Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / include / linux / skbuff.h
blobbbd8d0027e2f5b77278842f40b5982422e59b10c
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
114 #endif
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
121 __u32 qlen;
122 spinlock_t lock;
125 struct sk_buff;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t;
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
184 SKB_GSO_TCPV6 = 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
259 struct dst_entry *dst;
260 struct sec_path *sp;
263 * This is the control buffer. It is free to use for every
264 * layer. Please put your private variables there. If you
265 * want to keep them across layers you have to do a skb_clone()
266 * first. This is owned by whoever has the skb queued ATM.
268 char cb[48];
270 unsigned int len,
271 data_len;
272 __u16 mac_len,
273 hdr_len;
274 union {
275 __wsum csum;
276 struct {
277 __u16 csum_start;
278 __u16 csum_offset;
281 __u32 priority;
282 __u8 local_df:1,
283 cloned:1,
284 ip_summed:2,
285 nohdr:1,
286 nfctinfo:3;
287 __u8 pkt_type:3,
288 fclone:2,
289 ipvs_property:1,
290 peeked:1,
291 nf_trace:1;
292 __be16 protocol;
294 void (*destructor)(struct sk_buff *skb);
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298 #endif
299 #ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301 #endif
303 int iif;
304 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
305 __u16 queue_mapping;
306 #endif
307 #ifdef CONFIG_NET_SCHED
308 __u16 tc_index; /* traffic control index */
309 #ifdef CONFIG_NET_CLS_ACT
310 __u16 tc_verd; /* traffic control verdict */
311 #endif
312 #endif
313 /* 2 byte hole */
315 #ifdef CONFIG_NET_DMA
316 dma_cookie_t dma_cookie;
317 #endif
318 #ifdef CONFIG_NETWORK_SECMARK
319 __u32 secmark;
320 #endif
322 __u32 mark;
324 sk_buff_data_t transport_header;
325 sk_buff_data_t network_header;
326 sk_buff_data_t mac_header;
327 /* These elements must be at the end, see alloc_skb() for details. */
328 sk_buff_data_t tail;
329 sk_buff_data_t end;
330 unsigned char *head,
331 *data;
332 unsigned int truesize;
333 atomic_t users;
336 #ifdef __KERNEL__
338 * Handling routines are only of interest to the kernel
340 #include <linux/slab.h>
342 #include <asm/system.h>
344 extern void kfree_skb(struct sk_buff *skb);
345 extern void __kfree_skb(struct sk_buff *skb);
346 extern struct sk_buff *__alloc_skb(unsigned int size,
347 gfp_t priority, int fclone, int node);
348 static inline struct sk_buff *alloc_skb(unsigned int size,
349 gfp_t priority)
351 return __alloc_skb(size, priority, 0, -1);
354 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
355 gfp_t priority)
357 return __alloc_skb(size, priority, 1, -1);
360 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
361 extern struct sk_buff *skb_clone(struct sk_buff *skb,
362 gfp_t priority);
363 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
364 gfp_t priority);
365 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
366 gfp_t gfp_mask);
367 extern int pskb_expand_head(struct sk_buff *skb,
368 int nhead, int ntail,
369 gfp_t gfp_mask);
370 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
371 unsigned int headroom);
372 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
373 int newheadroom, int newtailroom,
374 gfp_t priority);
375 extern int skb_to_sgvec(struct sk_buff *skb,
376 struct scatterlist *sg, int offset,
377 int len);
378 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
379 struct sk_buff **trailer);
380 extern int skb_pad(struct sk_buff *skb, int pad);
381 #define dev_kfree_skb(a) kfree_skb(a)
382 extern void skb_over_panic(struct sk_buff *skb, int len,
383 void *here);
384 extern void skb_under_panic(struct sk_buff *skb, int len,
385 void *here);
386 extern void skb_truesize_bug(struct sk_buff *skb);
388 static inline void skb_truesize_check(struct sk_buff *skb)
390 int len = sizeof(struct sk_buff) + skb->len;
392 if (unlikely((int)skb->truesize < len))
393 skb_truesize_bug(skb);
396 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
397 int getfrag(void *from, char *to, int offset,
398 int len,int odd, struct sk_buff *skb),
399 void *from, int length);
401 struct skb_seq_state
403 __u32 lower_offset;
404 __u32 upper_offset;
405 __u32 frag_idx;
406 __u32 stepped_offset;
407 struct sk_buff *root_skb;
408 struct sk_buff *cur_skb;
409 __u8 *frag_data;
412 extern void skb_prepare_seq_read(struct sk_buff *skb,
413 unsigned int from, unsigned int to,
414 struct skb_seq_state *st);
415 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
416 struct skb_seq_state *st);
417 extern void skb_abort_seq_read(struct skb_seq_state *st);
419 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
420 unsigned int to, struct ts_config *config,
421 struct ts_state *state);
423 #ifdef NET_SKBUFF_DATA_USES_OFFSET
424 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
426 return skb->head + skb->end;
428 #else
429 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
431 return skb->end;
433 #endif
435 /* Internal */
436 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
439 * skb_queue_empty - check if a queue is empty
440 * @list: queue head
442 * Returns true if the queue is empty, false otherwise.
444 static inline int skb_queue_empty(const struct sk_buff_head *list)
446 return list->next == (struct sk_buff *)list;
450 * skb_get - reference buffer
451 * @skb: buffer to reference
453 * Makes another reference to a socket buffer and returns a pointer
454 * to the buffer.
456 static inline struct sk_buff *skb_get(struct sk_buff *skb)
458 atomic_inc(&skb->users);
459 return skb;
463 * If users == 1, we are the only owner and are can avoid redundant
464 * atomic change.
468 * skb_cloned - is the buffer a clone
469 * @skb: buffer to check
471 * Returns true if the buffer was generated with skb_clone() and is
472 * one of multiple shared copies of the buffer. Cloned buffers are
473 * shared data so must not be written to under normal circumstances.
475 static inline int skb_cloned(const struct sk_buff *skb)
477 return skb->cloned &&
478 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
482 * skb_header_cloned - is the header a clone
483 * @skb: buffer to check
485 * Returns true if modifying the header part of the buffer requires
486 * the data to be copied.
488 static inline int skb_header_cloned(const struct sk_buff *skb)
490 int dataref;
492 if (!skb->cloned)
493 return 0;
495 dataref = atomic_read(&skb_shinfo(skb)->dataref);
496 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
497 return dataref != 1;
501 * skb_header_release - release reference to header
502 * @skb: buffer to operate on
504 * Drop a reference to the header part of the buffer. This is done
505 * by acquiring a payload reference. You must not read from the header
506 * part of skb->data after this.
508 static inline void skb_header_release(struct sk_buff *skb)
510 BUG_ON(skb->nohdr);
511 skb->nohdr = 1;
512 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
516 * skb_shared - is the buffer shared
517 * @skb: buffer to check
519 * Returns true if more than one person has a reference to this
520 * buffer.
522 static inline int skb_shared(const struct sk_buff *skb)
524 return atomic_read(&skb->users) != 1;
528 * skb_share_check - check if buffer is shared and if so clone it
529 * @skb: buffer to check
530 * @pri: priority for memory allocation
532 * If the buffer is shared the buffer is cloned and the old copy
533 * drops a reference. A new clone with a single reference is returned.
534 * If the buffer is not shared the original buffer is returned. When
535 * being called from interrupt status or with spinlocks held pri must
536 * be GFP_ATOMIC.
538 * NULL is returned on a memory allocation failure.
540 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
541 gfp_t pri)
543 might_sleep_if(pri & __GFP_WAIT);
544 if (skb_shared(skb)) {
545 struct sk_buff *nskb = skb_clone(skb, pri);
546 kfree_skb(skb);
547 skb = nskb;
549 return skb;
553 * Copy shared buffers into a new sk_buff. We effectively do COW on
554 * packets to handle cases where we have a local reader and forward
555 * and a couple of other messy ones. The normal one is tcpdumping
556 * a packet thats being forwarded.
560 * skb_unshare - make a copy of a shared buffer
561 * @skb: buffer to check
562 * @pri: priority for memory allocation
564 * If the socket buffer is a clone then this function creates a new
565 * copy of the data, drops a reference count on the old copy and returns
566 * the new copy with the reference count at 1. If the buffer is not a clone
567 * the original buffer is returned. When called with a spinlock held or
568 * from interrupt state @pri must be %GFP_ATOMIC
570 * %NULL is returned on a memory allocation failure.
572 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
573 gfp_t pri)
575 might_sleep_if(pri & __GFP_WAIT);
576 if (skb_cloned(skb)) {
577 struct sk_buff *nskb = skb_copy(skb, pri);
578 kfree_skb(skb); /* Free our shared copy */
579 skb = nskb;
581 return skb;
585 * skb_peek
586 * @list_: list to peek at
588 * Peek an &sk_buff. Unlike most other operations you _MUST_
589 * be careful with this one. A peek leaves the buffer on the
590 * list and someone else may run off with it. You must hold
591 * the appropriate locks or have a private queue to do this.
593 * Returns %NULL for an empty list or a pointer to the head element.
594 * The reference count is not incremented and the reference is therefore
595 * volatile. Use with caution.
597 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
599 struct sk_buff *list = ((struct sk_buff *)list_)->next;
600 if (list == (struct sk_buff *)list_)
601 list = NULL;
602 return list;
606 * skb_peek_tail
607 * @list_: list to peek at
609 * Peek an &sk_buff. Unlike most other operations you _MUST_
610 * be careful with this one. A peek leaves the buffer on the
611 * list and someone else may run off with it. You must hold
612 * the appropriate locks or have a private queue to do this.
614 * Returns %NULL for an empty list or a pointer to the tail element.
615 * The reference count is not incremented and the reference is therefore
616 * volatile. Use with caution.
618 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
620 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
621 if (list == (struct sk_buff *)list_)
622 list = NULL;
623 return list;
627 * skb_queue_len - get queue length
628 * @list_: list to measure
630 * Return the length of an &sk_buff queue.
632 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
634 return list_->qlen;
638 * This function creates a split out lock class for each invocation;
639 * this is needed for now since a whole lot of users of the skb-queue
640 * infrastructure in drivers have different locking usage (in hardirq)
641 * than the networking core (in softirq only). In the long run either the
642 * network layer or drivers should need annotation to consolidate the
643 * main types of usage into 3 classes.
645 static inline void skb_queue_head_init(struct sk_buff_head *list)
647 spin_lock_init(&list->lock);
648 list->prev = list->next = (struct sk_buff *)list;
649 list->qlen = 0;
652 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
653 struct lock_class_key *class)
655 skb_queue_head_init(list);
656 lockdep_set_class(&list->lock, class);
660 * Insert an sk_buff at the start of a list.
662 * The "__skb_xxxx()" functions are the non-atomic ones that
663 * can only be called with interrupts disabled.
667 * __skb_queue_after - queue a buffer at the list head
668 * @list: list to use
669 * @prev: place after this buffer
670 * @newsk: buffer to queue
672 * Queue a buffer int the middle of a list. This function takes no locks
673 * and you must therefore hold required locks before calling it.
675 * A buffer cannot be placed on two lists at the same time.
677 static inline void __skb_queue_after(struct sk_buff_head *list,
678 struct sk_buff *prev,
679 struct sk_buff *newsk)
681 struct sk_buff *next;
682 list->qlen++;
684 next = prev->next;
685 newsk->next = next;
686 newsk->prev = prev;
687 next->prev = prev->next = newsk;
691 * __skb_queue_head - queue a buffer at the list head
692 * @list: list to use
693 * @newsk: buffer to queue
695 * Queue a buffer at the start of a list. This function takes no locks
696 * and you must therefore hold required locks before calling it.
698 * A buffer cannot be placed on two lists at the same time.
700 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
701 static inline void __skb_queue_head(struct sk_buff_head *list,
702 struct sk_buff *newsk)
704 __skb_queue_after(list, (struct sk_buff *)list, newsk);
708 * __skb_queue_tail - queue a buffer at the list tail
709 * @list: list to use
710 * @newsk: buffer to queue
712 * Queue a buffer at the end of a list. This function takes no locks
713 * and you must therefore hold required locks before calling it.
715 * A buffer cannot be placed on two lists at the same time.
717 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
718 static inline void __skb_queue_tail(struct sk_buff_head *list,
719 struct sk_buff *newsk)
721 struct sk_buff *prev, *next;
723 list->qlen++;
724 next = (struct sk_buff *)list;
725 prev = next->prev;
726 newsk->next = next;
727 newsk->prev = prev;
728 next->prev = prev->next = newsk;
733 * __skb_dequeue - remove from the head of the queue
734 * @list: list to dequeue from
736 * Remove the head of the list. This function does not take any locks
737 * so must be used with appropriate locks held only. The head item is
738 * returned or %NULL if the list is empty.
740 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
741 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
743 struct sk_buff *next, *prev, *result;
745 prev = (struct sk_buff *) list;
746 next = prev->next;
747 result = NULL;
748 if (next != prev) {
749 result = next;
750 next = next->next;
751 list->qlen--;
752 next->prev = prev;
753 prev->next = next;
754 result->next = result->prev = NULL;
756 return result;
761 * Insert a packet on a list.
763 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
764 static inline void __skb_insert(struct sk_buff *newsk,
765 struct sk_buff *prev, struct sk_buff *next,
766 struct sk_buff_head *list)
768 newsk->next = next;
769 newsk->prev = prev;
770 next->prev = prev->next = newsk;
771 list->qlen++;
775 * Place a packet after a given packet in a list.
777 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
778 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
780 __skb_insert(newsk, old, old->next, list);
784 * remove sk_buff from list. _Must_ be called atomically, and with
785 * the list known..
787 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
788 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
790 struct sk_buff *next, *prev;
792 list->qlen--;
793 next = skb->next;
794 prev = skb->prev;
795 skb->next = skb->prev = NULL;
796 next->prev = prev;
797 prev->next = next;
801 /* XXX: more streamlined implementation */
804 * __skb_dequeue_tail - remove from the tail of the queue
805 * @list: list to dequeue from
807 * Remove the tail of the list. This function does not take any locks
808 * so must be used with appropriate locks held only. The tail item is
809 * returned or %NULL if the list is empty.
811 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
812 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
814 struct sk_buff *skb = skb_peek_tail(list);
815 if (skb)
816 __skb_unlink(skb, list);
817 return skb;
821 static inline int skb_is_nonlinear(const struct sk_buff *skb)
823 return skb->data_len;
826 static inline unsigned int skb_headlen(const struct sk_buff *skb)
828 return skb->len - skb->data_len;
831 static inline int skb_pagelen(const struct sk_buff *skb)
833 int i, len = 0;
835 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
836 len += skb_shinfo(skb)->frags[i].size;
837 return len + skb_headlen(skb);
840 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
841 struct page *page, int off, int size)
843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
845 frag->page = page;
846 frag->page_offset = off;
847 frag->size = size;
848 skb_shinfo(skb)->nr_frags = i + 1;
851 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
852 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
853 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
855 #ifdef NET_SKBUFF_DATA_USES_OFFSET
856 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
858 return skb->head + skb->tail;
861 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
863 skb->tail = skb->data - skb->head;
866 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
868 skb_reset_tail_pointer(skb);
869 skb->tail += offset;
871 #else /* NET_SKBUFF_DATA_USES_OFFSET */
872 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
874 return skb->tail;
877 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
879 skb->tail = skb->data;
882 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
884 skb->tail = skb->data + offset;
887 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
890 * Add data to an sk_buff
892 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
894 unsigned char *tmp = skb_tail_pointer(skb);
895 SKB_LINEAR_ASSERT(skb);
896 skb->tail += len;
897 skb->len += len;
898 return tmp;
902 * skb_put - add data to a buffer
903 * @skb: buffer to use
904 * @len: amount of data to add
906 * This function extends the used data area of the buffer. If this would
907 * exceed the total buffer size the kernel will panic. A pointer to the
908 * first byte of the extra data is returned.
910 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
912 unsigned char *tmp = skb_tail_pointer(skb);
913 SKB_LINEAR_ASSERT(skb);
914 skb->tail += len;
915 skb->len += len;
916 if (unlikely(skb->tail > skb->end))
917 skb_over_panic(skb, len, current_text_addr());
918 return tmp;
921 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
923 skb->data -= len;
924 skb->len += len;
925 return skb->data;
929 * skb_push - add data to the start of a buffer
930 * @skb: buffer to use
931 * @len: amount of data to add
933 * This function extends the used data area of the buffer at the buffer
934 * start. If this would exceed the total buffer headroom the kernel will
935 * panic. A pointer to the first byte of the extra data is returned.
937 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
939 skb->data -= len;
940 skb->len += len;
941 if (unlikely(skb->data<skb->head))
942 skb_under_panic(skb, len, current_text_addr());
943 return skb->data;
946 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
948 skb->len -= len;
949 BUG_ON(skb->len < skb->data_len);
950 return skb->data += len;
954 * skb_pull - remove data from the start of a buffer
955 * @skb: buffer to use
956 * @len: amount of data to remove
958 * This function removes data from the start of a buffer, returning
959 * the memory to the headroom. A pointer to the next data in the buffer
960 * is returned. Once the data has been pulled future pushes will overwrite
961 * the old data.
963 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
965 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
968 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
970 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
972 if (len > skb_headlen(skb) &&
973 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
974 return NULL;
975 skb->len -= len;
976 return skb->data += len;
979 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
981 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
984 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
986 if (likely(len <= skb_headlen(skb)))
987 return 1;
988 if (unlikely(len > skb->len))
989 return 0;
990 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
994 * skb_headroom - bytes at buffer head
995 * @skb: buffer to check
997 * Return the number of bytes of free space at the head of an &sk_buff.
999 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1001 return skb->data - skb->head;
1005 * skb_tailroom - bytes at buffer end
1006 * @skb: buffer to check
1008 * Return the number of bytes of free space at the tail of an sk_buff
1010 static inline int skb_tailroom(const struct sk_buff *skb)
1012 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1016 * skb_reserve - adjust headroom
1017 * @skb: buffer to alter
1018 * @len: bytes to move
1020 * Increase the headroom of an empty &sk_buff by reducing the tail
1021 * room. This is only allowed for an empty buffer.
1023 static inline void skb_reserve(struct sk_buff *skb, int len)
1025 skb->data += len;
1026 skb->tail += len;
1029 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1030 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1032 return skb->head + skb->transport_header;
1035 static inline void skb_reset_transport_header(struct sk_buff *skb)
1037 skb->transport_header = skb->data - skb->head;
1040 static inline void skb_set_transport_header(struct sk_buff *skb,
1041 const int offset)
1043 skb_reset_transport_header(skb);
1044 skb->transport_header += offset;
1047 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1049 return skb->head + skb->network_header;
1052 static inline void skb_reset_network_header(struct sk_buff *skb)
1054 skb->network_header = skb->data - skb->head;
1057 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1059 skb_reset_network_header(skb);
1060 skb->network_header += offset;
1063 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1065 return skb->head + skb->mac_header;
1068 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1070 return skb->mac_header != ~0U;
1073 static inline void skb_reset_mac_header(struct sk_buff *skb)
1075 skb->mac_header = skb->data - skb->head;
1078 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1080 skb_reset_mac_header(skb);
1081 skb->mac_header += offset;
1084 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1086 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1088 return skb->transport_header;
1091 static inline void skb_reset_transport_header(struct sk_buff *skb)
1093 skb->transport_header = skb->data;
1096 static inline void skb_set_transport_header(struct sk_buff *skb,
1097 const int offset)
1099 skb->transport_header = skb->data + offset;
1102 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1104 return skb->network_header;
1107 static inline void skb_reset_network_header(struct sk_buff *skb)
1109 skb->network_header = skb->data;
1112 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1114 skb->network_header = skb->data + offset;
1117 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1119 return skb->mac_header;
1122 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1124 return skb->mac_header != NULL;
1127 static inline void skb_reset_mac_header(struct sk_buff *skb)
1129 skb->mac_header = skb->data;
1132 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1134 skb->mac_header = skb->data + offset;
1136 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1138 static inline int skb_transport_offset(const struct sk_buff *skb)
1140 return skb_transport_header(skb) - skb->data;
1143 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1145 return skb->transport_header - skb->network_header;
1148 static inline int skb_network_offset(const struct sk_buff *skb)
1150 return skb_network_header(skb) - skb->data;
1154 * CPUs often take a performance hit when accessing unaligned memory
1155 * locations. The actual performance hit varies, it can be small if the
1156 * hardware handles it or large if we have to take an exception and fix it
1157 * in software.
1159 * Since an ethernet header is 14 bytes network drivers often end up with
1160 * the IP header at an unaligned offset. The IP header can be aligned by
1161 * shifting the start of the packet by 2 bytes. Drivers should do this
1162 * with:
1164 * skb_reserve(NET_IP_ALIGN);
1166 * The downside to this alignment of the IP header is that the DMA is now
1167 * unaligned. On some architectures the cost of an unaligned DMA is high
1168 * and this cost outweighs the gains made by aligning the IP header.
1170 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1171 * to be overridden.
1173 #ifndef NET_IP_ALIGN
1174 #define NET_IP_ALIGN 2
1175 #endif
1178 * The networking layer reserves some headroom in skb data (via
1179 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1180 * the header has to grow. In the default case, if the header has to grow
1181 * 16 bytes or less we avoid the reallocation.
1183 * Unfortunately this headroom changes the DMA alignment of the resulting
1184 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1185 * on some architectures. An architecture can override this value,
1186 * perhaps setting it to a cacheline in size (since that will maintain
1187 * cacheline alignment of the DMA). It must be a power of 2.
1189 * Various parts of the networking layer expect at least 16 bytes of
1190 * headroom, you should not reduce this.
1192 #ifndef NET_SKB_PAD
1193 #define NET_SKB_PAD 16
1194 #endif
1196 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1198 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1200 if (unlikely(skb->data_len)) {
1201 WARN_ON(1);
1202 return;
1204 skb->len = len;
1205 skb_set_tail_pointer(skb, len);
1209 * skb_trim - remove end from a buffer
1210 * @skb: buffer to alter
1211 * @len: new length
1213 * Cut the length of a buffer down by removing data from the tail. If
1214 * the buffer is already under the length specified it is not modified.
1215 * The skb must be linear.
1217 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1219 if (skb->len > len)
1220 __skb_trim(skb, len);
1224 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1226 if (skb->data_len)
1227 return ___pskb_trim(skb, len);
1228 __skb_trim(skb, len);
1229 return 0;
1232 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1234 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1238 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1239 * @skb: buffer to alter
1240 * @len: new length
1242 * This is identical to pskb_trim except that the caller knows that
1243 * the skb is not cloned so we should never get an error due to out-
1244 * of-memory.
1246 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1248 int err = pskb_trim(skb, len);
1249 BUG_ON(err);
1253 * skb_orphan - orphan a buffer
1254 * @skb: buffer to orphan
1256 * If a buffer currently has an owner then we call the owner's
1257 * destructor function and make the @skb unowned. The buffer continues
1258 * to exist but is no longer charged to its former owner.
1260 static inline void skb_orphan(struct sk_buff *skb)
1262 if (skb->destructor)
1263 skb->destructor(skb);
1264 skb->destructor = NULL;
1265 skb->sk = NULL;
1269 * __skb_queue_purge - empty a list
1270 * @list: list to empty
1272 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1273 * the list and one reference dropped. This function does not take the
1274 * list lock and the caller must hold the relevant locks to use it.
1276 extern void skb_queue_purge(struct sk_buff_head *list);
1277 static inline void __skb_queue_purge(struct sk_buff_head *list)
1279 struct sk_buff *skb;
1280 while ((skb = __skb_dequeue(list)) != NULL)
1281 kfree_skb(skb);
1285 * __dev_alloc_skb - allocate an skbuff for receiving
1286 * @length: length to allocate
1287 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1289 * Allocate a new &sk_buff and assign it a usage count of one. The
1290 * buffer has unspecified headroom built in. Users should allocate
1291 * the headroom they think they need without accounting for the
1292 * built in space. The built in space is used for optimisations.
1294 * %NULL is returned if there is no free memory.
1296 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1297 gfp_t gfp_mask)
1299 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1300 if (likely(skb))
1301 skb_reserve(skb, NET_SKB_PAD);
1302 return skb;
1306 * dev_alloc_skb - allocate an skbuff for receiving
1307 * @length: length to allocate
1309 * Allocate a new &sk_buff and assign it a usage count of one. The
1310 * buffer has unspecified headroom built in. Users should allocate
1311 * the headroom they think they need without accounting for the
1312 * built in space. The built in space is used for optimisations.
1314 * %NULL is returned if there is no free memory. Although this function
1315 * allocates memory it can be called from an interrupt.
1317 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1319 return __dev_alloc_skb(length, GFP_ATOMIC);
1322 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1323 unsigned int length, gfp_t gfp_mask);
1326 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1327 * @dev: network device to receive on
1328 * @length: length to allocate
1330 * Allocate a new &sk_buff and assign it a usage count of one. The
1331 * buffer has unspecified headroom built in. Users should allocate
1332 * the headroom they think they need without accounting for the
1333 * built in space. The built in space is used for optimisations.
1335 * %NULL is returned if there is no free memory. Although this function
1336 * allocates memory it can be called from an interrupt.
1338 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1339 unsigned int length)
1341 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1345 * skb_clone_writable - is the header of a clone writable
1346 * @skb: buffer to check
1347 * @len: length up to which to write
1349 * Returns true if modifying the header part of the cloned buffer
1350 * does not requires the data to be copied.
1352 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1354 return !skb_header_cloned(skb) &&
1355 skb_headroom(skb) + len <= skb->hdr_len;
1358 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1359 int cloned)
1361 int delta = 0;
1363 if (headroom < NET_SKB_PAD)
1364 headroom = NET_SKB_PAD;
1365 if (headroom > skb_headroom(skb))
1366 delta = headroom - skb_headroom(skb);
1368 if (delta || cloned)
1369 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1370 GFP_ATOMIC);
1371 return 0;
1375 * skb_cow - copy header of skb when it is required
1376 * @skb: buffer to cow
1377 * @headroom: needed headroom
1379 * If the skb passed lacks sufficient headroom or its data part
1380 * is shared, data is reallocated. If reallocation fails, an error
1381 * is returned and original skb is not changed.
1383 * The result is skb with writable area skb->head...skb->tail
1384 * and at least @headroom of space at head.
1386 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1388 return __skb_cow(skb, headroom, skb_cloned(skb));
1392 * skb_cow_head - skb_cow but only making the head writable
1393 * @skb: buffer to cow
1394 * @headroom: needed headroom
1396 * This function is identical to skb_cow except that we replace the
1397 * skb_cloned check by skb_header_cloned. It should be used when
1398 * you only need to push on some header and do not need to modify
1399 * the data.
1401 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1403 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1407 * skb_padto - pad an skbuff up to a minimal size
1408 * @skb: buffer to pad
1409 * @len: minimal length
1411 * Pads up a buffer to ensure the trailing bytes exist and are
1412 * blanked. If the buffer already contains sufficient data it
1413 * is untouched. Otherwise it is extended. Returns zero on
1414 * success. The skb is freed on error.
1417 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1419 unsigned int size = skb->len;
1420 if (likely(size >= len))
1421 return 0;
1422 return skb_pad(skb, len-size);
1425 static inline int skb_add_data(struct sk_buff *skb,
1426 char __user *from, int copy)
1428 const int off = skb->len;
1430 if (skb->ip_summed == CHECKSUM_NONE) {
1431 int err = 0;
1432 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1433 copy, 0, &err);
1434 if (!err) {
1435 skb->csum = csum_block_add(skb->csum, csum, off);
1436 return 0;
1438 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1439 return 0;
1441 __skb_trim(skb, off);
1442 return -EFAULT;
1445 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1446 struct page *page, int off)
1448 if (i) {
1449 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1451 return page == frag->page &&
1452 off == frag->page_offset + frag->size;
1454 return 0;
1457 static inline int __skb_linearize(struct sk_buff *skb)
1459 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1463 * skb_linearize - convert paged skb to linear one
1464 * @skb: buffer to linarize
1466 * If there is no free memory -ENOMEM is returned, otherwise zero
1467 * is returned and the old skb data released.
1469 static inline int skb_linearize(struct sk_buff *skb)
1471 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1475 * skb_linearize_cow - make sure skb is linear and writable
1476 * @skb: buffer to process
1478 * If there is no free memory -ENOMEM is returned, otherwise zero
1479 * is returned and the old skb data released.
1481 static inline int skb_linearize_cow(struct sk_buff *skb)
1483 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1484 __skb_linearize(skb) : 0;
1488 * skb_postpull_rcsum - update checksum for received skb after pull
1489 * @skb: buffer to update
1490 * @start: start of data before pull
1491 * @len: length of data pulled
1493 * After doing a pull on a received packet, you need to call this to
1494 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1495 * CHECKSUM_NONE so that it can be recomputed from scratch.
1498 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1499 const void *start, unsigned int len)
1501 if (skb->ip_summed == CHECKSUM_COMPLETE)
1502 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1505 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1508 * pskb_trim_rcsum - trim received skb and update checksum
1509 * @skb: buffer to trim
1510 * @len: new length
1512 * This is exactly the same as pskb_trim except that it ensures the
1513 * checksum of received packets are still valid after the operation.
1516 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1518 if (likely(len >= skb->len))
1519 return 0;
1520 if (skb->ip_summed == CHECKSUM_COMPLETE)
1521 skb->ip_summed = CHECKSUM_NONE;
1522 return __pskb_trim(skb, len);
1525 #define skb_queue_walk(queue, skb) \
1526 for (skb = (queue)->next; \
1527 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1528 skb = skb->next)
1530 #define skb_queue_walk_safe(queue, skb, tmp) \
1531 for (skb = (queue)->next, tmp = skb->next; \
1532 skb != (struct sk_buff *)(queue); \
1533 skb = tmp, tmp = skb->next)
1535 #define skb_queue_reverse_walk(queue, skb) \
1536 for (skb = (queue)->prev; \
1537 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1538 skb = skb->prev)
1541 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1542 int *peeked, int *err);
1543 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1544 int noblock, int *err);
1545 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1546 struct poll_table_struct *wait);
1547 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1548 int offset, struct iovec *to,
1549 int size);
1550 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1551 int hlen,
1552 struct iovec *iov);
1553 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1554 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1555 unsigned int flags);
1556 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1557 int len, __wsum csum);
1558 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1559 void *to, int len);
1560 extern int skb_store_bits(struct sk_buff *skb, int offset,
1561 const void *from, int len);
1562 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1563 int offset, u8 *to, int len,
1564 __wsum csum);
1565 extern int skb_splice_bits(struct sk_buff *skb,
1566 unsigned int offset,
1567 struct pipe_inode_info *pipe,
1568 unsigned int len,
1569 unsigned int flags);
1570 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1571 extern void skb_split(struct sk_buff *skb,
1572 struct sk_buff *skb1, const u32 len);
1574 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1576 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1577 int len, void *buffer)
1579 int hlen = skb_headlen(skb);
1581 if (hlen - offset >= len)
1582 return skb->data + offset;
1584 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1585 return NULL;
1587 return buffer;
1590 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1591 void *to,
1592 const unsigned int len)
1594 memcpy(to, skb->data, len);
1597 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1598 const int offset, void *to,
1599 const unsigned int len)
1601 memcpy(to, skb->data + offset, len);
1604 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1605 const void *from,
1606 const unsigned int len)
1608 memcpy(skb->data, from, len);
1611 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1612 const int offset,
1613 const void *from,
1614 const unsigned int len)
1616 memcpy(skb->data + offset, from, len);
1619 extern void skb_init(void);
1622 * skb_get_timestamp - get timestamp from a skb
1623 * @skb: skb to get stamp from
1624 * @stamp: pointer to struct timeval to store stamp in
1626 * Timestamps are stored in the skb as offsets to a base timestamp.
1627 * This function converts the offset back to a struct timeval and stores
1628 * it in stamp.
1630 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1632 *stamp = ktime_to_timeval(skb->tstamp);
1635 static inline void __net_timestamp(struct sk_buff *skb)
1637 skb->tstamp = ktime_get_real();
1640 static inline ktime_t net_timedelta(ktime_t t)
1642 return ktime_sub(ktime_get_real(), t);
1645 static inline ktime_t net_invalid_timestamp(void)
1647 return ktime_set(0, 0);
1650 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1651 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1653 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1655 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1659 * skb_checksum_complete - Calculate checksum of an entire packet
1660 * @skb: packet to process
1662 * This function calculates the checksum over the entire packet plus
1663 * the value of skb->csum. The latter can be used to supply the
1664 * checksum of a pseudo header as used by TCP/UDP. It returns the
1665 * checksum.
1667 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1668 * this function can be used to verify that checksum on received
1669 * packets. In that case the function should return zero if the
1670 * checksum is correct. In particular, this function will return zero
1671 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1672 * hardware has already verified the correctness of the checksum.
1674 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1676 return skb_csum_unnecessary(skb) ?
1677 0 : __skb_checksum_complete(skb);
1680 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1681 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1682 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1684 if (nfct && atomic_dec_and_test(&nfct->use))
1685 nf_conntrack_destroy(nfct);
1687 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1689 if (nfct)
1690 atomic_inc(&nfct->use);
1692 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1694 if (skb)
1695 atomic_inc(&skb->users);
1697 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1699 if (skb)
1700 kfree_skb(skb);
1702 #endif
1703 #ifdef CONFIG_BRIDGE_NETFILTER
1704 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1706 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1707 kfree(nf_bridge);
1709 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1711 if (nf_bridge)
1712 atomic_inc(&nf_bridge->use);
1714 #endif /* CONFIG_BRIDGE_NETFILTER */
1715 static inline void nf_reset(struct sk_buff *skb)
1717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1718 nf_conntrack_put(skb->nfct);
1719 skb->nfct = NULL;
1720 nf_conntrack_put_reasm(skb->nfct_reasm);
1721 skb->nfct_reasm = NULL;
1722 #endif
1723 #ifdef CONFIG_BRIDGE_NETFILTER
1724 nf_bridge_put(skb->nf_bridge);
1725 skb->nf_bridge = NULL;
1726 #endif
1729 /* Note: This doesn't put any conntrack and bridge info in dst. */
1730 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1732 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1733 dst->nfct = src->nfct;
1734 nf_conntrack_get(src->nfct);
1735 dst->nfctinfo = src->nfctinfo;
1736 dst->nfct_reasm = src->nfct_reasm;
1737 nf_conntrack_get_reasm(src->nfct_reasm);
1738 #endif
1739 #ifdef CONFIG_BRIDGE_NETFILTER
1740 dst->nf_bridge = src->nf_bridge;
1741 nf_bridge_get(src->nf_bridge);
1742 #endif
1745 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1747 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1748 nf_conntrack_put(dst->nfct);
1749 nf_conntrack_put_reasm(dst->nfct_reasm);
1750 #endif
1751 #ifdef CONFIG_BRIDGE_NETFILTER
1752 nf_bridge_put(dst->nf_bridge);
1753 #endif
1754 __nf_copy(dst, src);
1757 #ifdef CONFIG_NETWORK_SECMARK
1758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1760 to->secmark = from->secmark;
1763 static inline void skb_init_secmark(struct sk_buff *skb)
1765 skb->secmark = 0;
1767 #else
1768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1771 static inline void skb_init_secmark(struct sk_buff *skb)
1773 #endif
1775 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1777 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1778 skb->queue_mapping = queue_mapping;
1779 #endif
1782 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1784 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1785 return skb->queue_mapping;
1786 #else
1787 return 0;
1788 #endif
1791 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1793 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1794 to->queue_mapping = from->queue_mapping;
1795 #endif
1798 static inline int skb_is_gso(const struct sk_buff *skb)
1800 return skb_shinfo(skb)->gso_size;
1803 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1805 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1808 static inline void skb_forward_csum(struct sk_buff *skb)
1810 /* Unfortunately we don't support this one. Any brave souls? */
1811 if (skb->ip_summed == CHECKSUM_COMPLETE)
1812 skb->ip_summed = CHECKSUM_NONE;
1815 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1816 #endif /* __KERNEL__ */
1817 #endif /* _LINUX_SKBUFF_H */