Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / fs / jffs2 / gc.c
blob32ff0373aa04d0c9f709ec22c64ad9086c343448
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/crc32.h>
17 #include <linux/compiler.h>
18 #include <linux/stat.h>
19 #include "nodelist.h"
20 #include "compr.h"
22 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
23 struct jffs2_inode_cache *ic,
24 struct jffs2_raw_node_ref *raw);
25 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
26 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
27 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
29 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
33 uint32_t start, uint32_t end);
34 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 uint32_t start, uint32_t end);
37 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
38 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
40 /* Called with erase_completion_lock held */
41 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
43 struct jffs2_eraseblock *ret;
44 struct list_head *nextlist = NULL;
45 int n = jiffies % 128;
47 /* Pick an eraseblock to garbage collect next. This is where we'll
48 put the clever wear-levelling algorithms. Eventually. */
49 /* We possibly want to favour the dirtier blocks more when the
50 number of free blocks is low. */
51 again:
52 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
53 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
54 nextlist = &c->bad_used_list;
55 } else if (n < 50 && !list_empty(&c->erasable_list)) {
56 /* Note that most of them will have gone directly to be erased.
57 So don't favour the erasable_list _too_ much. */
58 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
59 nextlist = &c->erasable_list;
60 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
61 /* Most of the time, pick one off the very_dirty list */
62 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
63 nextlist = &c->very_dirty_list;
64 } else if (n < 126 && !list_empty(&c->dirty_list)) {
65 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
66 nextlist = &c->dirty_list;
67 } else if (!list_empty(&c->clean_list)) {
68 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
69 nextlist = &c->clean_list;
70 } else if (!list_empty(&c->dirty_list)) {
71 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
73 nextlist = &c->dirty_list;
74 } else if (!list_empty(&c->very_dirty_list)) {
75 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
76 nextlist = &c->very_dirty_list;
77 } else if (!list_empty(&c->erasable_list)) {
78 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
80 nextlist = &c->erasable_list;
81 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
82 /* There are blocks are wating for the wbuf sync */
83 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
84 spin_unlock(&c->erase_completion_lock);
85 jffs2_flush_wbuf_pad(c);
86 spin_lock(&c->erase_completion_lock);
87 goto again;
88 } else {
89 /* Eep. All were empty */
90 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
91 return NULL;
94 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
95 list_del(&ret->list);
96 c->gcblock = ret;
97 ret->gc_node = ret->first_node;
98 if (!ret->gc_node) {
99 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
100 BUG();
103 /* Have we accidentally picked a clean block with wasted space ? */
104 if (ret->wasted_size) {
105 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
106 ret->dirty_size += ret->wasted_size;
107 c->wasted_size -= ret->wasted_size;
108 c->dirty_size += ret->wasted_size;
109 ret->wasted_size = 0;
112 return ret;
115 /* jffs2_garbage_collect_pass
116 * Make a single attempt to progress GC. Move one node, and possibly
117 * start erasing one eraseblock.
119 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
121 struct jffs2_inode_info *f;
122 struct jffs2_inode_cache *ic;
123 struct jffs2_eraseblock *jeb;
124 struct jffs2_raw_node_ref *raw;
125 uint32_t gcblock_dirty;
126 int ret = 0, inum, nlink;
127 int xattr = 0;
129 if (down_interruptible(&c->alloc_sem))
130 return -EINTR;
132 for (;;) {
133 spin_lock(&c->erase_completion_lock);
134 if (!c->unchecked_size)
135 break;
137 /* We can't start doing GC yet. We haven't finished checking
138 the node CRCs etc. Do it now. */
140 /* checked_ino is protected by the alloc_sem */
141 if (c->checked_ino > c->highest_ino && xattr) {
142 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 c->unchecked_size);
144 jffs2_dbg_dump_block_lists_nolock(c);
145 spin_unlock(&c->erase_completion_lock);
146 up(&c->alloc_sem);
147 return -ENOSPC;
150 spin_unlock(&c->erase_completion_lock);
152 if (!xattr)
153 xattr = jffs2_verify_xattr(c);
155 spin_lock(&c->inocache_lock);
157 ic = jffs2_get_ino_cache(c, c->checked_ino++);
159 if (!ic) {
160 spin_unlock(&c->inocache_lock);
161 continue;
164 if (!ic->nlink) {
165 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
166 ic->ino));
167 spin_unlock(&c->inocache_lock);
168 jffs2_xattr_delete_inode(c, ic);
169 continue;
171 switch(ic->state) {
172 case INO_STATE_CHECKEDABSENT:
173 case INO_STATE_PRESENT:
174 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175 spin_unlock(&c->inocache_lock);
176 continue;
178 case INO_STATE_GC:
179 case INO_STATE_CHECKING:
180 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181 spin_unlock(&c->inocache_lock);
182 BUG();
184 case INO_STATE_READING:
185 /* We need to wait for it to finish, lest we move on
186 and trigger the BUG() above while we haven't yet
187 finished checking all its nodes */
188 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189 /* We need to come back again for the _same_ inode. We've
190 made no progress in this case, but that should be OK */
191 c->checked_ino--;
193 up(&c->alloc_sem);
194 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
195 return 0;
197 default:
198 BUG();
200 case INO_STATE_UNCHECKED:
203 ic->state = INO_STATE_CHECKING;
204 spin_unlock(&c->inocache_lock);
206 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
208 ret = jffs2_do_crccheck_inode(c, ic);
209 if (ret)
210 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
212 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
213 up(&c->alloc_sem);
214 return ret;
217 /* First, work out which block we're garbage-collecting */
218 jeb = c->gcblock;
220 if (!jeb)
221 jeb = jffs2_find_gc_block(c);
223 if (!jeb) {
224 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
225 spin_unlock(&c->erase_completion_lock);
226 up(&c->alloc_sem);
227 return -EIO;
230 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
231 D1(if (c->nextblock)
232 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
234 if (!jeb->used_size) {
235 up(&c->alloc_sem);
236 goto eraseit;
239 raw = jeb->gc_node;
240 gcblock_dirty = jeb->dirty_size;
242 while(ref_obsolete(raw)) {
243 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
244 raw = ref_next(raw);
245 if (unlikely(!raw)) {
246 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
247 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
248 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
249 jeb->gc_node = raw;
250 spin_unlock(&c->erase_completion_lock);
251 up(&c->alloc_sem);
252 BUG();
255 jeb->gc_node = raw;
257 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
259 if (!raw->next_in_ino) {
260 /* Inode-less node. Clean marker, snapshot or something like that */
261 spin_unlock(&c->erase_completion_lock);
262 if (ref_flags(raw) == REF_PRISTINE) {
263 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
264 jffs2_garbage_collect_pristine(c, NULL, raw);
265 } else {
266 /* Just mark it obsolete */
267 jffs2_mark_node_obsolete(c, raw);
269 up(&c->alloc_sem);
270 goto eraseit_lock;
273 ic = jffs2_raw_ref_to_ic(raw);
275 #ifdef CONFIG_JFFS2_FS_XATTR
276 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
277 * We can decide whether this node is inode or xattr by ic->class. */
278 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
279 || ic->class == RAWNODE_CLASS_XATTR_REF) {
280 spin_unlock(&c->erase_completion_lock);
282 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
283 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
284 } else {
285 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
287 goto test_gcnode;
289 #endif
291 /* We need to hold the inocache. Either the erase_completion_lock or
292 the inocache_lock are sufficient; we trade down since the inocache_lock
293 causes less contention. */
294 spin_lock(&c->inocache_lock);
296 spin_unlock(&c->erase_completion_lock);
298 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
300 /* Three possibilities:
301 1. Inode is already in-core. We must iget it and do proper
302 updating to its fragtree, etc.
303 2. Inode is not in-core, node is REF_PRISTINE. We lock the
304 inocache to prevent a read_inode(), copy the node intact.
305 3. Inode is not in-core, node is not pristine. We must iget()
306 and take the slow path.
309 switch(ic->state) {
310 case INO_STATE_CHECKEDABSENT:
311 /* It's been checked, but it's not currently in-core.
312 We can just copy any pristine nodes, but have
313 to prevent anyone else from doing read_inode() while
314 we're at it, so we set the state accordingly */
315 if (ref_flags(raw) == REF_PRISTINE)
316 ic->state = INO_STATE_GC;
317 else {
318 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
319 ic->ino));
321 break;
323 case INO_STATE_PRESENT:
324 /* It's in-core. GC must iget() it. */
325 break;
327 case INO_STATE_UNCHECKED:
328 case INO_STATE_CHECKING:
329 case INO_STATE_GC:
330 /* Should never happen. We should have finished checking
331 by the time we actually start doing any GC, and since
332 we're holding the alloc_sem, no other garbage collection
333 can happen.
335 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
336 ic->ino, ic->state);
337 up(&c->alloc_sem);
338 spin_unlock(&c->inocache_lock);
339 BUG();
341 case INO_STATE_READING:
342 /* Someone's currently trying to read it. We must wait for
343 them to finish and then go through the full iget() route
344 to do the GC. However, sometimes read_inode() needs to get
345 the alloc_sem() (for marking nodes invalid) so we must
346 drop the alloc_sem before sleeping. */
348 up(&c->alloc_sem);
349 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
350 ic->ino, ic->state));
351 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
352 /* And because we dropped the alloc_sem we must start again from the
353 beginning. Ponder chance of livelock here -- we're returning success
354 without actually making any progress.
356 Q: What are the chances that the inode is back in INO_STATE_READING
357 again by the time we next enter this function? And that this happens
358 enough times to cause a real delay?
360 A: Small enough that I don't care :)
362 return 0;
365 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
366 node intact, and we don't have to muck about with the fragtree etc.
367 because we know it's not in-core. If it _was_ in-core, we go through
368 all the iget() crap anyway */
370 if (ic->state == INO_STATE_GC) {
371 spin_unlock(&c->inocache_lock);
373 ret = jffs2_garbage_collect_pristine(c, ic, raw);
375 spin_lock(&c->inocache_lock);
376 ic->state = INO_STATE_CHECKEDABSENT;
377 wake_up(&c->inocache_wq);
379 if (ret != -EBADFD) {
380 spin_unlock(&c->inocache_lock);
381 goto test_gcnode;
384 /* Fall through if it wanted us to, with inocache_lock held */
387 /* Prevent the fairly unlikely race where the gcblock is
388 entirely obsoleted by the final close of a file which had
389 the only valid nodes in the block, followed by erasure,
390 followed by freeing of the ic because the erased block(s)
391 held _all_ the nodes of that inode.... never been seen but
392 it's vaguely possible. */
394 inum = ic->ino;
395 nlink = ic->nlink;
396 spin_unlock(&c->inocache_lock);
398 f = jffs2_gc_fetch_inode(c, inum, nlink);
399 if (IS_ERR(f)) {
400 ret = PTR_ERR(f);
401 goto release_sem;
403 if (!f) {
404 ret = 0;
405 goto release_sem;
408 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
410 jffs2_gc_release_inode(c, f);
412 test_gcnode:
413 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
414 /* Eep. This really should never happen. GC is broken */
415 printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node));
416 ret = -ENOSPC;
418 release_sem:
419 up(&c->alloc_sem);
421 eraseit_lock:
422 /* If we've finished this block, start it erasing */
423 spin_lock(&c->erase_completion_lock);
425 eraseit:
426 if (c->gcblock && !c->gcblock->used_size) {
427 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
428 /* We're GC'ing an empty block? */
429 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
430 c->gcblock = NULL;
431 c->nr_erasing_blocks++;
432 jffs2_erase_pending_trigger(c);
434 spin_unlock(&c->erase_completion_lock);
436 return ret;
439 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
440 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
442 struct jffs2_node_frag *frag;
443 struct jffs2_full_dnode *fn = NULL;
444 struct jffs2_full_dirent *fd;
445 uint32_t start = 0, end = 0, nrfrags = 0;
446 int ret = 0;
448 down(&f->sem);
450 /* Now we have the lock for this inode. Check that it's still the one at the head
451 of the list. */
453 spin_lock(&c->erase_completion_lock);
455 if (c->gcblock != jeb) {
456 spin_unlock(&c->erase_completion_lock);
457 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
458 goto upnout;
460 if (ref_obsolete(raw)) {
461 spin_unlock(&c->erase_completion_lock);
462 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
463 /* They'll call again */
464 goto upnout;
466 spin_unlock(&c->erase_completion_lock);
468 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
469 if (f->metadata && f->metadata->raw == raw) {
470 fn = f->metadata;
471 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
472 goto upnout;
475 /* FIXME. Read node and do lookup? */
476 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
477 if (frag->node && frag->node->raw == raw) {
478 fn = frag->node;
479 end = frag->ofs + frag->size;
480 if (!nrfrags++)
481 start = frag->ofs;
482 if (nrfrags == frag->node->frags)
483 break; /* We've found them all */
486 if (fn) {
487 if (ref_flags(raw) == REF_PRISTINE) {
488 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
489 if (!ret) {
490 /* Urgh. Return it sensibly. */
491 frag->node->raw = f->inocache->nodes;
493 if (ret != -EBADFD)
494 goto upnout;
496 /* We found a datanode. Do the GC */
497 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
498 /* It crosses a page boundary. Therefore, it must be a hole. */
499 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
500 } else {
501 /* It could still be a hole. But we GC the page this way anyway */
502 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
504 goto upnout;
507 /* Wasn't a dnode. Try dirent */
508 for (fd = f->dents; fd; fd=fd->next) {
509 if (fd->raw == raw)
510 break;
513 if (fd && fd->ino) {
514 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
515 } else if (fd) {
516 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
517 } else {
518 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
519 ref_offset(raw), f->inocache->ino);
520 if (ref_obsolete(raw)) {
521 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
522 } else {
523 jffs2_dbg_dump_node(c, ref_offset(raw));
524 BUG();
527 upnout:
528 up(&f->sem);
530 return ret;
533 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
534 struct jffs2_inode_cache *ic,
535 struct jffs2_raw_node_ref *raw)
537 union jffs2_node_union *node;
538 size_t retlen;
539 int ret;
540 uint32_t phys_ofs, alloclen;
541 uint32_t crc, rawlen;
542 int retried = 0;
544 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
546 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
548 /* Ask for a small amount of space (or the totlen if smaller) because we
549 don't want to force wastage of the end of a block if splitting would
550 work. */
551 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
552 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
554 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
555 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
557 if (ret)
558 return ret;
560 if (alloclen < rawlen) {
561 /* Doesn't fit untouched. We'll go the old route and split it */
562 return -EBADFD;
565 node = kmalloc(rawlen, GFP_KERNEL);
566 if (!node)
567 return -ENOMEM;
569 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
570 if (!ret && retlen != rawlen)
571 ret = -EIO;
572 if (ret)
573 goto out_node;
575 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
576 if (je32_to_cpu(node->u.hdr_crc) != crc) {
577 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
578 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
579 goto bail;
582 switch(je16_to_cpu(node->u.nodetype)) {
583 case JFFS2_NODETYPE_INODE:
584 crc = crc32(0, node, sizeof(node->i)-8);
585 if (je32_to_cpu(node->i.node_crc) != crc) {
586 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
587 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
588 goto bail;
591 if (je32_to_cpu(node->i.dsize)) {
592 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
593 if (je32_to_cpu(node->i.data_crc) != crc) {
594 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
595 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
596 goto bail;
599 break;
601 case JFFS2_NODETYPE_DIRENT:
602 crc = crc32(0, node, sizeof(node->d)-8);
603 if (je32_to_cpu(node->d.node_crc) != crc) {
604 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
605 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
606 goto bail;
609 if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
610 printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw));
611 goto bail;
614 if (node->d.nsize) {
615 crc = crc32(0, node->d.name, node->d.nsize);
616 if (je32_to_cpu(node->d.name_crc) != crc) {
617 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
618 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
619 goto bail;
622 break;
623 default:
624 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
625 if (ic) {
626 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
627 ref_offset(raw), je16_to_cpu(node->u.nodetype));
628 goto bail;
632 /* OK, all the CRCs are good; this node can just be copied as-is. */
633 retry:
634 phys_ofs = write_ofs(c);
636 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
638 if (ret || (retlen != rawlen)) {
639 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
640 rawlen, phys_ofs, ret, retlen);
641 if (retlen) {
642 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
643 } else {
644 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
646 if (!retried) {
647 /* Try to reallocate space and retry */
648 uint32_t dummy;
649 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
651 retried = 1;
653 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
655 jffs2_dbg_acct_sanity_check(c,jeb);
656 jffs2_dbg_acct_paranoia_check(c, jeb);
658 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
659 /* this is not the exact summary size of it,
660 it is only an upper estimation */
662 if (!ret) {
663 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
665 jffs2_dbg_acct_sanity_check(c,jeb);
666 jffs2_dbg_acct_paranoia_check(c, jeb);
668 goto retry;
670 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
673 if (!ret)
674 ret = -EIO;
675 goto out_node;
677 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
679 jffs2_mark_node_obsolete(c, raw);
680 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
682 out_node:
683 kfree(node);
684 return ret;
685 bail:
686 ret = -EBADFD;
687 goto out_node;
690 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
691 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
693 struct jffs2_full_dnode *new_fn;
694 struct jffs2_raw_inode ri;
695 struct jffs2_node_frag *last_frag;
696 union jffs2_device_node dev;
697 char *mdata = NULL, mdatalen = 0;
698 uint32_t alloclen, ilen;
699 int ret;
701 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
702 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
703 /* For these, we don't actually need to read the old node */
704 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
705 mdata = (char *)&dev;
706 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
707 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
708 mdatalen = fn->size;
709 mdata = kmalloc(fn->size, GFP_KERNEL);
710 if (!mdata) {
711 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
712 return -ENOMEM;
714 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
715 if (ret) {
716 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
717 kfree(mdata);
718 return ret;
720 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
724 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
725 JFFS2_SUMMARY_INODE_SIZE);
726 if (ret) {
727 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
728 sizeof(ri)+ mdatalen, ret);
729 goto out;
732 last_frag = frag_last(&f->fragtree);
733 if (last_frag)
734 /* Fetch the inode length from the fragtree rather then
735 * from i_size since i_size may have not been updated yet */
736 ilen = last_frag->ofs + last_frag->size;
737 else
738 ilen = JFFS2_F_I_SIZE(f);
740 memset(&ri, 0, sizeof(ri));
741 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
742 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
743 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
744 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
746 ri.ino = cpu_to_je32(f->inocache->ino);
747 ri.version = cpu_to_je32(++f->highest_version);
748 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
749 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
750 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
751 ri.isize = cpu_to_je32(ilen);
752 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
753 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
754 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
755 ri.offset = cpu_to_je32(0);
756 ri.csize = cpu_to_je32(mdatalen);
757 ri.dsize = cpu_to_je32(mdatalen);
758 ri.compr = JFFS2_COMPR_NONE;
759 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
760 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
762 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
764 if (IS_ERR(new_fn)) {
765 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
766 ret = PTR_ERR(new_fn);
767 goto out;
769 jffs2_mark_node_obsolete(c, fn->raw);
770 jffs2_free_full_dnode(fn);
771 f->metadata = new_fn;
772 out:
773 if (S_ISLNK(JFFS2_F_I_MODE(f)))
774 kfree(mdata);
775 return ret;
778 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
779 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
781 struct jffs2_full_dirent *new_fd;
782 struct jffs2_raw_dirent rd;
783 uint32_t alloclen;
784 int ret;
786 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
787 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
788 rd.nsize = strlen(fd->name);
789 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
790 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
792 rd.pino = cpu_to_je32(f->inocache->ino);
793 rd.version = cpu_to_je32(++f->highest_version);
794 rd.ino = cpu_to_je32(fd->ino);
795 /* If the times on this inode were set by explicit utime() they can be different,
796 so refrain from splatting them. */
797 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
798 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
799 else
800 rd.mctime = cpu_to_je32(0);
801 rd.type = fd->type;
802 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
803 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
805 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
806 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
807 if (ret) {
808 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
809 sizeof(rd)+rd.nsize, ret);
810 return ret;
812 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
814 if (IS_ERR(new_fd)) {
815 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
816 return PTR_ERR(new_fd);
818 jffs2_add_fd_to_list(c, new_fd, &f->dents);
819 return 0;
822 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
823 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
825 struct jffs2_full_dirent **fdp = &f->dents;
826 int found = 0;
828 /* On a medium where we can't actually mark nodes obsolete
829 pernamently, such as NAND flash, we need to work out
830 whether this deletion dirent is still needed to actively
831 delete a 'real' dirent with the same name that's still
832 somewhere else on the flash. */
833 if (!jffs2_can_mark_obsolete(c)) {
834 struct jffs2_raw_dirent *rd;
835 struct jffs2_raw_node_ref *raw;
836 int ret;
837 size_t retlen;
838 int name_len = strlen(fd->name);
839 uint32_t name_crc = crc32(0, fd->name, name_len);
840 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
842 rd = kmalloc(rawlen, GFP_KERNEL);
843 if (!rd)
844 return -ENOMEM;
846 /* Prevent the erase code from nicking the obsolete node refs while
847 we're looking at them. I really don't like this extra lock but
848 can't see any alternative. Suggestions on a postcard to... */
849 down(&c->erase_free_sem);
851 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
853 cond_resched();
855 /* We only care about obsolete ones */
856 if (!(ref_obsolete(raw)))
857 continue;
859 /* Any dirent with the same name is going to have the same length... */
860 if (ref_totlen(c, NULL, raw) != rawlen)
861 continue;
863 /* Doesn't matter if there's one in the same erase block. We're going to
864 delete it too at the same time. */
865 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
866 continue;
868 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
870 /* This is an obsolete node belonging to the same directory, and it's of the right
871 length. We need to take a closer look...*/
872 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
873 if (ret) {
874 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
875 /* If we can't read it, we don't need to continue to obsolete it. Continue */
876 continue;
878 if (retlen != rawlen) {
879 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
880 retlen, rawlen, ref_offset(raw));
881 continue;
884 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
885 continue;
887 /* If the name CRC doesn't match, skip */
888 if (je32_to_cpu(rd->name_crc) != name_crc)
889 continue;
891 /* If the name length doesn't match, or it's another deletion dirent, skip */
892 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
893 continue;
895 /* OK, check the actual name now */
896 if (memcmp(rd->name, fd->name, name_len))
897 continue;
899 /* OK. The name really does match. There really is still an older node on
900 the flash which our deletion dirent obsoletes. So we have to write out
901 a new deletion dirent to replace it */
902 up(&c->erase_free_sem);
904 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
905 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
906 kfree(rd);
908 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
911 up(&c->erase_free_sem);
912 kfree(rd);
915 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
916 we should update the metadata node with those times accordingly */
918 /* No need for it any more. Just mark it obsolete and remove it from the list */
919 while (*fdp) {
920 if ((*fdp) == fd) {
921 found = 1;
922 *fdp = fd->next;
923 break;
925 fdp = &(*fdp)->next;
927 if (!found) {
928 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
930 jffs2_mark_node_obsolete(c, fd->raw);
931 jffs2_free_full_dirent(fd);
932 return 0;
935 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
936 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
937 uint32_t start, uint32_t end)
939 struct jffs2_raw_inode ri;
940 struct jffs2_node_frag *frag;
941 struct jffs2_full_dnode *new_fn;
942 uint32_t alloclen, ilen;
943 int ret;
945 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
946 f->inocache->ino, start, end));
948 memset(&ri, 0, sizeof(ri));
950 if(fn->frags > 1) {
951 size_t readlen;
952 uint32_t crc;
953 /* It's partially obsoleted by a later write. So we have to
954 write it out again with the _same_ version as before */
955 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
956 if (readlen != sizeof(ri) || ret) {
957 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
958 goto fill;
960 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
961 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
962 ref_offset(fn->raw),
963 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
964 return -EIO;
966 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
967 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
968 ref_offset(fn->raw),
969 je32_to_cpu(ri.totlen), sizeof(ri));
970 return -EIO;
972 crc = crc32(0, &ri, sizeof(ri)-8);
973 if (crc != je32_to_cpu(ri.node_crc)) {
974 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
975 ref_offset(fn->raw),
976 je32_to_cpu(ri.node_crc), crc);
977 /* FIXME: We could possibly deal with this by writing new holes for each frag */
978 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
979 start, end, f->inocache->ino);
980 goto fill;
982 if (ri.compr != JFFS2_COMPR_ZERO) {
983 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
984 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
985 start, end, f->inocache->ino);
986 goto fill;
988 } else {
989 fill:
990 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
991 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
992 ri.totlen = cpu_to_je32(sizeof(ri));
993 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
995 ri.ino = cpu_to_je32(f->inocache->ino);
996 ri.version = cpu_to_je32(++f->highest_version);
997 ri.offset = cpu_to_je32(start);
998 ri.dsize = cpu_to_je32(end - start);
999 ri.csize = cpu_to_je32(0);
1000 ri.compr = JFFS2_COMPR_ZERO;
1003 frag = frag_last(&f->fragtree);
1004 if (frag)
1005 /* Fetch the inode length from the fragtree rather then
1006 * from i_size since i_size may have not been updated yet */
1007 ilen = frag->ofs + frag->size;
1008 else
1009 ilen = JFFS2_F_I_SIZE(f);
1011 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1012 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1013 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1014 ri.isize = cpu_to_je32(ilen);
1015 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1016 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1017 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1018 ri.data_crc = cpu_to_je32(0);
1019 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1021 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1022 JFFS2_SUMMARY_INODE_SIZE);
1023 if (ret) {
1024 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1025 sizeof(ri), ret);
1026 return ret;
1028 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1030 if (IS_ERR(new_fn)) {
1031 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1032 return PTR_ERR(new_fn);
1034 if (je32_to_cpu(ri.version) == f->highest_version) {
1035 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1036 if (f->metadata) {
1037 jffs2_mark_node_obsolete(c, f->metadata->raw);
1038 jffs2_free_full_dnode(f->metadata);
1039 f->metadata = NULL;
1041 return 0;
1045 * We should only get here in the case where the node we are
1046 * replacing had more than one frag, so we kept the same version
1047 * number as before. (Except in case of error -- see 'goto fill;'
1048 * above.)
1050 D1(if(unlikely(fn->frags <= 1)) {
1051 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1052 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1053 je32_to_cpu(ri.ino));
1056 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1057 mark_ref_normal(new_fn->raw);
1059 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1060 frag; frag = frag_next(frag)) {
1061 if (frag->ofs > fn->size + fn->ofs)
1062 break;
1063 if (frag->node == fn) {
1064 frag->node = new_fn;
1065 new_fn->frags++;
1066 fn->frags--;
1069 if (fn->frags) {
1070 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1071 BUG();
1073 if (!new_fn->frags) {
1074 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1075 BUG();
1078 jffs2_mark_node_obsolete(c, fn->raw);
1079 jffs2_free_full_dnode(fn);
1081 return 0;
1084 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1085 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1086 uint32_t start, uint32_t end)
1088 struct jffs2_full_dnode *new_fn;
1089 struct jffs2_raw_inode ri;
1090 uint32_t alloclen, offset, orig_end, orig_start;
1091 int ret = 0;
1092 unsigned char *comprbuf = NULL, *writebuf;
1093 unsigned long pg;
1094 unsigned char *pg_ptr;
1096 memset(&ri, 0, sizeof(ri));
1098 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1099 f->inocache->ino, start, end));
1101 orig_end = end;
1102 orig_start = start;
1104 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1105 /* Attempt to do some merging. But only expand to cover logically
1106 adjacent frags if the block containing them is already considered
1107 to be dirty. Otherwise we end up with GC just going round in
1108 circles dirtying the nodes it already wrote out, especially
1109 on NAND where we have small eraseblocks and hence a much higher
1110 chance of nodes having to be split to cross boundaries. */
1112 struct jffs2_node_frag *frag;
1113 uint32_t min, max;
1115 min = start & ~(PAGE_CACHE_SIZE-1);
1116 max = min + PAGE_CACHE_SIZE;
1118 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1120 /* BUG_ON(!frag) but that'll happen anyway... */
1122 BUG_ON(frag->ofs != start);
1124 /* First grow down... */
1125 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1127 /* If the previous frag doesn't even reach the beginning, there's
1128 excessive fragmentation. Just merge. */
1129 if (frag->ofs > min) {
1130 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1131 frag->ofs, frag->ofs+frag->size));
1132 start = frag->ofs;
1133 continue;
1135 /* OK. This frag holds the first byte of the page. */
1136 if (!frag->node || !frag->node->raw) {
1137 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1138 frag->ofs, frag->ofs+frag->size));
1139 break;
1140 } else {
1142 /* OK, it's a frag which extends to the beginning of the page. Does it live
1143 in a block which is still considered clean? If so, don't obsolete it.
1144 If not, cover it anyway. */
1146 struct jffs2_raw_node_ref *raw = frag->node->raw;
1147 struct jffs2_eraseblock *jeb;
1149 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1151 if (jeb == c->gcblock) {
1152 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1153 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1154 start = frag->ofs;
1155 break;
1157 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1158 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1159 frag->ofs, frag->ofs+frag->size, jeb->offset));
1160 break;
1163 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1164 frag->ofs, frag->ofs+frag->size, jeb->offset));
1165 start = frag->ofs;
1166 break;
1170 /* ... then up */
1172 /* Find last frag which is actually part of the node we're to GC. */
1173 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1175 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1177 /* If the previous frag doesn't even reach the beginning, there's lots
1178 of fragmentation. Just merge. */
1179 if (frag->ofs+frag->size < max) {
1180 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1181 frag->ofs, frag->ofs+frag->size));
1182 end = frag->ofs + frag->size;
1183 continue;
1186 if (!frag->node || !frag->node->raw) {
1187 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1188 frag->ofs, frag->ofs+frag->size));
1189 break;
1190 } else {
1192 /* OK, it's a frag which extends to the beginning of the page. Does it live
1193 in a block which is still considered clean? If so, don't obsolete it.
1194 If not, cover it anyway. */
1196 struct jffs2_raw_node_ref *raw = frag->node->raw;
1197 struct jffs2_eraseblock *jeb;
1199 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1201 if (jeb == c->gcblock) {
1202 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1203 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1204 end = frag->ofs + frag->size;
1205 break;
1207 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1208 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1209 frag->ofs, frag->ofs+frag->size, jeb->offset));
1210 break;
1213 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1214 frag->ofs, frag->ofs+frag->size, jeb->offset));
1215 end = frag->ofs + frag->size;
1216 break;
1219 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1220 orig_start, orig_end, start, end));
1222 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1223 BUG_ON(end < orig_end);
1224 BUG_ON(start > orig_start);
1227 /* First, use readpage() to read the appropriate page into the page cache */
1228 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1229 * triggered garbage collection in the first place?
1230 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1231 * page OK. We'll actually write it out again in commit_write, which is a little
1232 * suboptimal, but at least we're correct.
1234 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1236 if (IS_ERR(pg_ptr)) {
1237 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1238 return PTR_ERR(pg_ptr);
1241 offset = start;
1242 while(offset < orig_end) {
1243 uint32_t datalen;
1244 uint32_t cdatalen;
1245 uint16_t comprtype = JFFS2_COMPR_NONE;
1247 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1248 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1250 if (ret) {
1251 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1252 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1253 break;
1255 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1256 datalen = end - offset;
1258 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1260 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1262 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1263 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1264 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1265 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1267 ri.ino = cpu_to_je32(f->inocache->ino);
1268 ri.version = cpu_to_je32(++f->highest_version);
1269 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1270 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1271 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1272 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1273 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1274 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1275 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1276 ri.offset = cpu_to_je32(offset);
1277 ri.csize = cpu_to_je32(cdatalen);
1278 ri.dsize = cpu_to_je32(datalen);
1279 ri.compr = comprtype & 0xff;
1280 ri.usercompr = (comprtype >> 8) & 0xff;
1281 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1282 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1284 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1286 jffs2_free_comprbuf(comprbuf, writebuf);
1288 if (IS_ERR(new_fn)) {
1289 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1290 ret = PTR_ERR(new_fn);
1291 break;
1293 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1294 offset += datalen;
1295 if (f->metadata) {
1296 jffs2_mark_node_obsolete(c, f->metadata->raw);
1297 jffs2_free_full_dnode(f->metadata);
1298 f->metadata = NULL;
1302 jffs2_gc_release_page(c, pg_ptr, &pg);
1303 return ret;