Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / scsi / libsas / sas_expander.c
blobaefd865a578862e3bf17b4a8d6a7f8a4a8aaffef
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40 /* ---------- SMP task management ---------- */
42 static void smp_task_timedout(unsigned long _task)
44 struct sas_task *task = (void *) _task;
45 unsigned long flags;
47 spin_lock_irqsave(&task->task_state_lock, flags);
48 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50 spin_unlock_irqrestore(&task->task_state_lock, flags);
52 complete(&task->completion);
55 static void smp_task_done(struct sas_task *task)
57 if (!del_timer(&task->timer))
58 return;
59 complete(&task->completion);
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66 void *resp, int resp_size)
68 int res, retry;
69 struct sas_task *task = NULL;
70 struct sas_internal *i =
71 to_sas_internal(dev->port->ha->core.shost->transportt);
73 for (retry = 0; retry < 3; retry++) {
74 task = sas_alloc_task(GFP_KERNEL);
75 if (!task)
76 return -ENOMEM;
78 task->dev = dev;
79 task->task_proto = dev->tproto;
80 sg_init_one(&task->smp_task.smp_req, req, req_size);
81 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83 task->task_done = smp_task_done;
85 task->timer.data = (unsigned long) task;
86 task->timer.function = smp_task_timedout;
87 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88 add_timer(&task->timer);
90 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92 if (res) {
93 del_timer(&task->timer);
94 SAS_DPRINTK("executing SMP task failed:%d\n", res);
95 goto ex_err;
98 wait_for_completion(&task->completion);
99 res = -ECOMM;
100 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101 SAS_DPRINTK("smp task timed out or aborted\n");
102 i->dft->lldd_abort_task(task);
103 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104 SAS_DPRINTK("SMP task aborted and not done\n");
105 goto ex_err;
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAM_GOOD) {
110 res = 0;
111 break;
112 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
113 task->task_status.stat == SAS_DATA_UNDERRUN) {
114 /* no error, but return the number of bytes of
115 * underrun */
116 res = task->task_status.residual;
117 break;
118 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
119 task->task_status.stat == SAS_DATA_OVERRUN) {
120 res = -EMSGSIZE;
121 break;
122 } else {
123 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
124 "status 0x%x\n", __FUNCTION__,
125 SAS_ADDR(dev->sas_addr),
126 task->task_status.resp,
127 task->task_status.stat);
128 sas_free_task(task);
129 task = NULL;
132 ex_err:
133 BUG_ON(retry == 3 && task != NULL);
134 if (task != NULL) {
135 sas_free_task(task);
137 return res;
140 /* ---------- Allocations ---------- */
142 static inline void *alloc_smp_req(int size)
144 u8 *p = kzalloc(size, GFP_KERNEL);
145 if (p)
146 p[0] = SMP_REQUEST;
147 return p;
150 static inline void *alloc_smp_resp(int size)
152 return kzalloc(size, GFP_KERNEL);
155 /* ---------- Expander configuration ---------- */
157 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
158 void *disc_resp)
160 struct expander_device *ex = &dev->ex_dev;
161 struct ex_phy *phy = &ex->ex_phy[phy_id];
162 struct smp_resp *resp = disc_resp;
163 struct discover_resp *dr = &resp->disc;
164 struct sas_rphy *rphy = dev->rphy;
165 int rediscover = (phy->phy != NULL);
167 if (!rediscover) {
168 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170 /* FIXME: error_handling */
171 BUG_ON(!phy->phy);
174 switch (resp->result) {
175 case SMP_RESP_PHY_VACANT:
176 phy->phy_state = PHY_VACANT;
177 return;
178 default:
179 phy->phy_state = PHY_NOT_PRESENT;
180 return;
181 case SMP_RESP_FUNC_ACC:
182 phy->phy_state = PHY_EMPTY; /* do not know yet */
183 break;
186 phy->phy_id = phy_id;
187 phy->attached_dev_type = dr->attached_dev_type;
188 phy->linkrate = dr->linkrate;
189 phy->attached_sata_host = dr->attached_sata_host;
190 phy->attached_sata_dev = dr->attached_sata_dev;
191 phy->attached_sata_ps = dr->attached_sata_ps;
192 phy->attached_iproto = dr->iproto << 1;
193 phy->attached_tproto = dr->tproto << 1;
194 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195 phy->attached_phy_id = dr->attached_phy_id;
196 phy->phy_change_count = dr->change_count;
197 phy->routing_attr = dr->routing_attr;
198 phy->virtual = dr->virtual;
199 phy->last_da_index = -1;
201 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202 phy->phy->identify.target_port_protocols = phy->attached_tproto;
203 phy->phy->identify.phy_identifier = phy_id;
204 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206 phy->phy->minimum_linkrate = dr->pmin_linkrate;
207 phy->phy->maximum_linkrate = dr->pmax_linkrate;
208 phy->phy->negotiated_linkrate = phy->linkrate;
210 if (!rediscover)
211 sas_phy_add(phy->phy);
213 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214 SAS_ADDR(dev->sas_addr), phy->phy_id,
215 phy->routing_attr == TABLE_ROUTING ? 'T' :
216 phy->routing_attr == DIRECT_ROUTING ? 'D' :
217 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218 SAS_ADDR(phy->attached_sas_addr));
220 return;
223 #define DISCOVER_REQ_SIZE 16
224 #define DISCOVER_RESP_SIZE 56
226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227 u8 *disc_resp, int single)
229 int i, res;
231 disc_req[9] = single;
232 for (i = 1 ; i < 3; i++) {
233 struct discover_resp *dr;
235 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236 disc_resp, DISCOVER_RESP_SIZE);
237 if (res)
238 return res;
239 /* This is detecting a failure to transmit inital
240 * dev to host FIS as described in section G.5 of
241 * sas-2 r 04b */
242 dr = &((struct smp_resp *)disc_resp)->disc;
243 if (!(dr->attached_dev_type == 0 &&
244 dr->attached_sata_dev))
245 break;
246 /* In order to generate the dev to host FIS, we
247 * send a link reset to the expander port */
248 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249 /* Wait for the reset to trigger the negotiation */
250 msleep(500);
252 sas_set_ex_phy(dev, single, disc_resp);
253 return 0;
256 static int sas_ex_phy_discover(struct domain_device *dev, int single)
258 struct expander_device *ex = &dev->ex_dev;
259 int res = 0;
260 u8 *disc_req;
261 u8 *disc_resp;
263 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264 if (!disc_req)
265 return -ENOMEM;
267 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268 if (!disc_resp) {
269 kfree(disc_req);
270 return -ENOMEM;
273 disc_req[1] = SMP_DISCOVER;
275 if (0 <= single && single < ex->num_phys) {
276 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277 } else {
278 int i;
280 for (i = 0; i < ex->num_phys; i++) {
281 res = sas_ex_phy_discover_helper(dev, disc_req,
282 disc_resp, i);
283 if (res)
284 goto out_err;
287 out_err:
288 kfree(disc_resp);
289 kfree(disc_req);
290 return res;
293 static int sas_expander_discover(struct domain_device *dev)
295 struct expander_device *ex = &dev->ex_dev;
296 int res = -ENOMEM;
298 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299 if (!ex->ex_phy)
300 return -ENOMEM;
302 res = sas_ex_phy_discover(dev, -1);
303 if (res)
304 goto out_err;
306 return 0;
307 out_err:
308 kfree(ex->ex_phy);
309 ex->ex_phy = NULL;
310 return res;
313 #define MAX_EXPANDER_PHYS 128
315 static void ex_assign_report_general(struct domain_device *dev,
316 struct smp_resp *resp)
318 struct report_general_resp *rg = &resp->rg;
320 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323 dev->ex_dev.conf_route_table = rg->conf_route_table;
324 dev->ex_dev.configuring = rg->configuring;
325 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
328 #define RG_REQ_SIZE 8
329 #define RG_RESP_SIZE 32
331 static int sas_ex_general(struct domain_device *dev)
333 u8 *rg_req;
334 struct smp_resp *rg_resp;
335 int res;
336 int i;
338 rg_req = alloc_smp_req(RG_REQ_SIZE);
339 if (!rg_req)
340 return -ENOMEM;
342 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343 if (!rg_resp) {
344 kfree(rg_req);
345 return -ENOMEM;
348 rg_req[1] = SMP_REPORT_GENERAL;
350 for (i = 0; i < 5; i++) {
351 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352 RG_RESP_SIZE);
354 if (res) {
355 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356 SAS_ADDR(dev->sas_addr), res);
357 goto out;
358 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360 SAS_ADDR(dev->sas_addr), rg_resp->result);
361 res = rg_resp->result;
362 goto out;
365 ex_assign_report_general(dev, rg_resp);
367 if (dev->ex_dev.configuring) {
368 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369 SAS_ADDR(dev->sas_addr));
370 schedule_timeout_interruptible(5*HZ);
371 } else
372 break;
374 out:
375 kfree(rg_req);
376 kfree(rg_resp);
377 return res;
380 static void ex_assign_manuf_info(struct domain_device *dev, void
381 *_mi_resp)
383 u8 *mi_resp = _mi_resp;
384 struct sas_rphy *rphy = dev->rphy;
385 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
387 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389 memcpy(edev->product_rev, mi_resp + 36,
390 SAS_EXPANDER_PRODUCT_REV_LEN);
392 if (mi_resp[8] & 1) {
393 memcpy(edev->component_vendor_id, mi_resp + 40,
394 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396 edev->component_revision_id = mi_resp[50];
400 #define MI_REQ_SIZE 8
401 #define MI_RESP_SIZE 64
403 static int sas_ex_manuf_info(struct domain_device *dev)
405 u8 *mi_req;
406 u8 *mi_resp;
407 int res;
409 mi_req = alloc_smp_req(MI_REQ_SIZE);
410 if (!mi_req)
411 return -ENOMEM;
413 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414 if (!mi_resp) {
415 kfree(mi_req);
416 return -ENOMEM;
419 mi_req[1] = SMP_REPORT_MANUF_INFO;
421 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422 if (res) {
423 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424 SAS_ADDR(dev->sas_addr), res);
425 goto out;
426 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428 SAS_ADDR(dev->sas_addr), mi_resp[2]);
429 goto out;
432 ex_assign_manuf_info(dev, mi_resp);
433 out:
434 kfree(mi_req);
435 kfree(mi_resp);
436 return res;
439 #define PC_REQ_SIZE 44
440 #define PC_RESP_SIZE 8
442 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443 enum phy_func phy_func,
444 struct sas_phy_linkrates *rates)
446 u8 *pc_req;
447 u8 *pc_resp;
448 int res;
450 pc_req = alloc_smp_req(PC_REQ_SIZE);
451 if (!pc_req)
452 return -ENOMEM;
454 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455 if (!pc_resp) {
456 kfree(pc_req);
457 return -ENOMEM;
460 pc_req[1] = SMP_PHY_CONTROL;
461 pc_req[9] = phy_id;
462 pc_req[10]= phy_func;
463 if (rates) {
464 pc_req[32] = rates->minimum_linkrate << 4;
465 pc_req[33] = rates->maximum_linkrate << 4;
468 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
470 kfree(pc_resp);
471 kfree(pc_req);
472 return res;
475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
477 struct expander_device *ex = &dev->ex_dev;
478 struct ex_phy *phy = &ex->ex_phy[phy_id];
480 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481 phy->linkrate = SAS_PHY_DISABLED;
484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
486 struct expander_device *ex = &dev->ex_dev;
487 int i;
489 for (i = 0; i < ex->num_phys; i++) {
490 struct ex_phy *phy = &ex->ex_phy[i];
492 if (phy->phy_state == PHY_VACANT ||
493 phy->phy_state == PHY_NOT_PRESENT)
494 continue;
496 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497 sas_ex_disable_phy(dev, i);
501 static int sas_dev_present_in_domain(struct asd_sas_port *port,
502 u8 *sas_addr)
504 struct domain_device *dev;
506 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507 return 1;
508 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510 return 1;
512 return 0;
515 #define RPEL_REQ_SIZE 16
516 #define RPEL_RESP_SIZE 32
517 int sas_smp_get_phy_events(struct sas_phy *phy)
519 int res;
520 u8 *req;
521 u8 *resp;
522 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
525 req = alloc_smp_req(RPEL_REQ_SIZE);
526 if (!req)
527 return -ENOMEM;
529 resp = alloc_smp_resp(RPEL_RESP_SIZE);
530 if (!resp) {
531 kfree(req);
532 return -ENOMEM;
535 req[1] = SMP_REPORT_PHY_ERR_LOG;
536 req[9] = phy->number;
538 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539 resp, RPEL_RESP_SIZE);
541 if (!res)
542 goto out;
544 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
549 out:
550 kfree(resp);
551 return res;
555 #ifdef CONFIG_SCSI_SAS_ATA
557 #define RPS_REQ_SIZE 16
558 #define RPS_RESP_SIZE 60
560 static int sas_get_report_phy_sata(struct domain_device *dev,
561 int phy_id,
562 struct smp_resp *rps_resp)
564 int res;
565 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566 u8 *resp = (u8 *)rps_resp;
568 if (!rps_req)
569 return -ENOMEM;
571 rps_req[1] = SMP_REPORT_PHY_SATA;
572 rps_req[9] = phy_id;
574 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575 rps_resp, RPS_RESP_SIZE);
577 /* 0x34 is the FIS type for the D2H fis. There's a potential
578 * standards cockup here. sas-2 explicitly specifies the FIS
579 * should be encoded so that FIS type is in resp[24].
580 * However, some expanders endian reverse this. Undo the
581 * reversal here */
582 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583 int i;
585 for (i = 0; i < 5; i++) {
586 int j = 24 + (i*4);
587 u8 a, b;
588 a = resp[j + 0];
589 b = resp[j + 1];
590 resp[j + 0] = resp[j + 3];
591 resp[j + 1] = resp[j + 2];
592 resp[j + 2] = b;
593 resp[j + 3] = a;
597 kfree(rps_req);
598 return res;
600 #endif
602 static void sas_ex_get_linkrate(struct domain_device *parent,
603 struct domain_device *child,
604 struct ex_phy *parent_phy)
606 struct expander_device *parent_ex = &parent->ex_dev;
607 struct sas_port *port;
608 int i;
610 child->pathways = 0;
612 port = parent_phy->port;
614 for (i = 0; i < parent_ex->num_phys; i++) {
615 struct ex_phy *phy = &parent_ex->ex_phy[i];
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
621 if (SAS_ADDR(phy->attached_sas_addr) ==
622 SAS_ADDR(child->sas_addr)) {
624 child->min_linkrate = min(parent->min_linkrate,
625 phy->linkrate);
626 child->max_linkrate = max(parent->max_linkrate,
627 phy->linkrate);
628 child->pathways++;
629 sas_port_add_phy(port, phy->phy);
632 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633 child->pathways = min(child->pathways, parent->pathways);
636 static struct domain_device *sas_ex_discover_end_dev(
637 struct domain_device *parent, int phy_id)
639 struct expander_device *parent_ex = &parent->ex_dev;
640 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641 struct domain_device *child = NULL;
642 struct sas_rphy *rphy;
643 int res;
645 if (phy->attached_sata_host || phy->attached_sata_ps)
646 return NULL;
648 child = kzalloc(sizeof(*child), GFP_KERNEL);
649 if (!child)
650 return NULL;
652 child->parent = parent;
653 child->port = parent->port;
654 child->iproto = phy->attached_iproto;
655 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657 if (!phy->port) {
658 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659 if (unlikely(!phy->port))
660 goto out_err;
661 if (unlikely(sas_port_add(phy->port) != 0)) {
662 sas_port_free(phy->port);
663 goto out_err;
666 sas_ex_get_linkrate(parent, child, phy);
668 #ifdef CONFIG_SCSI_SAS_ATA
669 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670 child->dev_type = SATA_DEV;
671 if (phy->attached_tproto & SAS_PROTOCOL_STP)
672 child->tproto = phy->attached_tproto;
673 if (phy->attached_sata_dev)
674 child->tproto |= SATA_DEV;
675 res = sas_get_report_phy_sata(parent, phy_id,
676 &child->sata_dev.rps_resp);
677 if (res) {
678 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679 "0x%x\n", SAS_ADDR(parent->sas_addr),
680 phy_id, res);
681 goto out_free;
683 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684 sizeof(struct dev_to_host_fis));
686 rphy = sas_end_device_alloc(phy->port);
687 if (unlikely(!rphy))
688 goto out_free;
690 sas_init_dev(child);
692 child->rphy = rphy;
694 spin_lock_irq(&parent->port->dev_list_lock);
695 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696 spin_unlock_irq(&parent->port->dev_list_lock);
698 res = sas_discover_sata(child);
699 if (res) {
700 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701 "%016llx:0x%x returned 0x%x\n",
702 SAS_ADDR(child->sas_addr),
703 SAS_ADDR(parent->sas_addr), phy_id, res);
704 goto out_list_del;
706 } else
707 #endif
708 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709 child->dev_type = SAS_END_DEV;
710 rphy = sas_end_device_alloc(phy->port);
711 /* FIXME: error handling */
712 if (unlikely(!rphy))
713 goto out_free;
714 child->tproto = phy->attached_tproto;
715 sas_init_dev(child);
717 child->rphy = rphy;
718 sas_fill_in_rphy(child, rphy);
720 spin_lock_irq(&parent->port->dev_list_lock);
721 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
722 spin_unlock_irq(&parent->port->dev_list_lock);
724 res = sas_discover_end_dev(child);
725 if (res) {
726 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
727 "at %016llx:0x%x returned 0x%x\n",
728 SAS_ADDR(child->sas_addr),
729 SAS_ADDR(parent->sas_addr), phy_id, res);
730 goto out_list_del;
732 } else {
733 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
734 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
735 phy_id);
736 goto out_free;
739 list_add_tail(&child->siblings, &parent_ex->children);
740 return child;
742 out_list_del:
743 sas_rphy_free(child->rphy);
744 child->rphy = NULL;
745 list_del(&child->dev_list_node);
746 out_free:
747 sas_port_delete(phy->port);
748 out_err:
749 phy->port = NULL;
750 kfree(child);
751 return NULL;
754 /* See if this phy is part of a wide port */
755 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
757 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
758 int i;
760 for (i = 0; i < parent->ex_dev.num_phys; i++) {
761 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
763 if (ephy == phy)
764 continue;
766 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
767 SAS_ADDR_SIZE) && ephy->port) {
768 sas_port_add_phy(ephy->port, phy->phy);
769 phy->phy_state = PHY_DEVICE_DISCOVERED;
770 return 0;
774 return -ENODEV;
777 static struct domain_device *sas_ex_discover_expander(
778 struct domain_device *parent, int phy_id)
780 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
781 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
782 struct domain_device *child = NULL;
783 struct sas_rphy *rphy;
784 struct sas_expander_device *edev;
785 struct asd_sas_port *port;
786 int res;
788 if (phy->routing_attr == DIRECT_ROUTING) {
789 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
790 "allowed\n",
791 SAS_ADDR(parent->sas_addr), phy_id,
792 SAS_ADDR(phy->attached_sas_addr),
793 phy->attached_phy_id);
794 return NULL;
796 child = kzalloc(sizeof(*child), GFP_KERNEL);
797 if (!child)
798 return NULL;
800 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
801 /* FIXME: better error handling */
802 BUG_ON(sas_port_add(phy->port) != 0);
805 switch (phy->attached_dev_type) {
806 case EDGE_DEV:
807 rphy = sas_expander_alloc(phy->port,
808 SAS_EDGE_EXPANDER_DEVICE);
809 break;
810 case FANOUT_DEV:
811 rphy = sas_expander_alloc(phy->port,
812 SAS_FANOUT_EXPANDER_DEVICE);
813 break;
814 default:
815 rphy = NULL; /* shut gcc up */
816 BUG();
818 port = parent->port;
819 child->rphy = rphy;
820 edev = rphy_to_expander_device(rphy);
821 child->dev_type = phy->attached_dev_type;
822 child->parent = parent;
823 child->port = port;
824 child->iproto = phy->attached_iproto;
825 child->tproto = phy->attached_tproto;
826 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
827 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
828 sas_ex_get_linkrate(parent, child, phy);
829 edev->level = parent_ex->level + 1;
830 parent->port->disc.max_level = max(parent->port->disc.max_level,
831 edev->level);
832 sas_init_dev(child);
833 sas_fill_in_rphy(child, rphy);
834 sas_rphy_add(rphy);
836 spin_lock_irq(&parent->port->dev_list_lock);
837 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
838 spin_unlock_irq(&parent->port->dev_list_lock);
840 res = sas_discover_expander(child);
841 if (res) {
842 kfree(child);
843 return NULL;
845 list_add_tail(&child->siblings, &parent->ex_dev.children);
846 return child;
849 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
851 struct expander_device *ex = &dev->ex_dev;
852 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
853 struct domain_device *child = NULL;
854 int res = 0;
856 /* Phy state */
857 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
858 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
859 res = sas_ex_phy_discover(dev, phy_id);
860 if (res)
861 return res;
864 /* Parent and domain coherency */
865 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
866 SAS_ADDR(dev->port->sas_addr))) {
867 sas_add_parent_port(dev, phy_id);
868 return 0;
870 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
871 SAS_ADDR(dev->parent->sas_addr))) {
872 sas_add_parent_port(dev, phy_id);
873 if (ex_phy->routing_attr == TABLE_ROUTING)
874 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
875 return 0;
878 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
879 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
881 if (ex_phy->attached_dev_type == NO_DEVICE) {
882 if (ex_phy->routing_attr == DIRECT_ROUTING) {
883 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
884 sas_configure_routing(dev, ex_phy->attached_sas_addr);
886 return 0;
887 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
888 return 0;
890 if (ex_phy->attached_dev_type != SAS_END_DEV &&
891 ex_phy->attached_dev_type != FANOUT_DEV &&
892 ex_phy->attached_dev_type != EDGE_DEV) {
893 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
894 "phy 0x%x\n", ex_phy->attached_dev_type,
895 SAS_ADDR(dev->sas_addr),
896 phy_id);
897 return 0;
900 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
901 if (res) {
902 SAS_DPRINTK("configure routing for dev %016llx "
903 "reported 0x%x. Forgotten\n",
904 SAS_ADDR(ex_phy->attached_sas_addr), res);
905 sas_disable_routing(dev, ex_phy->attached_sas_addr);
906 return res;
909 res = sas_ex_join_wide_port(dev, phy_id);
910 if (!res) {
911 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
912 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
913 return res;
916 switch (ex_phy->attached_dev_type) {
917 case SAS_END_DEV:
918 child = sas_ex_discover_end_dev(dev, phy_id);
919 break;
920 case FANOUT_DEV:
921 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
922 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
923 "attached to ex %016llx phy 0x%x\n",
924 SAS_ADDR(ex_phy->attached_sas_addr),
925 ex_phy->attached_phy_id,
926 SAS_ADDR(dev->sas_addr),
927 phy_id);
928 sas_ex_disable_phy(dev, phy_id);
929 break;
930 } else
931 memcpy(dev->port->disc.fanout_sas_addr,
932 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
933 /* fallthrough */
934 case EDGE_DEV:
935 child = sas_ex_discover_expander(dev, phy_id);
936 break;
937 default:
938 break;
941 if (child) {
942 int i;
944 for (i = 0; i < ex->num_phys; i++) {
945 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
946 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
947 continue;
949 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
950 SAS_ADDR(child->sas_addr))
951 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
955 return res;
958 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
960 struct expander_device *ex = &dev->ex_dev;
961 int i;
963 for (i = 0; i < ex->num_phys; i++) {
964 struct ex_phy *phy = &ex->ex_phy[i];
966 if (phy->phy_state == PHY_VACANT ||
967 phy->phy_state == PHY_NOT_PRESENT)
968 continue;
970 if ((phy->attached_dev_type == EDGE_DEV ||
971 phy->attached_dev_type == FANOUT_DEV) &&
972 phy->routing_attr == SUBTRACTIVE_ROUTING) {
974 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
976 return 1;
979 return 0;
982 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
984 struct expander_device *ex = &dev->ex_dev;
985 struct domain_device *child;
986 u8 sub_addr[8] = {0, };
988 list_for_each_entry(child, &ex->children, siblings) {
989 if (child->dev_type != EDGE_DEV &&
990 child->dev_type != FANOUT_DEV)
991 continue;
992 if (sub_addr[0] == 0) {
993 sas_find_sub_addr(child, sub_addr);
994 continue;
995 } else {
996 u8 s2[8];
998 if (sas_find_sub_addr(child, s2) &&
999 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1001 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1002 "diverges from subtractive "
1003 "boundary %016llx\n",
1004 SAS_ADDR(dev->sas_addr),
1005 SAS_ADDR(child->sas_addr),
1006 SAS_ADDR(s2),
1007 SAS_ADDR(sub_addr));
1009 sas_ex_disable_port(child, s2);
1013 return 0;
1016 * sas_ex_discover_devices -- discover devices attached to this expander
1017 * dev: pointer to the expander domain device
1018 * single: if you want to do a single phy, else set to -1;
1020 * Configure this expander for use with its devices and register the
1021 * devices of this expander.
1023 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1025 struct expander_device *ex = &dev->ex_dev;
1026 int i = 0, end = ex->num_phys;
1027 int res = 0;
1029 if (0 <= single && single < end) {
1030 i = single;
1031 end = i+1;
1034 for ( ; i < end; i++) {
1035 struct ex_phy *ex_phy = &ex->ex_phy[i];
1037 if (ex_phy->phy_state == PHY_VACANT ||
1038 ex_phy->phy_state == PHY_NOT_PRESENT ||
1039 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1040 continue;
1042 switch (ex_phy->linkrate) {
1043 case SAS_PHY_DISABLED:
1044 case SAS_PHY_RESET_PROBLEM:
1045 case SAS_SATA_PORT_SELECTOR:
1046 continue;
1047 default:
1048 res = sas_ex_discover_dev(dev, i);
1049 if (res)
1050 break;
1051 continue;
1055 if (!res)
1056 sas_check_level_subtractive_boundary(dev);
1058 return res;
1061 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1063 struct expander_device *ex = &dev->ex_dev;
1064 int i;
1065 u8 *sub_sas_addr = NULL;
1067 if (dev->dev_type != EDGE_DEV)
1068 return 0;
1070 for (i = 0; i < ex->num_phys; i++) {
1071 struct ex_phy *phy = &ex->ex_phy[i];
1073 if (phy->phy_state == PHY_VACANT ||
1074 phy->phy_state == PHY_NOT_PRESENT)
1075 continue;
1077 if ((phy->attached_dev_type == FANOUT_DEV ||
1078 phy->attached_dev_type == EDGE_DEV) &&
1079 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1081 if (!sub_sas_addr)
1082 sub_sas_addr = &phy->attached_sas_addr[0];
1083 else if (SAS_ADDR(sub_sas_addr) !=
1084 SAS_ADDR(phy->attached_sas_addr)) {
1086 SAS_DPRINTK("ex %016llx phy 0x%x "
1087 "diverges(%016llx) on subtractive "
1088 "boundary(%016llx). Disabled\n",
1089 SAS_ADDR(dev->sas_addr), i,
1090 SAS_ADDR(phy->attached_sas_addr),
1091 SAS_ADDR(sub_sas_addr));
1092 sas_ex_disable_phy(dev, i);
1096 return 0;
1099 static void sas_print_parent_topology_bug(struct domain_device *child,
1100 struct ex_phy *parent_phy,
1101 struct ex_phy *child_phy)
1103 static const char ra_char[] = {
1104 [DIRECT_ROUTING] = 'D',
1105 [SUBTRACTIVE_ROUTING] = 'S',
1106 [TABLE_ROUTING] = 'T',
1108 static const char *ex_type[] = {
1109 [EDGE_DEV] = "edge",
1110 [FANOUT_DEV] = "fanout",
1112 struct domain_device *parent = child->parent;
1114 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1115 "has %c:%c routing link!\n",
1117 ex_type[parent->dev_type],
1118 SAS_ADDR(parent->sas_addr),
1119 parent_phy->phy_id,
1121 ex_type[child->dev_type],
1122 SAS_ADDR(child->sas_addr),
1123 child_phy->phy_id,
1125 ra_char[parent_phy->routing_attr],
1126 ra_char[child_phy->routing_attr]);
1129 static int sas_check_eeds(struct domain_device *child,
1130 struct ex_phy *parent_phy,
1131 struct ex_phy *child_phy)
1133 int res = 0;
1134 struct domain_device *parent = child->parent;
1136 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1137 res = -ENODEV;
1138 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1139 "phy S:0x%x, while there is a fanout ex %016llx\n",
1140 SAS_ADDR(parent->sas_addr),
1141 parent_phy->phy_id,
1142 SAS_ADDR(child->sas_addr),
1143 child_phy->phy_id,
1144 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1145 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1146 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1147 SAS_ADDR_SIZE);
1148 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1149 SAS_ADDR_SIZE);
1150 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1151 SAS_ADDR(parent->sas_addr)) ||
1152 (SAS_ADDR(parent->port->disc.eeds_a) ==
1153 SAS_ADDR(child->sas_addr)))
1155 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1156 SAS_ADDR(parent->sas_addr)) ||
1157 (SAS_ADDR(parent->port->disc.eeds_b) ==
1158 SAS_ADDR(child->sas_addr))))
1160 else {
1161 res = -ENODEV;
1162 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1163 "phy 0x%x link forms a third EEDS!\n",
1164 SAS_ADDR(parent->sas_addr),
1165 parent_phy->phy_id,
1166 SAS_ADDR(child->sas_addr),
1167 child_phy->phy_id);
1170 return res;
1173 /* Here we spill over 80 columns. It is intentional.
1175 static int sas_check_parent_topology(struct domain_device *child)
1177 struct expander_device *child_ex = &child->ex_dev;
1178 struct expander_device *parent_ex;
1179 int i;
1180 int res = 0;
1182 if (!child->parent)
1183 return 0;
1185 if (child->parent->dev_type != EDGE_DEV &&
1186 child->parent->dev_type != FANOUT_DEV)
1187 return 0;
1189 parent_ex = &child->parent->ex_dev;
1191 for (i = 0; i < parent_ex->num_phys; i++) {
1192 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1193 struct ex_phy *child_phy;
1195 if (parent_phy->phy_state == PHY_VACANT ||
1196 parent_phy->phy_state == PHY_NOT_PRESENT)
1197 continue;
1199 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1200 continue;
1202 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1204 switch (child->parent->dev_type) {
1205 case EDGE_DEV:
1206 if (child->dev_type == FANOUT_DEV) {
1207 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1208 child_phy->routing_attr != TABLE_ROUTING) {
1209 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1210 res = -ENODEV;
1212 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1213 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1214 res = sas_check_eeds(child, parent_phy, child_phy);
1215 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1216 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1217 res = -ENODEV;
1219 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1220 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1221 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1222 res = -ENODEV;
1224 break;
1225 case FANOUT_DEV:
1226 if (parent_phy->routing_attr != TABLE_ROUTING ||
1227 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1228 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1229 res = -ENODEV;
1231 break;
1232 default:
1233 break;
1237 return res;
1240 #define RRI_REQ_SIZE 16
1241 #define RRI_RESP_SIZE 44
1243 static int sas_configure_present(struct domain_device *dev, int phy_id,
1244 u8 *sas_addr, int *index, int *present)
1246 int i, res = 0;
1247 struct expander_device *ex = &dev->ex_dev;
1248 struct ex_phy *phy = &ex->ex_phy[phy_id];
1249 u8 *rri_req;
1250 u8 *rri_resp;
1252 *present = 0;
1253 *index = 0;
1255 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1256 if (!rri_req)
1257 return -ENOMEM;
1259 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1260 if (!rri_resp) {
1261 kfree(rri_req);
1262 return -ENOMEM;
1265 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1266 rri_req[9] = phy_id;
1268 for (i = 0; i < ex->max_route_indexes ; i++) {
1269 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1270 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1271 RRI_RESP_SIZE);
1272 if (res)
1273 goto out;
1274 res = rri_resp[2];
1275 if (res == SMP_RESP_NO_INDEX) {
1276 SAS_DPRINTK("overflow of indexes: dev %016llx "
1277 "phy 0x%x index 0x%x\n",
1278 SAS_ADDR(dev->sas_addr), phy_id, i);
1279 goto out;
1280 } else if (res != SMP_RESP_FUNC_ACC) {
1281 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1282 "result 0x%x\n", __FUNCTION__,
1283 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1284 goto out;
1286 if (SAS_ADDR(sas_addr) != 0) {
1287 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1288 *index = i;
1289 if ((rri_resp[12] & 0x80) == 0x80)
1290 *present = 0;
1291 else
1292 *present = 1;
1293 goto out;
1294 } else if (SAS_ADDR(rri_resp+16) == 0) {
1295 *index = i;
1296 *present = 0;
1297 goto out;
1299 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1300 phy->last_da_index < i) {
1301 phy->last_da_index = i;
1302 *index = i;
1303 *present = 0;
1304 goto out;
1307 res = -1;
1308 out:
1309 kfree(rri_req);
1310 kfree(rri_resp);
1311 return res;
1314 #define CRI_REQ_SIZE 44
1315 #define CRI_RESP_SIZE 8
1317 static int sas_configure_set(struct domain_device *dev, int phy_id,
1318 u8 *sas_addr, int index, int include)
1320 int res;
1321 u8 *cri_req;
1322 u8 *cri_resp;
1324 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1325 if (!cri_req)
1326 return -ENOMEM;
1328 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1329 if (!cri_resp) {
1330 kfree(cri_req);
1331 return -ENOMEM;
1334 cri_req[1] = SMP_CONF_ROUTE_INFO;
1335 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1336 cri_req[9] = phy_id;
1337 if (SAS_ADDR(sas_addr) == 0 || !include)
1338 cri_req[12] |= 0x80;
1339 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1341 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1342 CRI_RESP_SIZE);
1343 if (res)
1344 goto out;
1345 res = cri_resp[2];
1346 if (res == SMP_RESP_NO_INDEX) {
1347 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1348 "index 0x%x\n",
1349 SAS_ADDR(dev->sas_addr), phy_id, index);
1351 out:
1352 kfree(cri_req);
1353 kfree(cri_resp);
1354 return res;
1357 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1358 u8 *sas_addr, int include)
1360 int index;
1361 int present;
1362 int res;
1364 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1365 if (res)
1366 return res;
1367 if (include ^ present)
1368 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1370 return res;
1374 * sas_configure_parent -- configure routing table of parent
1375 * parent: parent expander
1376 * child: child expander
1377 * sas_addr: SAS port identifier of device directly attached to child
1379 static int sas_configure_parent(struct domain_device *parent,
1380 struct domain_device *child,
1381 u8 *sas_addr, int include)
1383 struct expander_device *ex_parent = &parent->ex_dev;
1384 int res = 0;
1385 int i;
1387 if (parent->parent) {
1388 res = sas_configure_parent(parent->parent, parent, sas_addr,
1389 include);
1390 if (res)
1391 return res;
1394 if (ex_parent->conf_route_table == 0) {
1395 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1396 SAS_ADDR(parent->sas_addr));
1397 return 0;
1400 for (i = 0; i < ex_parent->num_phys; i++) {
1401 struct ex_phy *phy = &ex_parent->ex_phy[i];
1403 if ((phy->routing_attr == TABLE_ROUTING) &&
1404 (SAS_ADDR(phy->attached_sas_addr) ==
1405 SAS_ADDR(child->sas_addr))) {
1406 res = sas_configure_phy(parent, i, sas_addr, include);
1407 if (res)
1408 return res;
1412 return res;
1416 * sas_configure_routing -- configure routing
1417 * dev: expander device
1418 * sas_addr: port identifier of device directly attached to the expander device
1420 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1422 if (dev->parent)
1423 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1424 return 0;
1427 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1429 if (dev->parent)
1430 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1431 return 0;
1435 * sas_discover_expander -- expander discovery
1436 * @ex: pointer to expander domain device
1438 * See comment in sas_discover_sata().
1440 static int sas_discover_expander(struct domain_device *dev)
1442 int res;
1444 res = sas_notify_lldd_dev_found(dev);
1445 if (res)
1446 return res;
1448 res = sas_ex_general(dev);
1449 if (res)
1450 goto out_err;
1451 res = sas_ex_manuf_info(dev);
1452 if (res)
1453 goto out_err;
1455 res = sas_expander_discover(dev);
1456 if (res) {
1457 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1458 SAS_ADDR(dev->sas_addr), res);
1459 goto out_err;
1462 sas_check_ex_subtractive_boundary(dev);
1463 res = sas_check_parent_topology(dev);
1464 if (res)
1465 goto out_err;
1466 return 0;
1467 out_err:
1468 sas_notify_lldd_dev_gone(dev);
1469 return res;
1472 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1474 int res = 0;
1475 struct domain_device *dev;
1477 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1478 if (dev->dev_type == EDGE_DEV ||
1479 dev->dev_type == FANOUT_DEV) {
1480 struct sas_expander_device *ex =
1481 rphy_to_expander_device(dev->rphy);
1483 if (level == ex->level)
1484 res = sas_ex_discover_devices(dev, -1);
1485 else if (level > 0)
1486 res = sas_ex_discover_devices(port->port_dev, -1);
1491 return res;
1494 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1496 int res;
1497 int level;
1499 do {
1500 level = port->disc.max_level;
1501 res = sas_ex_level_discovery(port, level);
1502 mb();
1503 } while (level < port->disc.max_level);
1505 return res;
1508 int sas_discover_root_expander(struct domain_device *dev)
1510 int res;
1511 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1513 res = sas_rphy_add(dev->rphy);
1514 if (res)
1515 goto out_err;
1517 ex->level = dev->port->disc.max_level; /* 0 */
1518 res = sas_discover_expander(dev);
1519 if (res)
1520 goto out_err2;
1522 sas_ex_bfs_disc(dev->port);
1524 return res;
1526 out_err2:
1527 sas_rphy_remove(dev->rphy);
1528 out_err:
1529 return res;
1532 /* ---------- Domain revalidation ---------- */
1534 static int sas_get_phy_discover(struct domain_device *dev,
1535 int phy_id, struct smp_resp *disc_resp)
1537 int res;
1538 u8 *disc_req;
1540 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1541 if (!disc_req)
1542 return -ENOMEM;
1544 disc_req[1] = SMP_DISCOVER;
1545 disc_req[9] = phy_id;
1547 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1548 disc_resp, DISCOVER_RESP_SIZE);
1549 if (res)
1550 goto out;
1551 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1552 res = disc_resp->result;
1553 goto out;
1555 out:
1556 kfree(disc_req);
1557 return res;
1560 static int sas_get_phy_change_count(struct domain_device *dev,
1561 int phy_id, int *pcc)
1563 int res;
1564 struct smp_resp *disc_resp;
1566 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1567 if (!disc_resp)
1568 return -ENOMEM;
1570 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1571 if (!res)
1572 *pcc = disc_resp->disc.change_count;
1574 kfree(disc_resp);
1575 return res;
1578 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1579 int phy_id, u8 *attached_sas_addr)
1581 int res;
1582 struct smp_resp *disc_resp;
1583 struct discover_resp *dr;
1585 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1586 if (!disc_resp)
1587 return -ENOMEM;
1588 dr = &disc_resp->disc;
1590 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1591 if (!res) {
1592 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1593 if (dr->attached_dev_type == 0)
1594 memset(attached_sas_addr, 0, 8);
1596 kfree(disc_resp);
1597 return res;
1600 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1601 int from_phy)
1603 struct expander_device *ex = &dev->ex_dev;
1604 int res = 0;
1605 int i;
1607 for (i = from_phy; i < ex->num_phys; i++) {
1608 int phy_change_count = 0;
1610 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1611 if (res)
1612 goto out;
1613 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1614 ex->ex_phy[i].phy_change_count = phy_change_count;
1615 *phy_id = i;
1616 return 0;
1619 out:
1620 return res;
1623 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1625 int res;
1626 u8 *rg_req;
1627 struct smp_resp *rg_resp;
1629 rg_req = alloc_smp_req(RG_REQ_SIZE);
1630 if (!rg_req)
1631 return -ENOMEM;
1633 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1634 if (!rg_resp) {
1635 kfree(rg_req);
1636 return -ENOMEM;
1639 rg_req[1] = SMP_REPORT_GENERAL;
1641 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1642 RG_RESP_SIZE);
1643 if (res)
1644 goto out;
1645 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1646 res = rg_resp->result;
1647 goto out;
1650 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1651 out:
1652 kfree(rg_resp);
1653 kfree(rg_req);
1654 return res;
1657 static int sas_find_bcast_dev(struct domain_device *dev,
1658 struct domain_device **src_dev)
1660 struct expander_device *ex = &dev->ex_dev;
1661 int ex_change_count = -1;
1662 int res;
1664 res = sas_get_ex_change_count(dev, &ex_change_count);
1665 if (res)
1666 goto out;
1667 if (ex_change_count != -1 &&
1668 ex_change_count != ex->ex_change_count) {
1669 *src_dev = dev;
1670 ex->ex_change_count = ex_change_count;
1671 } else {
1672 struct domain_device *ch;
1674 list_for_each_entry(ch, &ex->children, siblings) {
1675 if (ch->dev_type == EDGE_DEV ||
1676 ch->dev_type == FANOUT_DEV) {
1677 res = sas_find_bcast_dev(ch, src_dev);
1678 if (src_dev)
1679 return res;
1683 out:
1684 return res;
1687 static void sas_unregister_ex_tree(struct domain_device *dev)
1689 struct expander_device *ex = &dev->ex_dev;
1690 struct domain_device *child, *n;
1692 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1693 if (child->dev_type == EDGE_DEV ||
1694 child->dev_type == FANOUT_DEV)
1695 sas_unregister_ex_tree(child);
1696 else
1697 sas_unregister_dev(child);
1699 sas_unregister_dev(dev);
1702 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1703 int phy_id)
1705 struct expander_device *ex_dev = &parent->ex_dev;
1706 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1707 struct domain_device *child, *n;
1709 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1710 if (SAS_ADDR(child->sas_addr) ==
1711 SAS_ADDR(phy->attached_sas_addr)) {
1712 if (child->dev_type == EDGE_DEV ||
1713 child->dev_type == FANOUT_DEV)
1714 sas_unregister_ex_tree(child);
1715 else
1716 sas_unregister_dev(child);
1717 break;
1720 sas_disable_routing(parent, phy->attached_sas_addr);
1721 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1722 sas_port_delete_phy(phy->port, phy->phy);
1723 if (phy->port->num_phys == 0)
1724 sas_port_delete(phy->port);
1725 phy->port = NULL;
1728 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1729 const int level)
1731 struct expander_device *ex_root = &root->ex_dev;
1732 struct domain_device *child;
1733 int res = 0;
1735 list_for_each_entry(child, &ex_root->children, siblings) {
1736 if (child->dev_type == EDGE_DEV ||
1737 child->dev_type == FANOUT_DEV) {
1738 struct sas_expander_device *ex =
1739 rphy_to_expander_device(child->rphy);
1741 if (level > ex->level)
1742 res = sas_discover_bfs_by_root_level(child,
1743 level);
1744 else if (level == ex->level)
1745 res = sas_ex_discover_devices(child, -1);
1748 return res;
1751 static int sas_discover_bfs_by_root(struct domain_device *dev)
1753 int res;
1754 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1755 int level = ex->level+1;
1757 res = sas_ex_discover_devices(dev, -1);
1758 if (res)
1759 goto out;
1760 do {
1761 res = sas_discover_bfs_by_root_level(dev, level);
1762 mb();
1763 level += 1;
1764 } while (level <= dev->port->disc.max_level);
1765 out:
1766 return res;
1769 static int sas_discover_new(struct domain_device *dev, int phy_id)
1771 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1772 struct domain_device *child;
1773 int res;
1775 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1776 SAS_ADDR(dev->sas_addr), phy_id);
1777 res = sas_ex_phy_discover(dev, phy_id);
1778 if (res)
1779 goto out;
1780 res = sas_ex_discover_devices(dev, phy_id);
1781 if (res)
1782 goto out;
1783 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1784 if (SAS_ADDR(child->sas_addr) ==
1785 SAS_ADDR(ex_phy->attached_sas_addr)) {
1786 if (child->dev_type == EDGE_DEV ||
1787 child->dev_type == FANOUT_DEV)
1788 res = sas_discover_bfs_by_root(child);
1789 break;
1792 out:
1793 return res;
1796 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1798 struct expander_device *ex = &dev->ex_dev;
1799 struct ex_phy *phy = &ex->ex_phy[phy_id];
1800 u8 attached_sas_addr[8];
1801 int res;
1803 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1804 switch (res) {
1805 case SMP_RESP_NO_PHY:
1806 phy->phy_state = PHY_NOT_PRESENT;
1807 sas_unregister_devs_sas_addr(dev, phy_id);
1808 goto out; break;
1809 case SMP_RESP_PHY_VACANT:
1810 phy->phy_state = PHY_VACANT;
1811 sas_unregister_devs_sas_addr(dev, phy_id);
1812 goto out; break;
1813 case SMP_RESP_FUNC_ACC:
1814 break;
1817 if (SAS_ADDR(attached_sas_addr) == 0) {
1818 phy->phy_state = PHY_EMPTY;
1819 sas_unregister_devs_sas_addr(dev, phy_id);
1820 } else if (SAS_ADDR(attached_sas_addr) ==
1821 SAS_ADDR(phy->attached_sas_addr)) {
1822 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1823 SAS_ADDR(dev->sas_addr), phy_id);
1824 sas_ex_phy_discover(dev, phy_id);
1825 } else
1826 res = sas_discover_new(dev, phy_id);
1827 out:
1828 return res;
1831 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1833 struct expander_device *ex = &dev->ex_dev;
1834 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1835 int res = 0;
1836 int i;
1838 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1839 SAS_ADDR(dev->sas_addr), phy_id);
1841 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1842 for (i = 0; i < ex->num_phys; i++) {
1843 struct ex_phy *phy = &ex->ex_phy[i];
1845 if (i == phy_id)
1846 continue;
1847 if (SAS_ADDR(phy->attached_sas_addr) ==
1848 SAS_ADDR(changed_phy->attached_sas_addr)) {
1849 SAS_DPRINTK("phy%d part of wide port with "
1850 "phy%d\n", phy_id, i);
1851 goto out;
1854 res = sas_rediscover_dev(dev, phy_id);
1855 } else
1856 res = sas_discover_new(dev, phy_id);
1857 out:
1858 return res;
1862 * sas_revalidate_domain -- revalidate the domain
1863 * @port: port to the domain of interest
1865 * NOTE: this process _must_ quit (return) as soon as any connection
1866 * errors are encountered. Connection recovery is done elsewhere.
1867 * Discover process only interrogates devices in order to discover the
1868 * domain.
1870 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1872 int res;
1873 struct domain_device *dev = NULL;
1875 res = sas_find_bcast_dev(port_dev, &dev);
1876 if (res)
1877 goto out;
1878 if (dev) {
1879 struct expander_device *ex = &dev->ex_dev;
1880 int i = 0, phy_id;
1882 do {
1883 phy_id = -1;
1884 res = sas_find_bcast_phy(dev, &phy_id, i);
1885 if (phy_id == -1)
1886 break;
1887 res = sas_rediscover(dev, phy_id);
1888 i = phy_id + 1;
1889 } while (i < ex->num_phys);
1891 out:
1892 return res;
1895 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1896 struct request *req)
1898 struct domain_device *dev;
1899 int ret, type;
1900 struct request *rsp = req->next_rq;
1902 if (!rsp) {
1903 printk("%s: space for a smp response is missing\n",
1904 __FUNCTION__);
1905 return -EINVAL;
1908 /* no rphy means no smp target support (ie aic94xx host) */
1909 if (!rphy)
1910 return sas_smp_host_handler(shost, req, rsp);
1912 type = rphy->identify.device_type;
1914 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1915 type != SAS_FANOUT_EXPANDER_DEVICE) {
1916 printk("%s: can we send a smp request to a device?\n",
1917 __FUNCTION__);
1918 return -EINVAL;
1921 dev = sas_find_dev_by_rphy(rphy);
1922 if (!dev) {
1923 printk("%s: fail to find a domain_device?\n", __FUNCTION__);
1924 return -EINVAL;
1927 /* do we need to support multiple segments? */
1928 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1929 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1930 __FUNCTION__, req->bio->bi_vcnt, req->data_len,
1931 rsp->bio->bi_vcnt, rsp->data_len);
1932 return -EINVAL;
1935 ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
1936 bio_data(rsp->bio), rsp->data_len);
1937 if (ret > 0) {
1938 /* positive number is the untransferred residual */
1939 rsp->data_len = ret;
1940 req->data_len = 0;
1941 ret = 0;
1942 } else if (ret == 0) {
1943 rsp->data_len = 0;
1944 req->data_len = 0;
1947 return ret;