Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / fs / xfs / linux-2.6 / xfs_buf.c
blobe347bfd47c9126f30680820519c31b4f06d91294
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
100 * Page Region interfaces.
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
106 * Each such region is "bytes per page / bits per long" bytes long.
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
128 unsigned long mask;
129 int first, final;
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
142 return mask;
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
163 unsigned long mask = page_region_mask(offset, length);
165 return (mask && (page_private(page) & mask) == mask);
169 * Mapping of multi-page buffers into contiguous virtual space
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
182 * Try to batch vunmaps because they are costly.
184 STATIC void
185 free_address(
186 void *addr)
188 a_list_t *aentry;
190 #ifdef CONFIG_XEN
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
199 vunmap(addr);
200 return;
201 #endif
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
216 STATIC void
217 purge_addresses(void)
219 a_list_t *aentry, *old;
221 if (as_free_head == NULL)
222 return;
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
238 * Internal xfs_buf_t object manipulation
241 STATIC void
242 _xfs_buf_initialize(
243 xfs_buf_t *bp,
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
246 size_t range_length,
247 xfs_buf_flags_t flags)
250 * We don't want certain flags to appear in b_flags.
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
282 STATIC int
283 _xfs_buf_get_pages(
284 xfs_buf_t *bp,
285 int page_count,
286 xfs_buf_flags_t flags)
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
294 } else {
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
298 return -ENOMEM;
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
302 return 0;
306 * Frees b_pages if it was allocated.
308 STATIC void
309 _xfs_buf_free_pages(
310 xfs_buf_t *bp)
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
319 * Releases the specified buffer.
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
325 void
326 xfs_buf_free(
327 xfs_buf_t *bp)
329 XB_TRACE(bp, "free", 0);
331 ASSERT(list_empty(&bp->b_hash_list));
333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334 uint i;
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
344 page_cache_release(page);
346 _xfs_buf_free_pages(bp);
349 xfs_buf_deallocate(bp);
353 * Finds all pages for buffer in question and builds it's page list.
355 STATIC int
356 _xfs_buf_lookup_pages(
357 xfs_buf_t *bp,
358 uint flags)
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
363 size_t nbytes, offset;
364 gfp_t gfp_mask = xb_to_gfp(flags);
365 unsigned short page_count, i;
366 pgoff_t first;
367 xfs_off_t end;
368 int error;
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
373 error = _xfs_buf_get_pages(bp, page_count, flags);
374 if (unlikely(error))
375 return error;
376 bp->b_flags |= _XBF_PAGE_CACHE;
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
381 for (i = 0; i < bp->b_page_count; i++) {
382 struct page *page;
383 uint retries = 0;
385 retry:
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 return -ENOMEM;
394 * This could deadlock.
396 * But until all the XFS lowlevel code is revamped to
397 * handle buffer allocation failures we can't do much.
399 if (!(++retries % 100))
400 printk(KERN_ERR
401 "XFS: possible memory allocation "
402 "deadlock in %s (mode:0x%x)\n",
403 __FUNCTION__, gfp_mask);
405 XFS_STATS_INC(xb_page_retries);
406 xfsbufd_wakeup(0, gfp_mask);
407 congestion_wait(WRITE, HZ/50);
408 goto retry;
411 XFS_STATS_INC(xb_page_found);
413 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
414 size -= nbytes;
416 ASSERT(!PagePrivate(page));
417 if (!PageUptodate(page)) {
418 page_count--;
419 if (blocksize < PAGE_CACHE_SIZE && !PagePrivate(page)) {
420 if (test_page_region(page, offset, nbytes))
421 page_count++;
425 unlock_page(page);
426 bp->b_pages[i] = page;
427 offset = 0;
430 if (page_count == bp->b_page_count)
431 bp->b_flags |= XBF_DONE;
433 XB_TRACE(bp, "lookup_pages", (long)page_count);
434 return error;
438 * Map buffer into kernel address-space if nessecary.
440 STATIC int
441 _xfs_buf_map_pages(
442 xfs_buf_t *bp,
443 uint flags)
445 /* A single page buffer is always mappable */
446 if (bp->b_page_count == 1) {
447 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
448 bp->b_flags |= XBF_MAPPED;
449 } else if (flags & XBF_MAPPED) {
450 if (as_list_len > 64)
451 purge_addresses();
452 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
453 VM_MAP, PAGE_KERNEL);
454 if (unlikely(bp->b_addr == NULL))
455 return -ENOMEM;
456 bp->b_addr += bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
460 return 0;
464 * Finding and Reading Buffers
468 * Look up, and creates if absent, a lockable buffer for
469 * a given range of an inode. The buffer is returned
470 * locked. If other overlapping buffers exist, they are
471 * released before the new buffer is created and locked,
472 * which may imply that this call will block until those buffers
473 * are unlocked. No I/O is implied by this call.
475 xfs_buf_t *
476 _xfs_buf_find(
477 xfs_buftarg_t *btp, /* block device target */
478 xfs_off_t ioff, /* starting offset of range */
479 size_t isize, /* length of range */
480 xfs_buf_flags_t flags,
481 xfs_buf_t *new_bp)
483 xfs_off_t range_base;
484 size_t range_length;
485 xfs_bufhash_t *hash;
486 xfs_buf_t *bp, *n;
488 range_base = (ioff << BBSHIFT);
489 range_length = (isize << BBSHIFT);
491 /* Check for IOs smaller than the sector size / not sector aligned */
492 ASSERT(!(range_length < (1 << btp->bt_sshift)));
493 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
495 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
497 spin_lock(&hash->bh_lock);
499 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
500 ASSERT(btp == bp->b_target);
501 if (bp->b_file_offset == range_base &&
502 bp->b_buffer_length == range_length) {
504 * If we look at something, bring it to the
505 * front of the list for next time.
507 atomic_inc(&bp->b_hold);
508 list_move(&bp->b_hash_list, &hash->bh_list);
509 goto found;
513 /* No match found */
514 if (new_bp) {
515 _xfs_buf_initialize(new_bp, btp, range_base,
516 range_length, flags);
517 new_bp->b_hash = hash;
518 list_add(&new_bp->b_hash_list, &hash->bh_list);
519 } else {
520 XFS_STATS_INC(xb_miss_locked);
523 spin_unlock(&hash->bh_lock);
524 return new_bp;
526 found:
527 spin_unlock(&hash->bh_lock);
529 /* Attempt to get the semaphore without sleeping,
530 * if this does not work then we need to drop the
531 * spinlock and do a hard attempt on the semaphore.
533 if (down_trylock(&bp->b_sema)) {
534 if (!(flags & XBF_TRYLOCK)) {
535 /* wait for buffer ownership */
536 XB_TRACE(bp, "get_lock", 0);
537 xfs_buf_lock(bp);
538 XFS_STATS_INC(xb_get_locked_waited);
539 } else {
540 /* We asked for a trylock and failed, no need
541 * to look at file offset and length here, we
542 * know that this buffer at least overlaps our
543 * buffer and is locked, therefore our buffer
544 * either does not exist, or is this buffer.
546 xfs_buf_rele(bp);
547 XFS_STATS_INC(xb_busy_locked);
548 return NULL;
550 } else {
551 /* trylock worked */
552 XB_SET_OWNER(bp);
555 if (bp->b_flags & XBF_STALE) {
556 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
557 bp->b_flags &= XBF_MAPPED;
559 XB_TRACE(bp, "got_lock", 0);
560 XFS_STATS_INC(xb_get_locked);
561 return bp;
565 * Assembles a buffer covering the specified range.
566 * Storage in memory for all portions of the buffer will be allocated,
567 * although backing storage may not be.
569 xfs_buf_t *
570 xfs_buf_get_flags(
571 xfs_buftarg_t *target,/* target for buffer */
572 xfs_off_t ioff, /* starting offset of range */
573 size_t isize, /* length of range */
574 xfs_buf_flags_t flags)
576 xfs_buf_t *bp, *new_bp;
577 int error = 0, i;
579 new_bp = xfs_buf_allocate(flags);
580 if (unlikely(!new_bp))
581 return NULL;
583 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
584 if (bp == new_bp) {
585 error = _xfs_buf_lookup_pages(bp, flags);
586 if (error)
587 goto no_buffer;
588 } else {
589 xfs_buf_deallocate(new_bp);
590 if (unlikely(bp == NULL))
591 return NULL;
594 for (i = 0; i < bp->b_page_count; i++)
595 mark_page_accessed(bp->b_pages[i]);
597 if (!(bp->b_flags & XBF_MAPPED)) {
598 error = _xfs_buf_map_pages(bp, flags);
599 if (unlikely(error)) {
600 printk(KERN_WARNING "%s: failed to map pages\n",
601 __FUNCTION__);
602 goto no_buffer;
606 XFS_STATS_INC(xb_get);
609 * Always fill in the block number now, the mapped cases can do
610 * their own overlay of this later.
612 bp->b_bn = ioff;
613 bp->b_count_desired = bp->b_buffer_length;
615 XB_TRACE(bp, "get", (unsigned long)flags);
616 return bp;
618 no_buffer:
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
622 return NULL;
625 xfs_buf_t *
626 xfs_buf_read_flags(
627 xfs_buftarg_t *target,
628 xfs_off_t ioff,
629 size_t isize,
630 xfs_buf_flags_t flags)
632 xfs_buf_t *bp;
634 flags |= XBF_READ;
636 bp = xfs_buf_get_flags(target, ioff, isize, flags);
637 if (bp) {
638 if (!XFS_BUF_ISDONE(bp)) {
639 XB_TRACE(bp, "read", (unsigned long)flags);
640 XFS_STATS_INC(xb_get_read);
641 xfs_buf_iostart(bp, flags);
642 } else if (flags & XBF_ASYNC) {
643 XB_TRACE(bp, "read_async", (unsigned long)flags);
645 * Read ahead call which is already satisfied,
646 * drop the buffer
648 goto no_buffer;
649 } else {
650 XB_TRACE(bp, "read_done", (unsigned long)flags);
651 /* We do not want read in the flags */
652 bp->b_flags &= ~XBF_READ;
656 return bp;
658 no_buffer:
659 if (flags & (XBF_LOCK | XBF_TRYLOCK))
660 xfs_buf_unlock(bp);
661 xfs_buf_rele(bp);
662 return NULL;
666 * If we are not low on memory then do the readahead in a deadlock
667 * safe manner.
669 void
670 xfs_buf_readahead(
671 xfs_buftarg_t *target,
672 xfs_off_t ioff,
673 size_t isize,
674 xfs_buf_flags_t flags)
676 struct backing_dev_info *bdi;
678 bdi = target->bt_mapping->backing_dev_info;
679 if (bdi_read_congested(bdi))
680 return;
682 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
683 xfs_buf_read_flags(target, ioff, isize, flags);
686 xfs_buf_t *
687 xfs_buf_get_empty(
688 size_t len,
689 xfs_buftarg_t *target)
691 xfs_buf_t *bp;
693 bp = xfs_buf_allocate(0);
694 if (bp)
695 _xfs_buf_initialize(bp, target, 0, len, 0);
696 return bp;
699 static inline struct page *
700 mem_to_page(
701 void *addr)
703 if ((!is_vmalloc_addr(addr))) {
704 return virt_to_page(addr);
705 } else {
706 return vmalloc_to_page(addr);
711 xfs_buf_associate_memory(
712 xfs_buf_t *bp,
713 void *mem,
714 size_t len)
716 int rval;
717 int i = 0;
718 unsigned long pageaddr;
719 unsigned long offset;
720 size_t buflen;
721 int page_count;
723 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
724 offset = (unsigned long)mem - pageaddr;
725 buflen = PAGE_CACHE_ALIGN(len + offset);
726 page_count = buflen >> PAGE_CACHE_SHIFT;
728 /* Free any previous set of page pointers */
729 if (bp->b_pages)
730 _xfs_buf_free_pages(bp);
732 bp->b_pages = NULL;
733 bp->b_addr = mem;
735 rval = _xfs_buf_get_pages(bp, page_count, 0);
736 if (rval)
737 return rval;
739 bp->b_offset = offset;
741 for (i = 0; i < bp->b_page_count; i++) {
742 bp->b_pages[i] = mem_to_page((void *)pageaddr);
743 pageaddr += PAGE_CACHE_SIZE;
746 bp->b_count_desired = len;
747 bp->b_buffer_length = buflen;
748 bp->b_flags |= XBF_MAPPED;
750 return 0;
753 xfs_buf_t *
754 xfs_buf_get_noaddr(
755 size_t len,
756 xfs_buftarg_t *target)
758 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
759 int error, i;
760 xfs_buf_t *bp;
762 bp = xfs_buf_allocate(0);
763 if (unlikely(bp == NULL))
764 goto fail;
765 _xfs_buf_initialize(bp, target, 0, len, 0);
767 error = _xfs_buf_get_pages(bp, page_count, 0);
768 if (error)
769 goto fail_free_buf;
771 for (i = 0; i < page_count; i++) {
772 bp->b_pages[i] = alloc_page(GFP_KERNEL);
773 if (!bp->b_pages[i])
774 goto fail_free_mem;
776 bp->b_flags |= _XBF_PAGES;
778 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
779 if (unlikely(error)) {
780 printk(KERN_WARNING "%s: failed to map pages\n",
781 __FUNCTION__);
782 goto fail_free_mem;
785 xfs_buf_unlock(bp);
787 XB_TRACE(bp, "no_daddr", len);
788 return bp;
790 fail_free_mem:
791 while (--i >= 0)
792 __free_page(bp->b_pages[i]);
793 _xfs_buf_free_pages(bp);
794 fail_free_buf:
795 xfs_buf_deallocate(bp);
796 fail:
797 return NULL;
801 * Increment reference count on buffer, to hold the buffer concurrently
802 * with another thread which may release (free) the buffer asynchronously.
803 * Must hold the buffer already to call this function.
805 void
806 xfs_buf_hold(
807 xfs_buf_t *bp)
809 atomic_inc(&bp->b_hold);
810 XB_TRACE(bp, "hold", 0);
814 * Releases a hold on the specified buffer. If the
815 * the hold count is 1, calls xfs_buf_free.
817 void
818 xfs_buf_rele(
819 xfs_buf_t *bp)
821 xfs_bufhash_t *hash = bp->b_hash;
823 XB_TRACE(bp, "rele", bp->b_relse);
825 if (unlikely(!hash)) {
826 ASSERT(!bp->b_relse);
827 if (atomic_dec_and_test(&bp->b_hold))
828 xfs_buf_free(bp);
829 return;
832 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
833 if (bp->b_relse) {
834 atomic_inc(&bp->b_hold);
835 spin_unlock(&hash->bh_lock);
836 (*(bp->b_relse)) (bp);
837 } else if (bp->b_flags & XBF_FS_MANAGED) {
838 spin_unlock(&hash->bh_lock);
839 } else {
840 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
841 list_del_init(&bp->b_hash_list);
842 spin_unlock(&hash->bh_lock);
843 xfs_buf_free(bp);
845 } else {
847 * Catch reference count leaks
849 ASSERT(atomic_read(&bp->b_hold) >= 0);
855 * Mutual exclusion on buffers. Locking model:
857 * Buffers associated with inodes for which buffer locking
858 * is not enabled are not protected by semaphores, and are
859 * assumed to be exclusively owned by the caller. There is a
860 * spinlock in the buffer, used by the caller when concurrent
861 * access is possible.
865 * Locks a buffer object, if it is not already locked.
866 * Note that this in no way locks the underlying pages, so it is only
867 * useful for synchronizing concurrent use of buffer objects, not for
868 * synchronizing independent access to the underlying pages.
871 xfs_buf_cond_lock(
872 xfs_buf_t *bp)
874 int locked;
876 locked = down_trylock(&bp->b_sema) == 0;
877 if (locked) {
878 XB_SET_OWNER(bp);
880 XB_TRACE(bp, "cond_lock", (long)locked);
881 return locked ? 0 : -EBUSY;
884 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
886 xfs_buf_lock_value(
887 xfs_buf_t *bp)
889 return atomic_read(&bp->b_sema.count);
891 #endif
894 * Locks a buffer object.
895 * Note that this in no way locks the underlying pages, so it is only
896 * useful for synchronizing concurrent use of buffer objects, not for
897 * synchronizing independent access to the underlying pages.
899 void
900 xfs_buf_lock(
901 xfs_buf_t *bp)
903 XB_TRACE(bp, "lock", 0);
904 if (atomic_read(&bp->b_io_remaining))
905 blk_run_address_space(bp->b_target->bt_mapping);
906 down(&bp->b_sema);
907 XB_SET_OWNER(bp);
908 XB_TRACE(bp, "locked", 0);
912 * Releases the lock on the buffer object.
913 * If the buffer is marked delwri but is not queued, do so before we
914 * unlock the buffer as we need to set flags correctly. We also need to
915 * take a reference for the delwri queue because the unlocker is going to
916 * drop their's and they don't know we just queued it.
918 void
919 xfs_buf_unlock(
920 xfs_buf_t *bp)
922 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
923 atomic_inc(&bp->b_hold);
924 bp->b_flags |= XBF_ASYNC;
925 xfs_buf_delwri_queue(bp, 0);
928 XB_CLEAR_OWNER(bp);
929 up(&bp->b_sema);
930 XB_TRACE(bp, "unlock", 0);
935 * Pinning Buffer Storage in Memory
936 * Ensure that no attempt to force a buffer to disk will succeed.
938 void
939 xfs_buf_pin(
940 xfs_buf_t *bp)
942 atomic_inc(&bp->b_pin_count);
943 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
946 void
947 xfs_buf_unpin(
948 xfs_buf_t *bp)
950 if (atomic_dec_and_test(&bp->b_pin_count))
951 wake_up_all(&bp->b_waiters);
952 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
956 xfs_buf_ispin(
957 xfs_buf_t *bp)
959 return atomic_read(&bp->b_pin_count);
962 STATIC void
963 xfs_buf_wait_unpin(
964 xfs_buf_t *bp)
966 DECLARE_WAITQUEUE (wait, current);
968 if (atomic_read(&bp->b_pin_count) == 0)
969 return;
971 add_wait_queue(&bp->b_waiters, &wait);
972 for (;;) {
973 set_current_state(TASK_UNINTERRUPTIBLE);
974 if (atomic_read(&bp->b_pin_count) == 0)
975 break;
976 if (atomic_read(&bp->b_io_remaining))
977 blk_run_address_space(bp->b_target->bt_mapping);
978 schedule();
980 remove_wait_queue(&bp->b_waiters, &wait);
981 set_current_state(TASK_RUNNING);
985 * Buffer Utility Routines
988 STATIC void
989 xfs_buf_iodone_work(
990 struct work_struct *work)
992 xfs_buf_t *bp =
993 container_of(work, xfs_buf_t, b_iodone_work);
996 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
997 * ordered flag and reissue them. Because we can't tell the higher
998 * layers directly that they should not issue ordered I/O anymore, they
999 * need to check if the ordered flag was cleared during I/O completion.
1001 if ((bp->b_error == EOPNOTSUPP) &&
1002 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1003 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1004 bp->b_flags &= ~XBF_ORDERED;
1005 xfs_buf_iorequest(bp);
1006 } else if (bp->b_iodone)
1007 (*(bp->b_iodone))(bp);
1008 else if (bp->b_flags & XBF_ASYNC)
1009 xfs_buf_relse(bp);
1012 void
1013 xfs_buf_ioend(
1014 xfs_buf_t *bp,
1015 int schedule)
1017 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1018 if (bp->b_error == 0)
1019 bp->b_flags |= XBF_DONE;
1021 XB_TRACE(bp, "iodone", bp->b_iodone);
1023 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1024 if (schedule) {
1025 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1026 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1027 } else {
1028 xfs_buf_iodone_work(&bp->b_iodone_work);
1030 } else {
1031 up(&bp->b_iodonesema);
1035 void
1036 xfs_buf_ioerror(
1037 xfs_buf_t *bp,
1038 int error)
1040 ASSERT(error >= 0 && error <= 0xffff);
1041 bp->b_error = (unsigned short)error;
1042 XB_TRACE(bp, "ioerror", (unsigned long)error);
1046 * Initiate I/O on a buffer, based on the flags supplied.
1047 * The b_iodone routine in the buffer supplied will only be called
1048 * when all of the subsidiary I/O requests, if any, have been completed.
1051 xfs_buf_iostart(
1052 xfs_buf_t *bp,
1053 xfs_buf_flags_t flags)
1055 int status = 0;
1057 XB_TRACE(bp, "iostart", (unsigned long)flags);
1059 if (flags & XBF_DELWRI) {
1060 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1061 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1062 xfs_buf_delwri_queue(bp, 1);
1063 return status;
1066 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1067 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1068 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1069 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1071 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1073 /* For writes allow an alternate strategy routine to precede
1074 * the actual I/O request (which may not be issued at all in
1075 * a shutdown situation, for example).
1077 status = (flags & XBF_WRITE) ?
1078 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1080 /* Wait for I/O if we are not an async request.
1081 * Note: async I/O request completion will release the buffer,
1082 * and that can already be done by this point. So using the
1083 * buffer pointer from here on, after async I/O, is invalid.
1085 if (!status && !(flags & XBF_ASYNC))
1086 status = xfs_buf_iowait(bp);
1088 return status;
1091 STATIC_INLINE void
1092 _xfs_buf_ioend(
1093 xfs_buf_t *bp,
1094 int schedule)
1096 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1097 xfs_buf_ioend(bp, schedule);
1100 STATIC void
1101 xfs_buf_bio_end_io(
1102 struct bio *bio,
1103 int error)
1105 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1106 unsigned int blocksize = bp->b_target->bt_bsize;
1107 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1109 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1110 bp->b_error = EIO;
1112 do {
1113 struct page *page = bvec->bv_page;
1115 ASSERT(!PagePrivate(page));
1116 if (unlikely(bp->b_error)) {
1117 if (bp->b_flags & XBF_READ)
1118 ClearPageUptodate(page);
1119 } else if (blocksize >= PAGE_CACHE_SIZE) {
1120 SetPageUptodate(page);
1121 } else if (!PagePrivate(page) &&
1122 (bp->b_flags & _XBF_PAGE_CACHE)) {
1123 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1126 if (--bvec >= bio->bi_io_vec)
1127 prefetchw(&bvec->bv_page->flags);
1128 } while (bvec >= bio->bi_io_vec);
1130 _xfs_buf_ioend(bp, 1);
1131 bio_put(bio);
1134 STATIC void
1135 _xfs_buf_ioapply(
1136 xfs_buf_t *bp)
1138 int rw, map_i, total_nr_pages, nr_pages;
1139 struct bio *bio;
1140 int offset = bp->b_offset;
1141 int size = bp->b_count_desired;
1142 sector_t sector = bp->b_bn;
1143 unsigned int blocksize = bp->b_target->bt_bsize;
1145 total_nr_pages = bp->b_page_count;
1146 map_i = 0;
1148 if (bp->b_flags & XBF_ORDERED) {
1149 ASSERT(!(bp->b_flags & XBF_READ));
1150 rw = WRITE_BARRIER;
1151 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1152 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1153 bp->b_flags &= ~_XBF_RUN_QUEUES;
1154 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1155 } else {
1156 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1157 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1160 /* Special code path for reading a sub page size buffer in --
1161 * we populate up the whole page, and hence the other metadata
1162 * in the same page. This optimization is only valid when the
1163 * filesystem block size is not smaller than the page size.
1165 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1166 (bp->b_flags & XBF_READ) &&
1167 (blocksize >= PAGE_CACHE_SIZE)) {
1168 bio = bio_alloc(GFP_NOIO, 1);
1170 bio->bi_bdev = bp->b_target->bt_bdev;
1171 bio->bi_sector = sector - (offset >> BBSHIFT);
1172 bio->bi_end_io = xfs_buf_bio_end_io;
1173 bio->bi_private = bp;
1175 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1176 size = 0;
1178 atomic_inc(&bp->b_io_remaining);
1180 goto submit_io;
1183 next_chunk:
1184 atomic_inc(&bp->b_io_remaining);
1185 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1186 if (nr_pages > total_nr_pages)
1187 nr_pages = total_nr_pages;
1189 bio = bio_alloc(GFP_NOIO, nr_pages);
1190 bio->bi_bdev = bp->b_target->bt_bdev;
1191 bio->bi_sector = sector;
1192 bio->bi_end_io = xfs_buf_bio_end_io;
1193 bio->bi_private = bp;
1195 for (; size && nr_pages; nr_pages--, map_i++) {
1196 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1198 if (nbytes > size)
1199 nbytes = size;
1201 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1202 if (rbytes < nbytes)
1203 break;
1205 offset = 0;
1206 sector += nbytes >> BBSHIFT;
1207 size -= nbytes;
1208 total_nr_pages--;
1211 submit_io:
1212 if (likely(bio->bi_size)) {
1213 submit_bio(rw, bio);
1214 if (size)
1215 goto next_chunk;
1216 } else {
1217 bio_put(bio);
1218 xfs_buf_ioerror(bp, EIO);
1223 xfs_buf_iorequest(
1224 xfs_buf_t *bp)
1226 XB_TRACE(bp, "iorequest", 0);
1228 if (bp->b_flags & XBF_DELWRI) {
1229 xfs_buf_delwri_queue(bp, 1);
1230 return 0;
1233 if (bp->b_flags & XBF_WRITE) {
1234 xfs_buf_wait_unpin(bp);
1237 xfs_buf_hold(bp);
1239 /* Set the count to 1 initially, this will stop an I/O
1240 * completion callout which happens before we have started
1241 * all the I/O from calling xfs_buf_ioend too early.
1243 atomic_set(&bp->b_io_remaining, 1);
1244 _xfs_buf_ioapply(bp);
1245 _xfs_buf_ioend(bp, 0);
1247 xfs_buf_rele(bp);
1248 return 0;
1252 * Waits for I/O to complete on the buffer supplied.
1253 * It returns immediately if no I/O is pending.
1254 * It returns the I/O error code, if any, or 0 if there was no error.
1257 xfs_buf_iowait(
1258 xfs_buf_t *bp)
1260 XB_TRACE(bp, "iowait", 0);
1261 if (atomic_read(&bp->b_io_remaining))
1262 blk_run_address_space(bp->b_target->bt_mapping);
1263 down(&bp->b_iodonesema);
1264 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1265 return bp->b_error;
1268 xfs_caddr_t
1269 xfs_buf_offset(
1270 xfs_buf_t *bp,
1271 size_t offset)
1273 struct page *page;
1275 if (bp->b_flags & XBF_MAPPED)
1276 return XFS_BUF_PTR(bp) + offset;
1278 offset += bp->b_offset;
1279 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1280 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1284 * Move data into or out of a buffer.
1286 void
1287 xfs_buf_iomove(
1288 xfs_buf_t *bp, /* buffer to process */
1289 size_t boff, /* starting buffer offset */
1290 size_t bsize, /* length to copy */
1291 caddr_t data, /* data address */
1292 xfs_buf_rw_t mode) /* read/write/zero flag */
1294 size_t bend, cpoff, csize;
1295 struct page *page;
1297 bend = boff + bsize;
1298 while (boff < bend) {
1299 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1300 cpoff = xfs_buf_poff(boff + bp->b_offset);
1301 csize = min_t(size_t,
1302 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1304 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1306 switch (mode) {
1307 case XBRW_ZERO:
1308 memset(page_address(page) + cpoff, 0, csize);
1309 break;
1310 case XBRW_READ:
1311 memcpy(data, page_address(page) + cpoff, csize);
1312 break;
1313 case XBRW_WRITE:
1314 memcpy(page_address(page) + cpoff, data, csize);
1317 boff += csize;
1318 data += csize;
1323 * Handling of buffer targets (buftargs).
1327 * Wait for any bufs with callbacks that have been submitted but
1328 * have not yet returned... walk the hash list for the target.
1330 void
1331 xfs_wait_buftarg(
1332 xfs_buftarg_t *btp)
1334 xfs_buf_t *bp, *n;
1335 xfs_bufhash_t *hash;
1336 uint i;
1338 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1339 hash = &btp->bt_hash[i];
1340 again:
1341 spin_lock(&hash->bh_lock);
1342 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1343 ASSERT(btp == bp->b_target);
1344 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1345 spin_unlock(&hash->bh_lock);
1347 * Catch superblock reference count leaks
1348 * immediately
1350 BUG_ON(bp->b_bn == 0);
1351 delay(100);
1352 goto again;
1355 spin_unlock(&hash->bh_lock);
1360 * Allocate buffer hash table for a given target.
1361 * For devices containing metadata (i.e. not the log/realtime devices)
1362 * we need to allocate a much larger hash table.
1364 STATIC void
1365 xfs_alloc_bufhash(
1366 xfs_buftarg_t *btp,
1367 int external)
1369 unsigned int i;
1371 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1372 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1373 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1374 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1375 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1376 spin_lock_init(&btp->bt_hash[i].bh_lock);
1377 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1381 STATIC void
1382 xfs_free_bufhash(
1383 xfs_buftarg_t *btp)
1385 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1386 btp->bt_hash = NULL;
1390 * buftarg list for delwrite queue processing
1392 static LIST_HEAD(xfs_buftarg_list);
1393 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1395 STATIC void
1396 xfs_register_buftarg(
1397 xfs_buftarg_t *btp)
1399 spin_lock(&xfs_buftarg_lock);
1400 list_add(&btp->bt_list, &xfs_buftarg_list);
1401 spin_unlock(&xfs_buftarg_lock);
1404 STATIC void
1405 xfs_unregister_buftarg(
1406 xfs_buftarg_t *btp)
1408 spin_lock(&xfs_buftarg_lock);
1409 list_del(&btp->bt_list);
1410 spin_unlock(&xfs_buftarg_lock);
1413 void
1414 xfs_free_buftarg(
1415 xfs_buftarg_t *btp,
1416 int external)
1418 xfs_flush_buftarg(btp, 1);
1419 xfs_blkdev_issue_flush(btp);
1420 if (external)
1421 xfs_blkdev_put(btp->bt_bdev);
1422 xfs_free_bufhash(btp);
1423 iput(btp->bt_mapping->host);
1425 /* Unregister the buftarg first so that we don't get a
1426 * wakeup finding a non-existent task
1428 xfs_unregister_buftarg(btp);
1429 kthread_stop(btp->bt_task);
1431 kmem_free(btp, sizeof(*btp));
1434 STATIC int
1435 xfs_setsize_buftarg_flags(
1436 xfs_buftarg_t *btp,
1437 unsigned int blocksize,
1438 unsigned int sectorsize,
1439 int verbose)
1441 btp->bt_bsize = blocksize;
1442 btp->bt_sshift = ffs(sectorsize) - 1;
1443 btp->bt_smask = sectorsize - 1;
1445 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1446 printk(KERN_WARNING
1447 "XFS: Cannot set_blocksize to %u on device %s\n",
1448 sectorsize, XFS_BUFTARG_NAME(btp));
1449 return EINVAL;
1452 if (verbose &&
1453 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1454 printk(KERN_WARNING
1455 "XFS: %u byte sectors in use on device %s. "
1456 "This is suboptimal; %u or greater is ideal.\n",
1457 sectorsize, XFS_BUFTARG_NAME(btp),
1458 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1461 return 0;
1465 * When allocating the initial buffer target we have not yet
1466 * read in the superblock, so don't know what sized sectors
1467 * are being used is at this early stage. Play safe.
1469 STATIC int
1470 xfs_setsize_buftarg_early(
1471 xfs_buftarg_t *btp,
1472 struct block_device *bdev)
1474 return xfs_setsize_buftarg_flags(btp,
1475 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1479 xfs_setsize_buftarg(
1480 xfs_buftarg_t *btp,
1481 unsigned int blocksize,
1482 unsigned int sectorsize)
1484 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1487 STATIC int
1488 xfs_mapping_buftarg(
1489 xfs_buftarg_t *btp,
1490 struct block_device *bdev)
1492 struct backing_dev_info *bdi;
1493 struct inode *inode;
1494 struct address_space *mapping;
1495 static const struct address_space_operations mapping_aops = {
1496 .sync_page = block_sync_page,
1497 .migratepage = fail_migrate_page,
1500 inode = new_inode(bdev->bd_inode->i_sb);
1501 if (!inode) {
1502 printk(KERN_WARNING
1503 "XFS: Cannot allocate mapping inode for device %s\n",
1504 XFS_BUFTARG_NAME(btp));
1505 return ENOMEM;
1507 inode->i_mode = S_IFBLK;
1508 inode->i_bdev = bdev;
1509 inode->i_rdev = bdev->bd_dev;
1510 bdi = blk_get_backing_dev_info(bdev);
1511 if (!bdi)
1512 bdi = &default_backing_dev_info;
1513 mapping = &inode->i_data;
1514 mapping->a_ops = &mapping_aops;
1515 mapping->backing_dev_info = bdi;
1516 mapping_set_gfp_mask(mapping, GFP_NOFS);
1517 btp->bt_mapping = mapping;
1518 return 0;
1521 STATIC int
1522 xfs_alloc_delwrite_queue(
1523 xfs_buftarg_t *btp)
1525 int error = 0;
1527 INIT_LIST_HEAD(&btp->bt_list);
1528 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1529 spin_lock_init(&btp->bt_delwrite_lock);
1530 btp->bt_flags = 0;
1531 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1532 if (IS_ERR(btp->bt_task)) {
1533 error = PTR_ERR(btp->bt_task);
1534 goto out_error;
1536 xfs_register_buftarg(btp);
1537 out_error:
1538 return error;
1541 xfs_buftarg_t *
1542 xfs_alloc_buftarg(
1543 struct block_device *bdev,
1544 int external)
1546 xfs_buftarg_t *btp;
1548 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1550 btp->bt_dev = bdev->bd_dev;
1551 btp->bt_bdev = bdev;
1552 if (xfs_setsize_buftarg_early(btp, bdev))
1553 goto error;
1554 if (xfs_mapping_buftarg(btp, bdev))
1555 goto error;
1556 if (xfs_alloc_delwrite_queue(btp))
1557 goto error;
1558 xfs_alloc_bufhash(btp, external);
1559 return btp;
1561 error:
1562 kmem_free(btp, sizeof(*btp));
1563 return NULL;
1568 * Delayed write buffer handling
1570 STATIC void
1571 xfs_buf_delwri_queue(
1572 xfs_buf_t *bp,
1573 int unlock)
1575 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1576 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1578 XB_TRACE(bp, "delwri_q", (long)unlock);
1579 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1581 spin_lock(dwlk);
1582 /* If already in the queue, dequeue and place at tail */
1583 if (!list_empty(&bp->b_list)) {
1584 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1585 if (unlock)
1586 atomic_dec(&bp->b_hold);
1587 list_del(&bp->b_list);
1590 bp->b_flags |= _XBF_DELWRI_Q;
1591 list_add_tail(&bp->b_list, dwq);
1592 bp->b_queuetime = jiffies;
1593 spin_unlock(dwlk);
1595 if (unlock)
1596 xfs_buf_unlock(bp);
1599 void
1600 xfs_buf_delwri_dequeue(
1601 xfs_buf_t *bp)
1603 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1604 int dequeued = 0;
1606 spin_lock(dwlk);
1607 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1608 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1609 list_del_init(&bp->b_list);
1610 dequeued = 1;
1612 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1613 spin_unlock(dwlk);
1615 if (dequeued)
1616 xfs_buf_rele(bp);
1618 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1621 STATIC void
1622 xfs_buf_runall_queues(
1623 struct workqueue_struct *queue)
1625 flush_workqueue(queue);
1628 STATIC int
1629 xfsbufd_wakeup(
1630 int priority,
1631 gfp_t mask)
1633 xfs_buftarg_t *btp;
1635 spin_lock(&xfs_buftarg_lock);
1636 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1637 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1638 continue;
1639 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1640 wake_up_process(btp->bt_task);
1642 spin_unlock(&xfs_buftarg_lock);
1643 return 0;
1647 * Move as many buffers as specified to the supplied list
1648 * idicating if we skipped any buffers to prevent deadlocks.
1650 STATIC int
1651 xfs_buf_delwri_split(
1652 xfs_buftarg_t *target,
1653 struct list_head *list,
1654 unsigned long age)
1656 xfs_buf_t *bp, *n;
1657 struct list_head *dwq = &target->bt_delwrite_queue;
1658 spinlock_t *dwlk = &target->bt_delwrite_lock;
1659 int skipped = 0;
1660 int force;
1662 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1663 INIT_LIST_HEAD(list);
1664 spin_lock(dwlk);
1665 list_for_each_entry_safe(bp, n, dwq, b_list) {
1666 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1667 ASSERT(bp->b_flags & XBF_DELWRI);
1669 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1670 if (!force &&
1671 time_before(jiffies, bp->b_queuetime + age)) {
1672 xfs_buf_unlock(bp);
1673 break;
1676 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1677 _XBF_RUN_QUEUES);
1678 bp->b_flags |= XBF_WRITE;
1679 list_move_tail(&bp->b_list, list);
1680 } else
1681 skipped++;
1683 spin_unlock(dwlk);
1685 return skipped;
1689 STATIC int
1690 xfsbufd(
1691 void *data)
1693 struct list_head tmp;
1694 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1695 int count;
1696 xfs_buf_t *bp;
1698 current->flags |= PF_MEMALLOC;
1700 set_freezable();
1702 do {
1703 if (unlikely(freezing(current))) {
1704 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1705 refrigerator();
1706 } else {
1707 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1710 schedule_timeout_interruptible(
1711 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1713 xfs_buf_delwri_split(target, &tmp,
1714 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1716 count = 0;
1717 while (!list_empty(&tmp)) {
1718 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1719 ASSERT(target == bp->b_target);
1721 list_del_init(&bp->b_list);
1722 xfs_buf_iostrategy(bp);
1723 count++;
1726 if (as_list_len > 0)
1727 purge_addresses();
1728 if (count)
1729 blk_run_address_space(target->bt_mapping);
1731 } while (!kthread_should_stop());
1733 return 0;
1737 * Go through all incore buffers, and release buffers if they belong to
1738 * the given device. This is used in filesystem error handling to
1739 * preserve the consistency of its metadata.
1742 xfs_flush_buftarg(
1743 xfs_buftarg_t *target,
1744 int wait)
1746 struct list_head tmp;
1747 xfs_buf_t *bp, *n;
1748 int pincount = 0;
1750 xfs_buf_runall_queues(xfsdatad_workqueue);
1751 xfs_buf_runall_queues(xfslogd_workqueue);
1753 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1754 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1757 * Dropped the delayed write list lock, now walk the temporary list
1759 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1760 ASSERT(target == bp->b_target);
1761 if (wait)
1762 bp->b_flags &= ~XBF_ASYNC;
1763 else
1764 list_del_init(&bp->b_list);
1766 xfs_buf_iostrategy(bp);
1769 if (wait)
1770 blk_run_address_space(target->bt_mapping);
1773 * Remaining list items must be flushed before returning
1775 while (!list_empty(&tmp)) {
1776 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1778 list_del_init(&bp->b_list);
1779 xfs_iowait(bp);
1780 xfs_buf_relse(bp);
1783 return pincount;
1786 int __init
1787 xfs_buf_init(void)
1789 #ifdef XFS_BUF_TRACE
1790 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1791 #endif
1793 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1794 KM_ZONE_HWALIGN, NULL);
1795 if (!xfs_buf_zone)
1796 goto out_free_trace_buf;
1798 xfslogd_workqueue = create_workqueue("xfslogd");
1799 if (!xfslogd_workqueue)
1800 goto out_free_buf_zone;
1802 xfsdatad_workqueue = create_workqueue("xfsdatad");
1803 if (!xfsdatad_workqueue)
1804 goto out_destroy_xfslogd_workqueue;
1806 register_shrinker(&xfs_buf_shake);
1807 return 0;
1809 out_destroy_xfslogd_workqueue:
1810 destroy_workqueue(xfslogd_workqueue);
1811 out_free_buf_zone:
1812 kmem_zone_destroy(xfs_buf_zone);
1813 out_free_trace_buf:
1814 #ifdef XFS_BUF_TRACE
1815 ktrace_free(xfs_buf_trace_buf);
1816 #endif
1817 return -ENOMEM;
1820 void
1821 xfs_buf_terminate(void)
1823 unregister_shrinker(&xfs_buf_shake);
1824 destroy_workqueue(xfsdatad_workqueue);
1825 destroy_workqueue(xfslogd_workqueue);
1826 kmem_zone_destroy(xfs_buf_zone);
1827 #ifdef XFS_BUF_TRACE
1828 ktrace_free(xfs_buf_trace_buf);
1829 #endif
1832 #ifdef CONFIG_KDB_MODULES
1833 struct list_head *
1834 xfs_get_buftarg_list(void)
1836 return &xfs_buftarg_list;
1838 #endif