Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / net / sunrpc / xprtrdma / svc_rdma_sendto.c
blob981f190c1b398278b496300a69b733fe2469c922
1 /*
2 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * Author: Tom Tucker <tom@opengridcomputing.com>
42 #include <linux/sunrpc/debug.h>
43 #include <linux/sunrpc/rpc_rdma.h>
44 #include <linux/spinlock.h>
45 #include <asm/unaligned.h>
46 #include <rdma/ib_verbs.h>
47 #include <rdma/rdma_cm.h>
48 #include <linux/sunrpc/svc_rdma.h>
50 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
52 /* Encode an XDR as an array of IB SGE
54 * Assumptions:
55 * - head[0] is physically contiguous.
56 * - tail[0] is physically contiguous.
57 * - pages[] is not physically or virtually contigous and consists of
58 * PAGE_SIZE elements.
60 * Output:
61 * SGE[0] reserved for RCPRDMA header
62 * SGE[1] data from xdr->head[]
63 * SGE[2..sge_count-2] data from xdr->pages[]
64 * SGE[sge_count-1] data from xdr->tail.
67 static struct ib_sge *xdr_to_sge(struct svcxprt_rdma *xprt,
68 struct xdr_buf *xdr,
69 struct ib_sge *sge,
70 int *sge_count)
72 /* Max we need is the length of the XDR / pagesize + one for
73 * head + one for tail + one for RPCRDMA header
75 int sge_max = (xdr->len+PAGE_SIZE-1) / PAGE_SIZE + 3;
76 int sge_no;
77 u32 byte_count = xdr->len;
78 u32 sge_bytes;
79 u32 page_bytes;
80 int page_off;
81 int page_no;
83 /* Skip the first sge, this is for the RPCRDMA header */
84 sge_no = 1;
86 /* Head SGE */
87 sge[sge_no].addr = ib_dma_map_single(xprt->sc_cm_id->device,
88 xdr->head[0].iov_base,
89 xdr->head[0].iov_len,
90 DMA_TO_DEVICE);
91 sge_bytes = min_t(u32, byte_count, xdr->head[0].iov_len);
92 byte_count -= sge_bytes;
93 sge[sge_no].length = sge_bytes;
94 sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
95 sge_no++;
97 /* pages SGE */
98 page_no = 0;
99 page_bytes = xdr->page_len;
100 page_off = xdr->page_base;
101 while (byte_count && page_bytes) {
102 sge_bytes = min_t(u32, byte_count, (PAGE_SIZE-page_off));
103 sge[sge_no].addr =
104 ib_dma_map_page(xprt->sc_cm_id->device,
105 xdr->pages[page_no], page_off,
106 sge_bytes, DMA_TO_DEVICE);
107 sge_bytes = min(sge_bytes, page_bytes);
108 byte_count -= sge_bytes;
109 page_bytes -= sge_bytes;
110 sge[sge_no].length = sge_bytes;
111 sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
113 sge_no++;
114 page_no++;
115 page_off = 0; /* reset for next time through loop */
118 /* Tail SGE */
119 if (byte_count && xdr->tail[0].iov_len) {
120 sge[sge_no].addr =
121 ib_dma_map_single(xprt->sc_cm_id->device,
122 xdr->tail[0].iov_base,
123 xdr->tail[0].iov_len,
124 DMA_TO_DEVICE);
125 sge_bytes = min_t(u32, byte_count, xdr->tail[0].iov_len);
126 byte_count -= sge_bytes;
127 sge[sge_no].length = sge_bytes;
128 sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
129 sge_no++;
132 BUG_ON(sge_no > sge_max);
133 BUG_ON(byte_count != 0);
135 *sge_count = sge_no;
136 return sge;
140 /* Assumptions:
141 * - The specified write_len can be represented in sc_max_sge * PAGE_SIZE
143 static int send_write(struct svcxprt_rdma *xprt, struct svc_rqst *rqstp,
144 u32 rmr, u64 to,
145 u32 xdr_off, int write_len,
146 struct ib_sge *xdr_sge, int sge_count)
148 struct svc_rdma_op_ctxt *tmp_sge_ctxt;
149 struct ib_send_wr write_wr;
150 struct ib_sge *sge;
151 int xdr_sge_no;
152 int sge_no;
153 int sge_bytes;
154 int sge_off;
155 int bc;
156 struct svc_rdma_op_ctxt *ctxt;
157 int ret = 0;
159 BUG_ON(sge_count > RPCSVC_MAXPAGES);
160 dprintk("svcrdma: RDMA_WRITE rmr=%x, to=%llx, xdr_off=%d, "
161 "write_len=%d, xdr_sge=%p, sge_count=%d\n",
162 rmr, (unsigned long long)to, xdr_off,
163 write_len, xdr_sge, sge_count);
165 ctxt = svc_rdma_get_context(xprt);
166 ctxt->count = 0;
167 tmp_sge_ctxt = svc_rdma_get_context(xprt);
168 sge = tmp_sge_ctxt->sge;
170 /* Find the SGE associated with xdr_off */
171 for (bc = xdr_off, xdr_sge_no = 1; bc && xdr_sge_no < sge_count;
172 xdr_sge_no++) {
173 if (xdr_sge[xdr_sge_no].length > bc)
174 break;
175 bc -= xdr_sge[xdr_sge_no].length;
178 sge_off = bc;
179 bc = write_len;
180 sge_no = 0;
182 /* Copy the remaining SGE */
183 while (bc != 0 && xdr_sge_no < sge_count) {
184 sge[sge_no].addr = xdr_sge[xdr_sge_no].addr + sge_off;
185 sge[sge_no].lkey = xdr_sge[xdr_sge_no].lkey;
186 sge_bytes = min((size_t)bc,
187 (size_t)(xdr_sge[xdr_sge_no].length-sge_off));
188 sge[sge_no].length = sge_bytes;
190 sge_off = 0;
191 sge_no++;
192 xdr_sge_no++;
193 bc -= sge_bytes;
196 BUG_ON(bc != 0);
197 BUG_ON(xdr_sge_no > sge_count);
199 /* Prepare WRITE WR */
200 memset(&write_wr, 0, sizeof write_wr);
201 ctxt->wr_op = IB_WR_RDMA_WRITE;
202 write_wr.wr_id = (unsigned long)ctxt;
203 write_wr.sg_list = &sge[0];
204 write_wr.num_sge = sge_no;
205 write_wr.opcode = IB_WR_RDMA_WRITE;
206 write_wr.send_flags = IB_SEND_SIGNALED;
207 write_wr.wr.rdma.rkey = rmr;
208 write_wr.wr.rdma.remote_addr = to;
210 /* Post It */
211 atomic_inc(&rdma_stat_write);
212 if (svc_rdma_send(xprt, &write_wr)) {
213 svc_rdma_put_context(ctxt, 1);
214 /* Fatal error, close transport */
215 ret = -EIO;
217 svc_rdma_put_context(tmp_sge_ctxt, 0);
218 return ret;
221 static int send_write_chunks(struct svcxprt_rdma *xprt,
222 struct rpcrdma_msg *rdma_argp,
223 struct rpcrdma_msg *rdma_resp,
224 struct svc_rqst *rqstp,
225 struct ib_sge *sge,
226 int sge_count)
228 u32 xfer_len = rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len;
229 int write_len;
230 int max_write;
231 u32 xdr_off;
232 int chunk_off;
233 int chunk_no;
234 struct rpcrdma_write_array *arg_ary;
235 struct rpcrdma_write_array *res_ary;
236 int ret;
238 arg_ary = svc_rdma_get_write_array(rdma_argp);
239 if (!arg_ary)
240 return 0;
241 res_ary = (struct rpcrdma_write_array *)
242 &rdma_resp->rm_body.rm_chunks[1];
244 max_write = xprt->sc_max_sge * PAGE_SIZE;
246 /* Write chunks start at the pagelist */
247 for (xdr_off = rqstp->rq_res.head[0].iov_len, chunk_no = 0;
248 xfer_len && chunk_no < arg_ary->wc_nchunks;
249 chunk_no++) {
250 struct rpcrdma_segment *arg_ch;
251 u64 rs_offset;
253 arg_ch = &arg_ary->wc_array[chunk_no].wc_target;
254 write_len = min(xfer_len, arg_ch->rs_length);
256 /* Prepare the response chunk given the length actually
257 * written */
258 rs_offset = get_unaligned(&(arg_ch->rs_offset));
259 svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no,
260 arg_ch->rs_handle,
261 rs_offset,
262 write_len);
263 chunk_off = 0;
264 while (write_len) {
265 int this_write;
266 this_write = min(write_len, max_write);
267 ret = send_write(xprt, rqstp,
268 arg_ch->rs_handle,
269 rs_offset + chunk_off,
270 xdr_off,
271 this_write,
272 sge,
273 sge_count);
274 if (ret) {
275 dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n",
276 ret);
277 return -EIO;
279 chunk_off += this_write;
280 xdr_off += this_write;
281 xfer_len -= this_write;
282 write_len -= this_write;
285 /* Update the req with the number of chunks actually used */
286 svc_rdma_xdr_encode_write_list(rdma_resp, chunk_no);
288 return rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len;
291 static int send_reply_chunks(struct svcxprt_rdma *xprt,
292 struct rpcrdma_msg *rdma_argp,
293 struct rpcrdma_msg *rdma_resp,
294 struct svc_rqst *rqstp,
295 struct ib_sge *sge,
296 int sge_count)
298 u32 xfer_len = rqstp->rq_res.len;
299 int write_len;
300 int max_write;
301 u32 xdr_off;
302 int chunk_no;
303 int chunk_off;
304 struct rpcrdma_segment *ch;
305 struct rpcrdma_write_array *arg_ary;
306 struct rpcrdma_write_array *res_ary;
307 int ret;
309 arg_ary = svc_rdma_get_reply_array(rdma_argp);
310 if (!arg_ary)
311 return 0;
312 /* XXX: need to fix when reply lists occur with read-list and or
313 * write-list */
314 res_ary = (struct rpcrdma_write_array *)
315 &rdma_resp->rm_body.rm_chunks[2];
317 max_write = xprt->sc_max_sge * PAGE_SIZE;
319 /* xdr offset starts at RPC message */
320 for (xdr_off = 0, chunk_no = 0;
321 xfer_len && chunk_no < arg_ary->wc_nchunks;
322 chunk_no++) {
323 u64 rs_offset;
324 ch = &arg_ary->wc_array[chunk_no].wc_target;
325 write_len = min(xfer_len, ch->rs_length);
328 /* Prepare the reply chunk given the length actually
329 * written */
330 rs_offset = get_unaligned(&(ch->rs_offset));
331 svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no,
332 ch->rs_handle, rs_offset,
333 write_len);
334 chunk_off = 0;
335 while (write_len) {
336 int this_write;
338 this_write = min(write_len, max_write);
339 ret = send_write(xprt, rqstp,
340 ch->rs_handle,
341 rs_offset + chunk_off,
342 xdr_off,
343 this_write,
344 sge,
345 sge_count);
346 if (ret) {
347 dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n",
348 ret);
349 return -EIO;
351 chunk_off += this_write;
352 xdr_off += this_write;
353 xfer_len -= this_write;
354 write_len -= this_write;
357 /* Update the req with the number of chunks actually used */
358 svc_rdma_xdr_encode_reply_array(res_ary, chunk_no);
360 return rqstp->rq_res.len;
363 /* This function prepares the portion of the RPCRDMA message to be
364 * sent in the RDMA_SEND. This function is called after data sent via
365 * RDMA has already been transmitted. There are three cases:
366 * - The RPCRDMA header, RPC header, and payload are all sent in a
367 * single RDMA_SEND. This is the "inline" case.
368 * - The RPCRDMA header and some portion of the RPC header and data
369 * are sent via this RDMA_SEND and another portion of the data is
370 * sent via RDMA.
371 * - The RPCRDMA header [NOMSG] is sent in this RDMA_SEND and the RPC
372 * header and data are all transmitted via RDMA.
373 * In all three cases, this function prepares the RPCRDMA header in
374 * sge[0], the 'type' parameter indicates the type to place in the
375 * RPCRDMA header, and the 'byte_count' field indicates how much of
376 * the XDR to include in this RDMA_SEND.
378 static int send_reply(struct svcxprt_rdma *rdma,
379 struct svc_rqst *rqstp,
380 struct page *page,
381 struct rpcrdma_msg *rdma_resp,
382 struct svc_rdma_op_ctxt *ctxt,
383 int sge_count,
384 int byte_count)
386 struct ib_send_wr send_wr;
387 int sge_no;
388 int sge_bytes;
389 int page_no;
390 int ret;
392 /* Prepare the context */
393 ctxt->pages[0] = page;
394 ctxt->count = 1;
396 /* Prepare the SGE for the RPCRDMA Header */
397 ctxt->sge[0].addr =
398 ib_dma_map_page(rdma->sc_cm_id->device,
399 page, 0, PAGE_SIZE, DMA_TO_DEVICE);
400 ctxt->direction = DMA_TO_DEVICE;
401 ctxt->sge[0].length = svc_rdma_xdr_get_reply_hdr_len(rdma_resp);
402 ctxt->sge[0].lkey = rdma->sc_phys_mr->lkey;
404 /* Determine how many of our SGE are to be transmitted */
405 for (sge_no = 1; byte_count && sge_no < sge_count; sge_no++) {
406 sge_bytes = min((size_t)ctxt->sge[sge_no].length,
407 (size_t)byte_count);
408 byte_count -= sge_bytes;
410 BUG_ON(byte_count != 0);
412 /* Save all respages in the ctxt and remove them from the
413 * respages array. They are our pages until the I/O
414 * completes.
416 for (page_no = 0; page_no < rqstp->rq_resused; page_no++) {
417 ctxt->pages[page_no+1] = rqstp->rq_respages[page_no];
418 ctxt->count++;
419 rqstp->rq_respages[page_no] = NULL;
422 BUG_ON(sge_no > rdma->sc_max_sge);
423 memset(&send_wr, 0, sizeof send_wr);
424 ctxt->wr_op = IB_WR_SEND;
425 send_wr.wr_id = (unsigned long)ctxt;
426 send_wr.sg_list = ctxt->sge;
427 send_wr.num_sge = sge_no;
428 send_wr.opcode = IB_WR_SEND;
429 send_wr.send_flags = IB_SEND_SIGNALED;
431 ret = svc_rdma_send(rdma, &send_wr);
432 if (ret)
433 svc_rdma_put_context(ctxt, 1);
435 return ret;
438 void svc_rdma_prep_reply_hdr(struct svc_rqst *rqstp)
443 * Return the start of an xdr buffer.
445 static void *xdr_start(struct xdr_buf *xdr)
447 return xdr->head[0].iov_base -
448 (xdr->len -
449 xdr->page_len -
450 xdr->tail[0].iov_len -
451 xdr->head[0].iov_len);
454 int svc_rdma_sendto(struct svc_rqst *rqstp)
456 struct svc_xprt *xprt = rqstp->rq_xprt;
457 struct svcxprt_rdma *rdma =
458 container_of(xprt, struct svcxprt_rdma, sc_xprt);
459 struct rpcrdma_msg *rdma_argp;
460 struct rpcrdma_msg *rdma_resp;
461 struct rpcrdma_write_array *reply_ary;
462 enum rpcrdma_proc reply_type;
463 int ret;
464 int inline_bytes;
465 struct ib_sge *sge;
466 int sge_count = 0;
467 struct page *res_page;
468 struct svc_rdma_op_ctxt *ctxt;
470 dprintk("svcrdma: sending response for rqstp=%p\n", rqstp);
472 /* Get the RDMA request header. */
473 rdma_argp = xdr_start(&rqstp->rq_arg);
475 /* Build an SGE for the XDR */
476 ctxt = svc_rdma_get_context(rdma);
477 ctxt->direction = DMA_TO_DEVICE;
478 sge = xdr_to_sge(rdma, &rqstp->rq_res, ctxt->sge, &sge_count);
480 inline_bytes = rqstp->rq_res.len;
482 /* Create the RDMA response header */
483 res_page = svc_rdma_get_page();
484 rdma_resp = page_address(res_page);
485 reply_ary = svc_rdma_get_reply_array(rdma_argp);
486 if (reply_ary)
487 reply_type = RDMA_NOMSG;
488 else
489 reply_type = RDMA_MSG;
490 svc_rdma_xdr_encode_reply_header(rdma, rdma_argp,
491 rdma_resp, reply_type);
493 /* Send any write-chunk data and build resp write-list */
494 ret = send_write_chunks(rdma, rdma_argp, rdma_resp,
495 rqstp, sge, sge_count);
496 if (ret < 0) {
497 printk(KERN_ERR "svcrdma: failed to send write chunks, rc=%d\n",
498 ret);
499 goto error;
501 inline_bytes -= ret;
503 /* Send any reply-list data and update resp reply-list */
504 ret = send_reply_chunks(rdma, rdma_argp, rdma_resp,
505 rqstp, sge, sge_count);
506 if (ret < 0) {
507 printk(KERN_ERR "svcrdma: failed to send reply chunks, rc=%d\n",
508 ret);
509 goto error;
511 inline_bytes -= ret;
513 ret = send_reply(rdma, rqstp, res_page, rdma_resp, ctxt, sge_count,
514 inline_bytes);
515 dprintk("svcrdma: send_reply returns %d\n", ret);
516 return ret;
517 error:
518 svc_rdma_put_context(ctxt, 0);
519 put_page(res_page);
520 return ret;