Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / video / omap / rfbi.c
blob789cfd23c36b1477734b59f9e5accdcead17e6fd
1 /*
2 * OMAP2 Remote Frame Buffer Interface support
4 * Copyright (C) 2005 Nokia Corporation
5 * Author: Juha Yrjölä <juha.yrjola@nokia.com>
6 * Imre Deak <imre.deak@nokia.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 #include <linux/module.h>
23 #include <linux/delay.h>
24 #include <linux/i2c.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
30 #include <asm/arch/omapfb.h>
32 #include "dispc.h"
34 /* To work around an RFBI transfer rate limitation */
35 #define OMAP_RFBI_RATE_LIMIT 1
37 #define RFBI_BASE 0x48050800
38 #define RFBI_REVISION 0x0000
39 #define RFBI_SYSCONFIG 0x0010
40 #define RFBI_SYSSTATUS 0x0014
41 #define RFBI_CONTROL 0x0040
42 #define RFBI_PIXEL_CNT 0x0044
43 #define RFBI_LINE_NUMBER 0x0048
44 #define RFBI_CMD 0x004c
45 #define RFBI_PARAM 0x0050
46 #define RFBI_DATA 0x0054
47 #define RFBI_READ 0x0058
48 #define RFBI_STATUS 0x005c
49 #define RFBI_CONFIG0 0x0060
50 #define RFBI_ONOFF_TIME0 0x0064
51 #define RFBI_CYCLE_TIME0 0x0068
52 #define RFBI_DATA_CYCLE1_0 0x006c
53 #define RFBI_DATA_CYCLE2_0 0x0070
54 #define RFBI_DATA_CYCLE3_0 0x0074
55 #define RFBI_VSYNC_WIDTH 0x0090
56 #define RFBI_HSYNC_WIDTH 0x0094
58 #define DISPC_BASE 0x48050400
59 #define DISPC_CONTROL 0x0040
61 static struct {
62 u32 base;
63 void (*lcdc_callback)(void *data);
64 void *lcdc_callback_data;
65 unsigned long l4_khz;
66 int bits_per_cycle;
67 struct omapfb_device *fbdev;
68 struct clk *dss_ick;
69 struct clk *dss1_fck;
70 unsigned tearsync_pin_cnt;
71 unsigned tearsync_mode;
72 } rfbi;
74 static inline void rfbi_write_reg(int idx, u32 val)
76 __raw_writel(val, rfbi.base + idx);
79 static inline u32 rfbi_read_reg(int idx)
81 return __raw_readl(rfbi.base + idx);
84 static int rfbi_get_clocks(void)
86 if (IS_ERR((rfbi.dss_ick = clk_get(rfbi.fbdev->dev, "dss_ick")))) {
87 dev_err(rfbi.fbdev->dev, "can't get dss_ick\n");
88 return PTR_ERR(rfbi.dss_ick);
91 if (IS_ERR((rfbi.dss1_fck = clk_get(rfbi.fbdev->dev, "dss1_fck")))) {
92 dev_err(rfbi.fbdev->dev, "can't get dss1_fck\n");
93 clk_put(rfbi.dss_ick);
94 return PTR_ERR(rfbi.dss1_fck);
97 return 0;
100 static void rfbi_put_clocks(void)
102 clk_put(rfbi.dss1_fck);
103 clk_put(rfbi.dss_ick);
106 static void rfbi_enable_clocks(int enable)
108 if (enable) {
109 clk_enable(rfbi.dss_ick);
110 clk_enable(rfbi.dss1_fck);
111 } else {
112 clk_disable(rfbi.dss1_fck);
113 clk_disable(rfbi.dss_ick);
118 #ifdef VERBOSE
119 static void rfbi_print_timings(void)
121 u32 l;
122 u32 time;
124 l = rfbi_read_reg(RFBI_CONFIG0);
125 time = 1000000000 / rfbi.l4_khz;
126 if (l & (1 << 4))
127 time *= 2;
129 dev_dbg(rfbi.fbdev->dev, "Tick time %u ps\n", time);
130 l = rfbi_read_reg(RFBI_ONOFF_TIME0);
131 dev_dbg(rfbi.fbdev->dev,
132 "CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
133 "REONTIME %d, REOFFTIME %d\n",
134 l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
135 (l >> 20) & 0x0f, (l >> 24) & 0x3f);
137 l = rfbi_read_reg(RFBI_CYCLE_TIME0);
138 dev_dbg(rfbi.fbdev->dev,
139 "WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
140 "ACCESSTIME %d\n",
141 (l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
142 (l >> 22) & 0x3f);
144 #else
145 static void rfbi_print_timings(void) {}
146 #endif
148 static void rfbi_set_timings(const struct extif_timings *t)
150 u32 l;
152 BUG_ON(!t->converted);
154 rfbi_enable_clocks(1);
155 rfbi_write_reg(RFBI_ONOFF_TIME0, t->tim[0]);
156 rfbi_write_reg(RFBI_CYCLE_TIME0, t->tim[1]);
158 l = rfbi_read_reg(RFBI_CONFIG0);
159 l &= ~(1 << 4);
160 l |= (t->tim[2] ? 1 : 0) << 4;
161 rfbi_write_reg(RFBI_CONFIG0, l);
163 rfbi_print_timings();
164 rfbi_enable_clocks(0);
167 static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
169 *clk_period = 1000000000 / rfbi.l4_khz;
170 *max_clk_div = 2;
173 static int ps_to_rfbi_ticks(int time, int div)
175 unsigned long tick_ps;
176 int ret;
178 /* Calculate in picosecs to yield more exact results */
179 tick_ps = 1000000000 / (rfbi.l4_khz) * div;
181 ret = (time + tick_ps - 1) / tick_ps;
183 return ret;
186 #ifdef OMAP_RFBI_RATE_LIMIT
187 static unsigned long rfbi_get_max_tx_rate(void)
189 unsigned long l4_rate, dss1_rate;
190 int min_l4_ticks = 0;
191 int i;
193 /* According to TI this can't be calculated so make the
194 * adjustments for a couple of known frequencies and warn for
195 * others.
197 static const struct {
198 unsigned long l4_clk; /* HZ */
199 unsigned long dss1_clk; /* HZ */
200 unsigned long min_l4_ticks;
201 } ftab[] = {
202 { 55, 132, 7, }, /* 7.86 MPix/s */
203 { 110, 110, 12, }, /* 9.16 MPix/s */
204 { 110, 132, 10, }, /* 11 Mpix/s */
205 { 120, 120, 10, }, /* 12 Mpix/s */
206 { 133, 133, 10, }, /* 13.3 Mpix/s */
209 l4_rate = rfbi.l4_khz / 1000;
210 dss1_rate = clk_get_rate(rfbi.dss1_fck) / 1000000;
212 for (i = 0; i < ARRAY_SIZE(ftab); i++) {
213 /* Use a window instead of an exact match, to account
214 * for different DPLL multiplier / divider pairs.
216 if (abs(ftab[i].l4_clk - l4_rate) < 3 &&
217 abs(ftab[i].dss1_clk - dss1_rate) < 3) {
218 min_l4_ticks = ftab[i].min_l4_ticks;
219 break;
222 if (i == ARRAY_SIZE(ftab)) {
223 /* Can't be sure, return anyway the maximum not
224 * rate-limited. This might cause a problem only for the
225 * tearing synchronisation.
227 dev_err(rfbi.fbdev->dev,
228 "can't determine maximum RFBI transfer rate\n");
229 return rfbi.l4_khz * 1000;
231 return rfbi.l4_khz * 1000 / min_l4_ticks;
233 #else
234 static int rfbi_get_max_tx_rate(void)
236 return rfbi.l4_khz * 1000;
238 #endif
241 static int rfbi_convert_timings(struct extif_timings *t)
243 u32 l;
244 int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
245 int actim, recyc, wecyc;
246 int div = t->clk_div;
248 if (div <= 0 || div > 2)
249 return -1;
251 /* Make sure that after conversion it still holds that:
252 * weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
253 * csoff > cson, csoff >= max(weoff, reoff), actim > reon
255 weon = ps_to_rfbi_ticks(t->we_on_time, div);
256 weoff = ps_to_rfbi_ticks(t->we_off_time, div);
257 if (weoff <= weon)
258 weoff = weon + 1;
259 if (weon > 0x0f)
260 return -1;
261 if (weoff > 0x3f)
262 return -1;
264 reon = ps_to_rfbi_ticks(t->re_on_time, div);
265 reoff = ps_to_rfbi_ticks(t->re_off_time, div);
266 if (reoff <= reon)
267 reoff = reon + 1;
268 if (reon > 0x0f)
269 return -1;
270 if (reoff > 0x3f)
271 return -1;
273 cson = ps_to_rfbi_ticks(t->cs_on_time, div);
274 csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
275 if (csoff <= cson)
276 csoff = cson + 1;
277 if (csoff < max(weoff, reoff))
278 csoff = max(weoff, reoff);
279 if (cson > 0x0f)
280 return -1;
281 if (csoff > 0x3f)
282 return -1;
284 l = cson;
285 l |= csoff << 4;
286 l |= weon << 10;
287 l |= weoff << 14;
288 l |= reon << 20;
289 l |= reoff << 24;
291 t->tim[0] = l;
293 actim = ps_to_rfbi_ticks(t->access_time, div);
294 if (actim <= reon)
295 actim = reon + 1;
296 if (actim > 0x3f)
297 return -1;
299 wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
300 if (wecyc < weoff)
301 wecyc = weoff;
302 if (wecyc > 0x3f)
303 return -1;
305 recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
306 if (recyc < reoff)
307 recyc = reoff;
308 if (recyc > 0x3f)
309 return -1;
311 cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
312 if (cs_pulse > 0x3f)
313 return -1;
315 l = wecyc;
316 l |= recyc << 6;
317 l |= cs_pulse << 12;
318 l |= actim << 22;
320 t->tim[1] = l;
322 t->tim[2] = div - 1;
324 t->converted = 1;
326 return 0;
329 static int rfbi_setup_tearsync(unsigned pin_cnt,
330 unsigned hs_pulse_time, unsigned vs_pulse_time,
331 int hs_pol_inv, int vs_pol_inv, int extif_div)
333 int hs, vs;
334 int min;
335 u32 l;
337 if (pin_cnt != 1 && pin_cnt != 2)
338 return -EINVAL;
340 hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
341 vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
342 if (hs < 2)
343 return -EDOM;
344 if (pin_cnt == 2)
345 min = 2;
346 else
347 min = 4;
348 if (vs < min)
349 return -EDOM;
350 if (vs == hs)
351 return -EINVAL;
352 rfbi.tearsync_pin_cnt = pin_cnt;
353 dev_dbg(rfbi.fbdev->dev,
354 "setup_tearsync: pins %d hs %d vs %d hs_inv %d vs_inv %d\n",
355 pin_cnt, hs, vs, hs_pol_inv, vs_pol_inv);
357 rfbi_enable_clocks(1);
358 rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
359 rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
361 l = rfbi_read_reg(RFBI_CONFIG0);
362 if (hs_pol_inv)
363 l &= ~(1 << 21);
364 else
365 l |= 1 << 21;
366 if (vs_pol_inv)
367 l &= ~(1 << 20);
368 else
369 l |= 1 << 20;
370 rfbi_enable_clocks(0);
372 return 0;
375 static int rfbi_enable_tearsync(int enable, unsigned line)
377 u32 l;
379 dev_dbg(rfbi.fbdev->dev, "tearsync %d line %d mode %d\n",
380 enable, line, rfbi.tearsync_mode);
381 if (line > (1 << 11) - 1)
382 return -EINVAL;
384 rfbi_enable_clocks(1);
385 l = rfbi_read_reg(RFBI_CONFIG0);
386 l &= ~(0x3 << 2);
387 if (enable) {
388 rfbi.tearsync_mode = rfbi.tearsync_pin_cnt;
389 l |= rfbi.tearsync_mode << 2;
390 } else
391 rfbi.tearsync_mode = 0;
392 rfbi_write_reg(RFBI_CONFIG0, l);
393 rfbi_write_reg(RFBI_LINE_NUMBER, line);
394 rfbi_enable_clocks(0);
396 return 0;
399 static void rfbi_write_command(const void *buf, unsigned int len)
401 rfbi_enable_clocks(1);
402 if (rfbi.bits_per_cycle == 16) {
403 const u16 *w = buf;
404 BUG_ON(len & 1);
405 for (; len; len -= 2)
406 rfbi_write_reg(RFBI_CMD, *w++);
407 } else {
408 const u8 *b = buf;
409 BUG_ON(rfbi.bits_per_cycle != 8);
410 for (; len; len--)
411 rfbi_write_reg(RFBI_CMD, *b++);
413 rfbi_enable_clocks(0);
416 static void rfbi_read_data(void *buf, unsigned int len)
418 rfbi_enable_clocks(1);
419 if (rfbi.bits_per_cycle == 16) {
420 u16 *w = buf;
421 BUG_ON(len & ~1);
422 for (; len; len -= 2) {
423 rfbi_write_reg(RFBI_READ, 0);
424 *w++ = rfbi_read_reg(RFBI_READ);
426 } else {
427 u8 *b = buf;
428 BUG_ON(rfbi.bits_per_cycle != 8);
429 for (; len; len--) {
430 rfbi_write_reg(RFBI_READ, 0);
431 *b++ = rfbi_read_reg(RFBI_READ);
434 rfbi_enable_clocks(0);
437 static void rfbi_write_data(const void *buf, unsigned int len)
439 rfbi_enable_clocks(1);
440 if (rfbi.bits_per_cycle == 16) {
441 const u16 *w = buf;
442 BUG_ON(len & 1);
443 for (; len; len -= 2)
444 rfbi_write_reg(RFBI_PARAM, *w++);
445 } else {
446 const u8 *b = buf;
447 BUG_ON(rfbi.bits_per_cycle != 8);
448 for (; len; len--)
449 rfbi_write_reg(RFBI_PARAM, *b++);
451 rfbi_enable_clocks(0);
454 static void rfbi_transfer_area(int width, int height,
455 void (callback)(void * data), void *data)
457 u32 w;
459 BUG_ON(callback == NULL);
461 rfbi_enable_clocks(1);
462 omap_dispc_set_lcd_size(width, height);
464 rfbi.lcdc_callback = callback;
465 rfbi.lcdc_callback_data = data;
467 rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
469 w = rfbi_read_reg(RFBI_CONTROL);
470 w |= 1; /* enable */
471 if (!rfbi.tearsync_mode)
472 w |= 1 << 4; /* internal trigger, reset by HW */
473 rfbi_write_reg(RFBI_CONTROL, w);
475 omap_dispc_enable_lcd_out(1);
478 static inline void _stop_transfer(void)
480 u32 w;
482 w = rfbi_read_reg(RFBI_CONTROL);
483 rfbi_write_reg(RFBI_CONTROL, w & ~(1 << 0));
484 rfbi_enable_clocks(0);
487 static void rfbi_dma_callback(void *data)
489 _stop_transfer();
490 rfbi.lcdc_callback(rfbi.lcdc_callback_data);
493 static void rfbi_set_bits_per_cycle(int bpc)
495 u32 l;
497 rfbi_enable_clocks(1);
498 l = rfbi_read_reg(RFBI_CONFIG0);
499 l &= ~(0x03 << 0);
501 switch (bpc) {
502 case 8:
503 break;
504 case 16:
505 l |= 3;
506 break;
507 default:
508 BUG();
510 rfbi_write_reg(RFBI_CONFIG0, l);
511 rfbi.bits_per_cycle = bpc;
512 rfbi_enable_clocks(0);
515 static int rfbi_init(struct omapfb_device *fbdev)
517 u32 l;
518 int r;
520 rfbi.fbdev = fbdev;
521 rfbi.base = io_p2v(RFBI_BASE);
523 if ((r = rfbi_get_clocks()) < 0)
524 return r;
525 rfbi_enable_clocks(1);
527 rfbi.l4_khz = clk_get_rate(rfbi.dss_ick) / 1000;
529 /* Reset */
530 rfbi_write_reg(RFBI_SYSCONFIG, 1 << 1);
531 while (!(rfbi_read_reg(RFBI_SYSSTATUS) & (1 << 0)));
533 l = rfbi_read_reg(RFBI_SYSCONFIG);
534 /* Enable autoidle and smart-idle */
535 l |= (1 << 0) | (2 << 3);
536 rfbi_write_reg(RFBI_SYSCONFIG, l);
538 /* 16-bit interface, ITE trigger mode, 16-bit data */
539 l = (0x03 << 0) | (0x00 << 2) | (0x01 << 5) | (0x02 << 7);
540 l |= (0 << 9) | (1 << 20) | (1 << 21);
541 rfbi_write_reg(RFBI_CONFIG0, l);
543 rfbi_write_reg(RFBI_DATA_CYCLE1_0, 0x00000010);
545 l = rfbi_read_reg(RFBI_CONTROL);
546 /* Select CS0, clear bypass mode */
547 l = (0x01 << 2);
548 rfbi_write_reg(RFBI_CONTROL, l);
550 if ((r = omap_dispc_request_irq(rfbi_dma_callback, NULL)) < 0) {
551 dev_err(fbdev->dev, "can't get DISPC irq\n");
552 rfbi_enable_clocks(0);
553 return r;
556 l = rfbi_read_reg(RFBI_REVISION);
557 pr_info("omapfb: RFBI version %d.%d initialized\n",
558 (l >> 4) & 0x0f, l & 0x0f);
560 rfbi_enable_clocks(0);
562 return 0;
565 static void rfbi_cleanup(void)
567 omap_dispc_free_irq();
568 rfbi_put_clocks();
571 const struct lcd_ctrl_extif omap2_ext_if = {
572 .init = rfbi_init,
573 .cleanup = rfbi_cleanup,
574 .get_clk_info = rfbi_get_clk_info,
575 .get_max_tx_rate = rfbi_get_max_tx_rate,
576 .set_bits_per_cycle = rfbi_set_bits_per_cycle,
577 .convert_timings = rfbi_convert_timings,
578 .set_timings = rfbi_set_timings,
579 .write_command = rfbi_write_command,
580 .read_data = rfbi_read_data,
581 .write_data = rfbi_write_data,
582 .transfer_area = rfbi_transfer_area,
583 .setup_tearsync = rfbi_setup_tearsync,
584 .enable_tearsync = rfbi_enable_tearsync,
586 .max_transmit_size = (u32) ~0,