d, a, 4, 20, T24);
251 SET(a, b, c, d, 9, 5, T25);
252 SET(d, a, b, c, 14, 9, T26);
253 SET(c, d, a, b, 3, 14, T27);
254 SET(b, c, d, a, 8, 20, T28);
255 SET(a, b, c, d, 13, 5, T29);
256 SET(d, a, b, c, 2, 9, T30);
257 SET(c, d, a, b, 7, 14, T31);
258 SET(b, c, d, a, 12, 20, T32);
259 #undef SET
261 /* Round 3. */
262 /* Let [abcd k s t] denote the operation
263 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
264 #define H(x, y, z) ((x) ^ (y) ^ (z))
265 #define SET(a, b, c, d, k, s, Ti)\
266 t = a + H(b,c,d) + X[k] + Ti;\
267 a = ROTATE_LEFT(t, s) + b
268 /* Do the following 16 operations. */
269 SET(a, b, c, d, 5, 4, T33);
270 SET(d, a, b, c, 8, 11, T34);
271 SET(c, d, a, b, 11, 16, T35);
272 SET(b, c, d, a, 14, 23, T36);
273 SET(a, b, c, d, 1, 4, T37);
274 SET(d, a, b, c, 4, 11, T38);
275 SET(c, d, a, b, 7, 16, T39);
276 SET(b, c, d, a, 10, 23, T40);
277 SET(a, b, c, d, 13, 4, T41);
278 SET(d, a, b, c, 0, 11, T42);
279 SET(c, d, a, b, 3, 16, T43);
280 SET(b, c, d, a, 6, 23, T44);
281 SET(a, b, c, d, 9, 4, T45);
282 SET(d, a, b, c, 12, 11, T46);
283 SET(c, d, a, b, 15, 16, T47);
284 SET(b, c, d, a, 2, 23, T48);
285 #undef SET
287 /* Round 4. */
288 /* Let [abcd k s t] denote the operation
289 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
290 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
291 #define SET(a, b, c, d, k, s, Ti)\
292 t = a + I(b,c,d) + X[k] + Ti;\
293 a = ROTATE_LEFT(t, s) + b
294 /* Do the following 16 operations. */
295 SET(a, b, c, d, 0, 6, T49);
296 SET(d, a, b, c, 7, 10, T50);
297 SET(c, d, a, b, 14, 15, T51);
298 SET(b, c, d, a, 5, 21, T52);
299 SET(a, b, c, d, 12, 6, T53);
300 SET(d, a, b, c, 3, 10, T54);
301 SET(c, d, a, b, 10, 15, T55);
302 SET(b, c, d, a, 1, 21, T56);
303 SET(a, b, c, d, 8, 6, T57);
304 SET(d, a, b, c, 15, 10, T58);
305 SET(c, d, a, b, 6, 15, T59);
306 SET(b, c, d, a, 13, 21, T60);
307 SET(a, b, c, d, 4, 6, T61);
308 SET(d, a, b, c, 11, 10, T62);
309 SET(c, d, a, b, 2, 15, T63);
310 SET(b, c, d, a, 9, 21, T64);
311 #undef SET
313 /* Then perform the following additions. (That is increment each
314 of the four registers by the value it had before this block
315 was started.) */
316 pms->abcd[0] += a;
317 pms->abcd[1] += b;
318 pms->abcd[2] += c;
319 pms->abcd[3] += d;
322 void
323 md5_init(md5_state_t *pms)
325 pms->count[0] = pms->count[1] = 0;
326 pms->abcd[0] = 0x67452301;
327 pms->abcd[1] = 0xefcdab89;
328 pms->abcd[2] = 0x98badcfe;
329 pms->abcd[3] = 0x10325476;
332 void
333 md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
335 const md5_byte_t *p = data;
336 int left = nbytes;
337 int offset = (pms->count[0] >> 3) & 63;
338 md5_word_t nbits = (md5_word_t)(nbytes << 3);
340 if (nbytes <= 0)
341 return;
343 /* Update the message length. */
344 pms->count[1] += nbytes >> 29;
345 pms->count[0] += nbits;
346 if (pms->count[0] < nbits)
347 pms->count[1]++;
349 /* Process an initial partial block. */
350 if (offset) {
351 int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
353 memcpy(pms->buf + offset, p, copy);
354 if (offset + copy < 64)
355 return;
356 p += copy;
357 left -= copy;
358 md5_process(pms, pms->buf);
361 /* Process full blocks. */
362 for (; left >= 64; p += 64, left -= 64)
363 md5_process(pms, p);
365 /* Process a final partial block. */
366 if (left)
367 memcpy(pms->buf, p, left);
370 void
371 md5_finish(md5_state_t *pms, md5_byte_t digest[16])
373 static const md5_byte_t pad[64] = {
374 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
375 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
376 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
377 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
379 md5_byte_t data[8];
380 int i;
382 /* Save the length before padding. */
383 for (i = 0; i < 8; ++i)
384 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
385 /* Pad to 56 bytes mod 64. */
386 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
387 /* Append the length. */
388 md5_append(pms, data, 8);
389 for (i = 0; i < 16; ++i)
390 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));