Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
blob91e87b53374f3f7138bea4c01764545ec07c0117
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
54 u32 reg;
55 unsigned int i;
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
64 return reg;
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
70 u32 reg;
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
82 * Write the data into the BBP.
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
96 u32 reg;
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
108 * Write the request into the BBP.
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
133 u32 reg;
134 unsigned int i;
136 if (!word)
137 return;
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
149 rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
219 .bbp = {
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
237 u32 reg;
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
242 #else
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
247 * Configuration handlers.
249 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
250 __le32 *mac)
252 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253 (2 * sizeof(__le32)));
256 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
257 __le32 *bssid)
259 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260 (2 * sizeof(__le32)));
263 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
264 const int tsf_sync)
266 u32 reg;
268 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
271 * Enable beacon config
273 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
274 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
275 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
276 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
277 rt2x00lib_get_ring(rt2x00dev,
278 IEEE80211_TX_QUEUE_BEACON)
279 ->tx_params.cw_min);
280 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
283 * Enable synchronisation.
285 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
286 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
287 rt2x00_set_field32(&reg, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
288 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
289 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
290 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
293 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
294 const int short_preamble,
295 const int ack_timeout,
296 const int ack_consume_time)
298 int preamble_mask;
299 u32 reg;
302 * When short preamble is enabled, we should set bit 0x08
304 preamble_mask = short_preamble << 3;
306 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
307 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
308 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
309 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
311 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
312 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
313 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
314 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
315 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
317 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
318 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
319 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
320 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
321 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
323 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
324 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
325 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
326 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
327 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
329 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
330 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
331 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
332 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
333 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
336 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
337 const int basic_rate_mask)
339 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
342 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
343 struct rf_channel *rf, const int txpower)
345 u8 r70;
348 * Set TXpower.
350 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
353 * Switch on tuning bits.
354 * For RT2523 devices we do not need to update the R1 register.
356 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
357 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
358 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
361 * For RT2525 we should first set the channel to half band higher.
363 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
364 static const u32 vals[] = {
365 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
366 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
367 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
368 0x00080d2e, 0x00080d3a
371 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
372 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
373 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
374 if (rf->rf4)
375 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
378 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
379 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
380 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
381 if (rf->rf4)
382 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
385 * Channel 14 requires the Japan filter bit to be set.
387 r70 = 0x46;
388 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
389 rt2500pci_bbp_write(rt2x00dev, 70, r70);
391 msleep(1);
394 * Switch off tuning bits.
395 * For RT2523 devices we do not need to update the R1 register.
397 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
398 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
399 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
402 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
403 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
406 * Clear false CRC during channel switch.
408 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
411 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
412 const int txpower)
414 u32 rf3;
416 rt2x00_rf_read(rt2x00dev, 3, &rf3);
417 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
418 rt2500pci_rf_write(rt2x00dev, 3, rf3);
421 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
422 struct antenna_setup *ant)
424 u32 reg;
425 u8 r14;
426 u8 r2;
428 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
429 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
430 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
433 * Configure the TX antenna.
435 switch (ant->tx) {
436 case ANTENNA_A:
437 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
438 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
439 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
440 break;
441 case ANTENNA_HW_DIVERSITY:
442 case ANTENNA_SW_DIVERSITY:
444 * NOTE: We should never come here because rt2x00lib is
445 * supposed to catch this and send us the correct antenna
446 * explicitely. However we are nog going to bug about this.
447 * Instead, just default to antenna B.
449 case ANTENNA_B:
450 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
451 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
452 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
453 break;
457 * Configure the RX antenna.
459 switch (ant->rx) {
460 case ANTENNA_A:
461 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
462 break;
463 case ANTENNA_HW_DIVERSITY:
464 case ANTENNA_SW_DIVERSITY:
466 * NOTE: We should never come here because rt2x00lib is
467 * supposed to catch this and send us the correct antenna
468 * explicitely. However we are nog going to bug about this.
469 * Instead, just default to antenna B.
471 case ANTENNA_B:
472 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
473 break;
477 * RT2525E and RT5222 need to flip TX I/Q
479 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
480 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
481 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
482 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
483 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
486 * RT2525E does not need RX I/Q Flip.
488 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
489 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
490 } else {
491 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
492 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
495 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
496 rt2500pci_bbp_write(rt2x00dev, 14, r14);
497 rt2500pci_bbp_write(rt2x00dev, 2, r2);
500 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
501 struct rt2x00lib_conf *libconf)
503 u32 reg;
505 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
506 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
507 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
509 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
510 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
511 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
512 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
514 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
515 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
516 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
517 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
519 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
520 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
521 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
522 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
524 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
525 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
526 libconf->conf->beacon_int * 16);
527 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
528 libconf->conf->beacon_int * 16);
529 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
532 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
533 const unsigned int flags,
534 struct rt2x00lib_conf *libconf)
536 if (flags & CONFIG_UPDATE_PHYMODE)
537 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
538 if (flags & CONFIG_UPDATE_CHANNEL)
539 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
540 libconf->conf->power_level);
541 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
542 rt2500pci_config_txpower(rt2x00dev,
543 libconf->conf->power_level);
544 if (flags & CONFIG_UPDATE_ANTENNA)
545 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
546 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
547 rt2500pci_config_duration(rt2x00dev, libconf);
551 * LED functions.
553 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
555 u32 reg;
557 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
559 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
560 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
561 rt2x00_set_field32(&reg, LEDCSR_LINK,
562 (rt2x00dev->led_mode != LED_MODE_ASUS));
563 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
564 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
565 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
568 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
570 u32 reg;
572 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
573 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
574 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
575 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
579 * Link tuning
581 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
584 u32 reg;
587 * Update FCS error count from register.
589 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
590 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
593 * Update False CCA count from register.
595 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
596 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
599 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
601 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
602 rt2x00dev->link.vgc_level = 0x48;
605 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
607 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
608 u8 r17;
611 * To prevent collisions with MAC ASIC on chipsets
612 * up to version C the link tuning should halt after 20
613 * seconds.
615 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
616 rt2x00dev->link.count > 20)
617 return;
619 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
622 * Chipset versions C and lower should directly continue
623 * to the dynamic CCA tuning.
625 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
626 goto dynamic_cca_tune;
629 * A too low RSSI will cause too much false CCA which will
630 * then corrupt the R17 tuning. To remidy this the tuning should
631 * be stopped (While making sure the R17 value will not exceed limits)
633 if (rssi < -80 && rt2x00dev->link.count > 20) {
634 if (r17 >= 0x41) {
635 r17 = rt2x00dev->link.vgc_level;
636 rt2500pci_bbp_write(rt2x00dev, 17, r17);
638 return;
642 * Special big-R17 for short distance
644 if (rssi >= -58) {
645 if (r17 != 0x50)
646 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
647 return;
651 * Special mid-R17 for middle distance
653 if (rssi >= -74) {
654 if (r17 != 0x41)
655 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
656 return;
660 * Leave short or middle distance condition, restore r17
661 * to the dynamic tuning range.
663 if (r17 >= 0x41) {
664 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
665 return;
668 dynamic_cca_tune:
671 * R17 is inside the dynamic tuning range,
672 * start tuning the link based on the false cca counter.
674 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
675 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
676 rt2x00dev->link.vgc_level = r17;
677 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
678 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
679 rt2x00dev->link.vgc_level = r17;
684 * Initialization functions.
686 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
687 struct data_entry *entry)
689 __le32 *rxd = entry->priv;
690 u32 word;
692 rt2x00_desc_read(rxd, 1, &word);
693 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, entry->data_dma);
694 rt2x00_desc_write(rxd, 1, word);
696 rt2x00_desc_read(rxd, 0, &word);
697 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
698 rt2x00_desc_write(rxd, 0, word);
701 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
702 struct data_entry *entry)
704 __le32 *txd = entry->priv;
705 u32 word;
707 rt2x00_desc_read(txd, 1, &word);
708 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, entry->data_dma);
709 rt2x00_desc_write(txd, 1, word);
711 rt2x00_desc_read(txd, 0, &word);
712 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
713 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
714 rt2x00_desc_write(txd, 0, word);
717 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
719 u32 reg;
722 * Initialize registers.
724 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
725 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
726 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
727 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
728 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
729 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
730 rt2x00dev->bcn[1].stats.limit);
731 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
732 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
733 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
735 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
736 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
737 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
738 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
740 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
741 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
742 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
743 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
745 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
746 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
747 rt2x00dev->bcn[1].data_dma);
748 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
750 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
751 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
752 rt2x00dev->bcn[0].data_dma);
753 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
755 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
756 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
757 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
758 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
760 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
761 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
762 rt2x00dev->rx->data_dma);
763 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
765 return 0;
768 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
770 u32 reg;
772 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
773 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
774 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
775 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
777 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
778 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
779 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
780 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
781 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
783 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
784 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
785 rt2x00dev->rx->data_size / 128);
786 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
789 * Always use CWmin and CWmax set in descriptor.
791 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
792 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
793 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
795 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
797 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
798 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
799 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
800 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
801 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
802 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
803 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
804 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
805 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
806 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
808 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
809 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
810 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
811 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
812 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
813 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
815 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
816 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
817 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
818 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
819 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
820 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
822 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
823 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
824 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
825 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
826 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
827 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
829 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
830 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
831 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
832 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
833 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
834 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
835 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
836 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
837 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
838 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
840 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
841 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
842 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
843 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
844 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
845 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
846 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
847 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
848 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
850 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
852 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
853 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
855 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
856 return -EBUSY;
858 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
859 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
861 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
862 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
863 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
865 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
866 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
867 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
868 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
869 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
870 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
871 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
872 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
874 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
876 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
878 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
879 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
880 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
881 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
882 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
884 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
885 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
886 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
887 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
890 * We must clear the FCS and FIFO error count.
891 * These registers are cleared on read,
892 * so we may pass a useless variable to store the value.
894 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
895 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
897 return 0;
900 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
902 unsigned int i;
903 u16 eeprom;
904 u8 reg_id;
905 u8 value;
907 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
908 rt2500pci_bbp_read(rt2x00dev, 0, &value);
909 if ((value != 0xff) && (value != 0x00))
910 goto continue_csr_init;
911 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
912 udelay(REGISTER_BUSY_DELAY);
915 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
916 return -EACCES;
918 continue_csr_init:
919 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
920 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
921 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
922 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
923 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
924 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
925 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
926 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
927 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
928 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
929 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
930 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
931 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
932 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
933 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
934 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
935 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
936 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
937 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
938 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
939 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
940 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
941 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
942 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
943 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
944 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
945 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
946 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
947 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
948 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
950 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
951 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
952 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
954 if (eeprom != 0xffff && eeprom != 0x0000) {
955 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
956 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
957 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
958 reg_id, value);
959 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
962 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
964 return 0;
968 * Device state switch handlers.
970 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
971 enum dev_state state)
973 u32 reg;
975 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
976 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
977 state == STATE_RADIO_RX_OFF);
978 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
981 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
982 enum dev_state state)
984 int mask = (state == STATE_RADIO_IRQ_OFF);
985 u32 reg;
988 * When interrupts are being enabled, the interrupt registers
989 * should clear the register to assure a clean state.
991 if (state == STATE_RADIO_IRQ_ON) {
992 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
993 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
997 * Only toggle the interrupts bits we are going to use.
998 * Non-checked interrupt bits are disabled by default.
1000 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1001 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1002 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1003 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1004 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1005 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1006 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1009 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012 * Initialize all registers.
1014 if (rt2500pci_init_rings(rt2x00dev) ||
1015 rt2500pci_init_registers(rt2x00dev) ||
1016 rt2500pci_init_bbp(rt2x00dev)) {
1017 ERROR(rt2x00dev, "Register initialization failed.\n");
1018 return -EIO;
1022 * Enable interrupts.
1024 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1027 * Enable LED
1029 rt2500pci_enable_led(rt2x00dev);
1031 return 0;
1034 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1036 u32 reg;
1039 * Disable LED
1041 rt2500pci_disable_led(rt2x00dev);
1043 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1046 * Disable synchronisation.
1048 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1051 * Cancel RX and TX.
1053 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1054 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1055 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1058 * Disable interrupts.
1060 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1063 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1064 enum dev_state state)
1066 u32 reg;
1067 unsigned int i;
1068 char put_to_sleep;
1069 char bbp_state;
1070 char rf_state;
1072 put_to_sleep = (state != STATE_AWAKE);
1074 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1075 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1076 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1077 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1078 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1079 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1082 * Device is not guaranteed to be in the requested state yet.
1083 * We must wait until the register indicates that the
1084 * device has entered the correct state.
1086 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1087 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1088 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1089 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1090 if (bbp_state == state && rf_state == state)
1091 return 0;
1092 msleep(10);
1095 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1096 "current device state: bbp %d and rf %d.\n",
1097 state, bbp_state, rf_state);
1099 return -EBUSY;
1102 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1103 enum dev_state state)
1105 int retval = 0;
1107 switch (state) {
1108 case STATE_RADIO_ON:
1109 retval = rt2500pci_enable_radio(rt2x00dev);
1110 break;
1111 case STATE_RADIO_OFF:
1112 rt2500pci_disable_radio(rt2x00dev);
1113 break;
1114 case STATE_RADIO_RX_ON:
1115 case STATE_RADIO_RX_ON_LINK:
1116 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1117 break;
1118 case STATE_RADIO_RX_OFF:
1119 case STATE_RADIO_RX_OFF_LINK:
1120 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1121 break;
1122 case STATE_DEEP_SLEEP:
1123 case STATE_SLEEP:
1124 case STATE_STANDBY:
1125 case STATE_AWAKE:
1126 retval = rt2500pci_set_state(rt2x00dev, state);
1127 break;
1128 default:
1129 retval = -ENOTSUPP;
1130 break;
1133 return retval;
1137 * TX descriptor initialization
1139 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1140 struct sk_buff *skb,
1141 struct txdata_entry_desc *desc,
1142 struct ieee80211_tx_control *control)
1144 struct skb_desc *skbdesc = get_skb_desc(skb);
1145 __le32 *txd = skbdesc->desc;
1146 u32 word;
1149 * Start writing the descriptor words.
1151 rt2x00_desc_read(txd, 2, &word);
1152 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1153 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1154 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1155 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1156 rt2x00_desc_write(txd, 2, word);
1158 rt2x00_desc_read(txd, 3, &word);
1159 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1160 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1161 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1162 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1163 rt2x00_desc_write(txd, 3, word);
1165 rt2x00_desc_read(txd, 10, &word);
1166 rt2x00_set_field32(&word, TXD_W10_RTS,
1167 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1168 rt2x00_desc_write(txd, 10, word);
1170 rt2x00_desc_read(txd, 0, &word);
1171 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1172 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1173 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1174 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1175 rt2x00_set_field32(&word, TXD_W0_ACK,
1176 test_bit(ENTRY_TXD_ACK, &desc->flags));
1177 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1178 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1179 rt2x00_set_field32(&word, TXD_W0_OFDM,
1180 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1181 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1182 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1183 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1184 !!(control->flags &
1185 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1186 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1187 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1188 rt2x00_desc_write(txd, 0, word);
1192 * TX data initialization
1194 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1195 unsigned int queue)
1197 u32 reg;
1199 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1200 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1201 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1202 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1203 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1205 return;
1208 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1209 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1210 (queue == IEEE80211_TX_QUEUE_DATA0));
1211 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1212 (queue == IEEE80211_TX_QUEUE_DATA1));
1213 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1214 (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1215 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1219 * RX control handlers
1221 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1222 struct rxdata_entry_desc *desc)
1224 __le32 *rxd = entry->priv;
1225 u32 word0;
1226 u32 word2;
1228 rt2x00_desc_read(rxd, 0, &word0);
1229 rt2x00_desc_read(rxd, 2, &word2);
1231 desc->flags = 0;
1232 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1233 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1234 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1235 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1237 desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1238 desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1239 entry->ring->rt2x00dev->rssi_offset;
1240 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1241 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1242 desc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1246 * Interrupt functions.
1248 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1250 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1251 struct data_entry *entry;
1252 __le32 *txd;
1253 u32 word;
1254 int tx_status;
1255 int retry;
1257 while (!rt2x00_ring_empty(ring)) {
1258 entry = rt2x00_get_data_entry_done(ring);
1259 txd = entry->priv;
1260 rt2x00_desc_read(txd, 0, &word);
1262 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1263 !rt2x00_get_field32(word, TXD_W0_VALID))
1264 break;
1267 * Obtain the status about this packet.
1269 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1270 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1272 rt2x00pci_txdone(rt2x00dev, entry, tx_status, retry);
1276 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1278 struct rt2x00_dev *rt2x00dev = dev_instance;
1279 u32 reg;
1282 * Get the interrupt sources & saved to local variable.
1283 * Write register value back to clear pending interrupts.
1285 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1286 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1288 if (!reg)
1289 return IRQ_NONE;
1291 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1292 return IRQ_HANDLED;
1295 * Handle interrupts, walk through all bits
1296 * and run the tasks, the bits are checked in order of
1297 * priority.
1301 * 1 - Beacon timer expired interrupt.
1303 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1304 rt2x00lib_beacondone(rt2x00dev);
1307 * 2 - Rx ring done interrupt.
1309 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1310 rt2x00pci_rxdone(rt2x00dev);
1313 * 3 - Atim ring transmit done interrupt.
1315 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1316 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1319 * 4 - Priority ring transmit done interrupt.
1321 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1322 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1325 * 5 - Tx ring transmit done interrupt.
1327 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1328 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1330 return IRQ_HANDLED;
1334 * Device probe functions.
1336 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1338 struct eeprom_93cx6 eeprom;
1339 u32 reg;
1340 u16 word;
1341 u8 *mac;
1343 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1345 eeprom.data = rt2x00dev;
1346 eeprom.register_read = rt2500pci_eepromregister_read;
1347 eeprom.register_write = rt2500pci_eepromregister_write;
1348 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1349 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1350 eeprom.reg_data_in = 0;
1351 eeprom.reg_data_out = 0;
1352 eeprom.reg_data_clock = 0;
1353 eeprom.reg_chip_select = 0;
1355 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1356 EEPROM_SIZE / sizeof(u16));
1359 * Start validation of the data that has been read.
1361 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1362 if (!is_valid_ether_addr(mac)) {
1363 DECLARE_MAC_BUF(macbuf);
1365 random_ether_addr(mac);
1366 EEPROM(rt2x00dev, "MAC: %s\n",
1367 print_mac(macbuf, mac));
1370 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1371 if (word == 0xffff) {
1372 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1373 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1374 ANTENNA_SW_DIVERSITY);
1375 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1376 ANTENNA_SW_DIVERSITY);
1377 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1378 LED_MODE_DEFAULT);
1379 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1380 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1381 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1382 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1383 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1386 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1387 if (word == 0xffff) {
1388 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1389 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1390 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1391 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1392 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1395 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1396 if (word == 0xffff) {
1397 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1398 DEFAULT_RSSI_OFFSET);
1399 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1400 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1403 return 0;
1406 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1408 u32 reg;
1409 u16 value;
1410 u16 eeprom;
1413 * Read EEPROM word for configuration.
1415 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1418 * Identify RF chipset.
1420 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1421 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1422 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1424 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1425 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1426 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1427 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1428 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1429 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1430 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1431 return -ENODEV;
1435 * Identify default antenna configuration.
1437 rt2x00dev->default_ant.tx =
1438 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1439 rt2x00dev->default_ant.rx =
1440 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1443 * Store led mode, for correct led behaviour.
1445 rt2x00dev->led_mode =
1446 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1449 * Detect if this device has an hardware controlled radio.
1451 #ifdef CONFIG_RT2500PCI_RFKILL
1452 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1453 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1454 #endif /* CONFIG_RT2500PCI_RFKILL */
1457 * Check if the BBP tuning should be enabled.
1459 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1461 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1462 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1465 * Read the RSSI <-> dBm offset information.
1467 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1468 rt2x00dev->rssi_offset =
1469 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1471 return 0;
1475 * RF value list for RF2522
1476 * Supports: 2.4 GHz
1478 static const struct rf_channel rf_vals_bg_2522[] = {
1479 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1480 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1481 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1482 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1483 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1484 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1485 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1486 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1487 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1488 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1489 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1490 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1491 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1492 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1496 * RF value list for RF2523
1497 * Supports: 2.4 GHz
1499 static const struct rf_channel rf_vals_bg_2523[] = {
1500 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1501 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1502 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1503 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1504 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1505 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1506 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1507 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1508 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1509 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1510 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1511 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1512 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1513 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1517 * RF value list for RF2524
1518 * Supports: 2.4 GHz
1520 static const struct rf_channel rf_vals_bg_2524[] = {
1521 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1522 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1523 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1524 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1525 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1526 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1527 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1528 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1529 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1530 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1531 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1532 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1533 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1534 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1538 * RF value list for RF2525
1539 * Supports: 2.4 GHz
1541 static const struct rf_channel rf_vals_bg_2525[] = {
1542 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1543 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1544 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1545 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1546 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1547 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1548 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1549 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1550 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1551 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1552 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1553 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1554 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1555 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1559 * RF value list for RF2525e
1560 * Supports: 2.4 GHz
1562 static const struct rf_channel rf_vals_bg_2525e[] = {
1563 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1564 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1565 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1566 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1567 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1568 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1569 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1570 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1571 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1572 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1573 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1574 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1575 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1576 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1580 * RF value list for RF5222
1581 * Supports: 2.4 GHz & 5.2 GHz
1583 static const struct rf_channel rf_vals_5222[] = {
1584 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1585 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1586 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1587 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1588 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1589 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1590 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1591 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1592 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1593 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1594 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1595 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1596 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1597 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1599 /* 802.11 UNI / HyperLan 2 */
1600 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1601 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1602 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1603 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1604 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1605 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1606 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1607 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1609 /* 802.11 HyperLan 2 */
1610 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1611 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1612 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1613 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1614 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1615 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1616 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1617 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1618 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1619 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1621 /* 802.11 UNII */
1622 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1623 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1624 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1625 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1626 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1629 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1631 struct hw_mode_spec *spec = &rt2x00dev->spec;
1632 u8 *txpower;
1633 unsigned int i;
1636 * Initialize all hw fields.
1638 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1639 rt2x00dev->hw->extra_tx_headroom = 0;
1640 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1641 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1642 rt2x00dev->hw->queues = 2;
1644 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1645 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1646 rt2x00_eeprom_addr(rt2x00dev,
1647 EEPROM_MAC_ADDR_0));
1650 * Convert tx_power array in eeprom.
1652 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1653 for (i = 0; i < 14; i++)
1654 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1657 * Initialize hw_mode information.
1659 spec->num_modes = 2;
1660 spec->num_rates = 12;
1661 spec->tx_power_a = NULL;
1662 spec->tx_power_bg = txpower;
1663 spec->tx_power_default = DEFAULT_TXPOWER;
1665 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1666 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1667 spec->channels = rf_vals_bg_2522;
1668 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1669 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1670 spec->channels = rf_vals_bg_2523;
1671 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1672 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1673 spec->channels = rf_vals_bg_2524;
1674 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1675 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1676 spec->channels = rf_vals_bg_2525;
1677 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1678 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1679 spec->channels = rf_vals_bg_2525e;
1680 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1681 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1682 spec->channels = rf_vals_5222;
1683 spec->num_modes = 3;
1687 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1689 int retval;
1692 * Allocate eeprom data.
1694 retval = rt2500pci_validate_eeprom(rt2x00dev);
1695 if (retval)
1696 return retval;
1698 retval = rt2500pci_init_eeprom(rt2x00dev);
1699 if (retval)
1700 return retval;
1703 * Initialize hw specifications.
1705 rt2500pci_probe_hw_mode(rt2x00dev);
1708 * This device requires the beacon ring
1710 __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1713 * Set the rssi offset.
1715 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1717 return 0;
1721 * IEEE80211 stack callback functions.
1723 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1724 unsigned int changed_flags,
1725 unsigned int *total_flags,
1726 int mc_count,
1727 struct dev_addr_list *mc_list)
1729 struct rt2x00_dev *rt2x00dev = hw->priv;
1730 u32 reg;
1733 * Mask off any flags we are going to ignore from
1734 * the total_flags field.
1736 *total_flags &=
1737 FIF_ALLMULTI |
1738 FIF_FCSFAIL |
1739 FIF_PLCPFAIL |
1740 FIF_CONTROL |
1741 FIF_OTHER_BSS |
1742 FIF_PROMISC_IN_BSS;
1745 * Apply some rules to the filters:
1746 * - Some filters imply different filters to be set.
1747 * - Some things we can't filter out at all.
1749 if (mc_count)
1750 *total_flags |= FIF_ALLMULTI;
1751 if (*total_flags & FIF_OTHER_BSS ||
1752 *total_flags & FIF_PROMISC_IN_BSS)
1753 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1756 * Check if there is any work left for us.
1758 if (rt2x00dev->packet_filter == *total_flags)
1759 return;
1760 rt2x00dev->packet_filter = *total_flags;
1763 * Start configuration steps.
1764 * Note that the version error will always be dropped
1765 * and broadcast frames will always be accepted since
1766 * there is no filter for it at this time.
1768 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1769 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1770 !(*total_flags & FIF_FCSFAIL));
1771 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1772 !(*total_flags & FIF_PLCPFAIL));
1773 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1774 !(*total_flags & FIF_CONTROL));
1775 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1776 !(*total_flags & FIF_PROMISC_IN_BSS));
1777 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1778 !(*total_flags & FIF_PROMISC_IN_BSS));
1779 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1780 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1781 !(*total_flags & FIF_ALLMULTI));
1782 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1783 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1786 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1787 u32 short_retry, u32 long_retry)
1789 struct rt2x00_dev *rt2x00dev = hw->priv;
1790 u32 reg;
1792 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1793 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1794 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1795 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1797 return 0;
1800 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1802 struct rt2x00_dev *rt2x00dev = hw->priv;
1803 u64 tsf;
1804 u32 reg;
1806 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1807 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1808 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1809 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1811 return tsf;
1814 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1816 struct rt2x00_dev *rt2x00dev = hw->priv;
1818 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1819 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1822 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1824 struct rt2x00_dev *rt2x00dev = hw->priv;
1825 u32 reg;
1827 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1828 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1831 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1832 .tx = rt2x00mac_tx,
1833 .start = rt2x00mac_start,
1834 .stop = rt2x00mac_stop,
1835 .add_interface = rt2x00mac_add_interface,
1836 .remove_interface = rt2x00mac_remove_interface,
1837 .config = rt2x00mac_config,
1838 .config_interface = rt2x00mac_config_interface,
1839 .configure_filter = rt2500pci_configure_filter,
1840 .get_stats = rt2x00mac_get_stats,
1841 .set_retry_limit = rt2500pci_set_retry_limit,
1842 .bss_info_changed = rt2x00mac_bss_info_changed,
1843 .conf_tx = rt2x00mac_conf_tx,
1844 .get_tx_stats = rt2x00mac_get_tx_stats,
1845 .get_tsf = rt2500pci_get_tsf,
1846 .reset_tsf = rt2500pci_reset_tsf,
1847 .beacon_update = rt2x00pci_beacon_update,
1848 .tx_last_beacon = rt2500pci_tx_last_beacon,
1851 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1852 .irq_handler = rt2500pci_interrupt,
1853 .probe_hw = rt2500pci_probe_hw,
1854 .initialize = rt2x00pci_initialize,
1855 .uninitialize = rt2x00pci_uninitialize,
1856 .init_rxentry = rt2500pci_init_rxentry,
1857 .init_txentry = rt2500pci_init_txentry,
1858 .set_device_state = rt2500pci_set_device_state,
1859 .rfkill_poll = rt2500pci_rfkill_poll,
1860 .link_stats = rt2500pci_link_stats,
1861 .reset_tuner = rt2500pci_reset_tuner,
1862 .link_tuner = rt2500pci_link_tuner,
1863 .write_tx_desc = rt2500pci_write_tx_desc,
1864 .write_tx_data = rt2x00pci_write_tx_data,
1865 .kick_tx_queue = rt2500pci_kick_tx_queue,
1866 .fill_rxdone = rt2500pci_fill_rxdone,
1867 .config_mac_addr = rt2500pci_config_mac_addr,
1868 .config_bssid = rt2500pci_config_bssid,
1869 .config_type = rt2500pci_config_type,
1870 .config_preamble = rt2500pci_config_preamble,
1871 .config = rt2500pci_config,
1874 static const struct rt2x00_ops rt2500pci_ops = {
1875 .name = KBUILD_MODNAME,
1876 .rxd_size = RXD_DESC_SIZE,
1877 .txd_size = TXD_DESC_SIZE,
1878 .eeprom_size = EEPROM_SIZE,
1879 .rf_size = RF_SIZE,
1880 .lib = &rt2500pci_rt2x00_ops,
1881 .hw = &rt2500pci_mac80211_ops,
1882 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1883 .debugfs = &rt2500pci_rt2x00debug,
1884 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1888 * RT2500pci module information.
1890 static struct pci_device_id rt2500pci_device_table[] = {
1891 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1892 { 0, }
1895 MODULE_AUTHOR(DRV_PROJECT);
1896 MODULE_VERSION(DRV_VERSION);
1897 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1898 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1899 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1900 MODULE_LICENSE("GPL");
1902 static struct pci_driver rt2500pci_driver = {
1903 .name = KBUILD_MODNAME,
1904 .id_table = rt2500pci_device_table,
1905 .probe = rt2x00pci_probe,
1906 .remove = __devexit_p(rt2x00pci_remove),
1907 .suspend = rt2x00pci_suspend,
1908 .resume = rt2x00pci_resume,
1911 static int __init rt2500pci_init(void)
1913 return pci_register_driver(&rt2500pci_driver);
1916 static void __exit rt2500pci_exit(void)
1918 pci_unregister_driver(&rt2500pci_driver);
1921 module_init(rt2500pci_init);
1922 module_exit(rt2500pci_exit);