Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / net / wireless / ath5k / hw.c
blob01757436353d76b41adb03185f4e38d2a9303406
1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
24 * HW related functions for Atheros Wireless LAN devices.
27 #include <linux/pci.h>
28 #include <linux/delay.h>
30 #include "reg.h"
31 #include "base.h"
32 #include "debug.h"
34 /*Rate tables*/
35 static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
36 static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
37 static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
38 static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
39 static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
41 /*Prototypes*/
42 static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
43 static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
44 static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
45 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
46 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
47 unsigned int, unsigned int);
48 static int ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
49 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
50 unsigned int);
51 static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
52 static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
53 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
54 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
55 unsigned int, unsigned int);
56 static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
57 static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *, struct ath5k_desc *);
58 static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *, struct ath5k_desc *);
59 static int ath5k_hw_get_capabilities(struct ath5k_hw *);
61 static int ath5k_eeprom_init(struct ath5k_hw *);
62 static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
64 static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
65 static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
68 * Enable to overwrite the country code (use "00" for debug)
70 #if 0
71 #define COUNTRYCODE "00"
72 #endif
74 /*******************\
75 General Functions
76 \*******************/
79 * Functions used internaly
82 static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
84 return turbo == true ? (usec * 80) : (usec * 40);
87 static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
89 return turbo == true ? (clock / 80) : (clock / 40);
93 * Check if a register write has been completed
95 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
96 bool is_set)
98 int i;
99 u32 data;
101 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
102 data = ath5k_hw_reg_read(ah, reg);
103 if ((is_set == true) && (data & flag))
104 break;
105 else if ((data & flag) == val)
106 break;
107 udelay(15);
110 return (i <= 0) ? -EAGAIN : 0;
114 /***************************************\
115 Attach/Detach Functions
116 \***************************************/
119 * Check if the device is supported and initialize the needed structs
121 struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
123 struct ath5k_hw *ah;
124 u8 mac[ETH_ALEN];
125 int ret;
126 u32 srev;
128 /*If we passed the test malloc a ath5k_hw struct*/
129 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
130 if (ah == NULL) {
131 ret = -ENOMEM;
132 ATH5K_ERR(sc, "out of memory\n");
133 goto err;
136 ah->ah_sc = sc;
137 ah->ah_iobase = sc->iobase;
140 * HW information
143 /* Get reg domain from eeprom */
144 ath5k_get_regdomain(ah);
146 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
147 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
148 ah->ah_turbo = false;
149 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
150 ah->ah_imr = 0;
151 ah->ah_atim_window = 0;
152 ah->ah_aifs = AR5K_TUNE_AIFS;
153 ah->ah_cw_min = AR5K_TUNE_CWMIN;
154 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
155 ah->ah_software_retry = false;
156 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
159 * Set the mac revision based on the pci id
161 ah->ah_version = mac_version;
163 /*Fill the ath5k_hw struct with the needed functions*/
164 if (ah->ah_version == AR5K_AR5212)
165 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
166 else if (ah->ah_version == AR5K_AR5211)
167 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
169 if (ah->ah_version == AR5K_AR5212) {
170 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
171 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
172 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
173 } else {
174 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
175 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
176 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
179 if (ah->ah_version == AR5K_AR5212)
180 ah->ah_proc_rx_desc = ath5k_hw_proc_new_rx_status;
181 else if (ah->ah_version <= AR5K_AR5211)
182 ah->ah_proc_rx_desc = ath5k_hw_proc_old_rx_status;
184 /* Bring device out of sleep and reset it's units */
185 ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
186 if (ret)
187 goto err_free;
189 /* Get MAC, PHY and RADIO revisions */
190 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
191 ah->ah_mac_srev = srev;
192 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
193 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
194 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
195 0xffffffff;
196 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
197 CHANNEL_5GHZ);
199 if (ah->ah_version == AR5K_AR5210)
200 ah->ah_radio_2ghz_revision = 0;
201 else
202 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
203 CHANNEL_2GHZ);
205 /* Return on unsuported chips (unsupported eeprom etc) */
206 if(srev >= AR5K_SREV_VER_AR5416){
207 ATH5K_ERR(sc, "Device not yet supported.\n");
208 ret = -ENODEV;
209 goto err_free;
212 /* Identify single chip solutions */
213 if((srev <= AR5K_SREV_VER_AR5414) &&
214 (srev >= AR5K_SREV_VER_AR2424)) {
215 ah->ah_single_chip = true;
216 } else {
217 ah->ah_single_chip = false;
220 /* Single chip radio */
221 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
222 ah->ah_radio_2ghz_revision = 0;
224 /* Identify the radio chip*/
225 if (ah->ah_version == AR5K_AR5210) {
226 ah->ah_radio = AR5K_RF5110;
227 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
228 ah->ah_radio = AR5K_RF5111;
229 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
230 ah->ah_radio = AR5K_RF5112;
231 } else {
232 ah->ah_radio = AR5K_RF5413;
235 ah->ah_phy = AR5K_PHY(0);
238 * Get card capabilities, values, ...
241 ret = ath5k_eeprom_init(ah);
242 if (ret) {
243 ATH5K_ERR(sc, "unable to init EEPROM\n");
244 goto err_free;
247 /* Get misc capabilities */
248 ret = ath5k_hw_get_capabilities(ah);
249 if (ret) {
250 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
251 sc->pdev->device);
252 goto err_free;
255 /* Get MAC address */
256 ret = ath5k_eeprom_read_mac(ah, mac);
257 if (ret) {
258 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
259 sc->pdev->device);
260 goto err_free;
263 ath5k_hw_set_lladdr(ah, mac);
264 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
265 memset(ah->ah_bssid, 0xff, ETH_ALEN);
266 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
267 ath5k_hw_set_opmode(ah);
269 ath5k_hw_set_rfgain_opt(ah);
271 return ah;
272 err_free:
273 kfree(ah);
274 err:
275 return ERR_PTR(ret);
279 * Bring up MAC + PHY Chips
281 static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
283 u32 turbo, mode, clock;
284 int ret;
286 turbo = 0;
287 mode = 0;
288 clock = 0;
290 ATH5K_TRACE(ah->ah_sc);
292 /* Wakeup the device */
293 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
294 if (ret) {
295 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
296 return ret;
299 if (ah->ah_version != AR5K_AR5210) {
301 * Get channel mode flags
304 if (ah->ah_radio >= AR5K_RF5112) {
305 mode = AR5K_PHY_MODE_RAD_RF5112;
306 clock = AR5K_PHY_PLL_RF5112;
307 } else {
308 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
309 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
312 if (flags & CHANNEL_2GHZ) {
313 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
314 clock |= AR5K_PHY_PLL_44MHZ;
316 if (flags & CHANNEL_CCK) {
317 mode |= AR5K_PHY_MODE_MOD_CCK;
318 } else if (flags & CHANNEL_OFDM) {
319 /* XXX Dynamic OFDM/CCK is not supported by the
320 * AR5211 so we set MOD_OFDM for plain g (no
321 * CCK headers) operation. We need to test
322 * this, 5211 might support ofdm-only g after
323 * all, there are also initial register values
324 * in the code for g mode (see initvals.c). */
325 if (ah->ah_version == AR5K_AR5211)
326 mode |= AR5K_PHY_MODE_MOD_OFDM;
327 else
328 mode |= AR5K_PHY_MODE_MOD_DYN;
329 } else {
330 ATH5K_ERR(ah->ah_sc,
331 "invalid radio modulation mode\n");
332 return -EINVAL;
334 } else if (flags & CHANNEL_5GHZ) {
335 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
336 clock |= AR5K_PHY_PLL_40MHZ;
338 if (flags & CHANNEL_OFDM)
339 mode |= AR5K_PHY_MODE_MOD_OFDM;
340 else {
341 ATH5K_ERR(ah->ah_sc,
342 "invalid radio modulation mode\n");
343 return -EINVAL;
345 } else {
346 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
347 return -EINVAL;
350 if (flags & CHANNEL_TURBO)
351 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
352 } else { /* Reset the device */
354 /* ...enable Atheros turbo mode if requested */
355 if (flags & CHANNEL_TURBO)
356 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
357 AR5K_PHY_TURBO);
360 /* ...reset chipset and PCI device */
361 if (ah->ah_single_chip == false && ath5k_hw_nic_reset(ah,
362 AR5K_RESET_CTL_CHIP | AR5K_RESET_CTL_PCI)) {
363 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
364 return -EIO;
367 if (ah->ah_version == AR5K_AR5210)
368 udelay(2300);
370 /* ...wakeup again!*/
371 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
372 if (ret) {
373 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
374 return ret;
377 /* ...final warm reset */
378 if (ath5k_hw_nic_reset(ah, 0)) {
379 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
380 return -EIO;
383 if (ah->ah_version != AR5K_AR5210) {
384 /* ...set the PHY operating mode */
385 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
386 udelay(300);
388 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
389 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
392 return 0;
396 * Get the rate table for a specific operation mode
398 const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
399 unsigned int mode)
401 ATH5K_TRACE(ah->ah_sc);
403 if (!test_bit(mode, ah->ah_capabilities.cap_mode))
404 return NULL;
406 /* Get rate tables */
407 switch (mode) {
408 case MODE_IEEE80211A:
409 return &ath5k_rt_11a;
410 case MODE_ATHEROS_TURBO:
411 return &ath5k_rt_turbo;
412 case MODE_IEEE80211B:
413 return &ath5k_rt_11b;
414 case MODE_IEEE80211G:
415 return &ath5k_rt_11g;
416 case MODE_ATHEROS_TURBOG:
417 return &ath5k_rt_xr;
420 return NULL;
424 * Free the ath5k_hw struct
426 void ath5k_hw_detach(struct ath5k_hw *ah)
428 ATH5K_TRACE(ah->ah_sc);
430 __set_bit(ATH_STAT_INVALID, ah->ah_sc->status);
432 if (ah->ah_rf_banks != NULL)
433 kfree(ah->ah_rf_banks);
435 /* assume interrupts are down */
436 kfree(ah);
439 /****************************\
440 Reset function and helpers
441 \****************************/
444 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
446 * @ah: the &struct ath5k_hw
447 * @channel: the currently set channel upon reset
449 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
450 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
451 * depending on the bandwidth of the channel.
454 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
455 struct ieee80211_channel *channel)
457 /* Get exponent and mantissa and set it */
458 u32 coef_scaled, coef_exp, coef_man,
459 ds_coef_exp, ds_coef_man, clock;
461 if (!(ah->ah_version == AR5K_AR5212) ||
462 !(channel->val & CHANNEL_OFDM))
463 BUG();
465 /* Seems there are two PLLs, one for baseband sampling and one
466 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
467 * turbo. */
468 clock = channel->val & CHANNEL_TURBO ? 80 : 40;
469 coef_scaled = ((5 * (clock << 24)) / 2) /
470 channel->freq;
472 for (coef_exp = 31; coef_exp > 0; coef_exp--)
473 if ((coef_scaled >> coef_exp) & 0x1)
474 break;
476 if (!coef_exp)
477 return -EINVAL;
479 coef_exp = 14 - (coef_exp - 24);
480 coef_man = coef_scaled +
481 (1 << (24 - coef_exp - 1));
482 ds_coef_man = coef_man >> (24 - coef_exp);
483 ds_coef_exp = coef_exp - 16;
485 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
486 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
487 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
488 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
490 return 0;
494 * ath5k_hw_write_rate_duration - set rate duration during hw resets
496 * @ah: the &struct ath5k_hw
497 * @driver_mode: one of enum ieee80211_phymode or our one of our own
498 * vendor modes
500 * Write the rate duration table for the current mode upon hw reset. This
501 * is a helper for ath5k_hw_reset(). It seems all this is doing is setting
502 * an ACK timeout for the hardware for the current mode for each rate. The
503 * rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
504 * and 11Mbps) have another register for the short preamble ACK timeout
505 * calculation.
508 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
509 unsigned int driver_mode)
511 struct ath5k_softc *sc = ah->ah_sc;
512 const struct ath5k_rate_table *rt;
513 unsigned int i;
515 /* Get rate table for the current operating mode */
516 rt = ath5k_hw_get_rate_table(ah,
517 driver_mode);
519 /* Write rate duration table */
520 for (i = 0; i < rt->rate_count; i++) {
521 const struct ath5k_rate *rate, *control_rate;
522 u32 reg;
523 u16 tx_time;
525 rate = &rt->rates[i];
526 control_rate = &rt->rates[rate->control_rate];
528 /* Set ACK timeout */
529 reg = AR5K_RATE_DUR(rate->rate_code);
531 /* An ACK frame consists of 10 bytes. If you add the FCS,
532 * which ieee80211_generic_frame_duration() adds,
533 * its 14 bytes. Note we use the control rate and not the
534 * actual rate for this rate. See mac80211 tx.c
535 * ieee80211_duration() for a brief description of
536 * what rate we should choose to TX ACKs. */
537 tx_time = ieee80211_generic_frame_duration(sc->hw,
538 sc->vif, 10, control_rate->rate_kbps/100);
540 ath5k_hw_reg_write(ah, tx_time, reg);
542 if (!HAS_SHPREAMBLE(i))
543 continue;
546 * We're not distinguishing short preamble here,
547 * This is true, all we'll get is a longer value here
548 * which is not necessarilly bad. We could use
549 * export ieee80211_frame_duration() but that needs to be
550 * fixed first to be properly used by mac802111 drivers:
552 * - remove erp stuff and let the routine figure ofdm
553 * erp rates
554 * - remove passing argument ieee80211_local as
555 * drivers don't have access to it
556 * - move drivers using ieee80211_generic_frame_duration()
557 * to this
559 ath5k_hw_reg_write(ah, tx_time,
560 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
565 * Main reset function
567 int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
568 struct ieee80211_channel *channel, bool change_channel)
570 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
571 u32 data, s_seq, s_ant, s_led[3];
572 unsigned int i, mode, freq, ee_mode, ant[2], driver_mode = -1;
573 int ret;
575 ATH5K_TRACE(ah->ah_sc);
577 s_seq = 0;
578 s_ant = 0;
579 ee_mode = 0;
580 freq = 0;
581 mode = 0;
584 * Save some registers before a reset
586 /*DCU/Antenna selection not available on 5210*/
587 if (ah->ah_version != AR5K_AR5210) {
588 if (change_channel == true) {
589 /* Seq number for queue 0 -do this for all queues ? */
590 s_seq = ath5k_hw_reg_read(ah,
591 AR5K_QUEUE_DFS_SEQNUM(0));
592 /*Default antenna*/
593 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
597 /*GPIOs*/
598 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
599 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
600 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
602 if (change_channel == true && ah->ah_rf_banks != NULL)
603 ath5k_hw_get_rf_gain(ah);
606 /*Wakeup the device*/
607 ret = ath5k_hw_nic_wakeup(ah, channel->val, false);
608 if (ret)
609 return ret;
612 * Initialize operating mode
614 ah->ah_op_mode = op_mode;
617 * 5111/5112 Settings
618 * 5210 only comes with RF5110
620 if (ah->ah_version != AR5K_AR5210) {
621 if (ah->ah_radio != AR5K_RF5111 &&
622 ah->ah_radio != AR5K_RF5112 &&
623 ah->ah_radio != AR5K_RF5413) {
624 ATH5K_ERR(ah->ah_sc,
625 "invalid phy radio: %u\n", ah->ah_radio);
626 return -EINVAL;
629 switch (channel->val & CHANNEL_MODES) {
630 case CHANNEL_A:
631 mode = AR5K_INI_VAL_11A;
632 freq = AR5K_INI_RFGAIN_5GHZ;
633 ee_mode = AR5K_EEPROM_MODE_11A;
634 driver_mode = MODE_IEEE80211A;
635 break;
636 case CHANNEL_G:
637 mode = AR5K_INI_VAL_11G;
638 freq = AR5K_INI_RFGAIN_2GHZ;
639 ee_mode = AR5K_EEPROM_MODE_11G;
640 driver_mode = MODE_IEEE80211G;
641 break;
642 case CHANNEL_B:
643 mode = AR5K_INI_VAL_11B;
644 freq = AR5K_INI_RFGAIN_2GHZ;
645 ee_mode = AR5K_EEPROM_MODE_11B;
646 driver_mode = MODE_IEEE80211B;
647 break;
648 case CHANNEL_T:
649 mode = AR5K_INI_VAL_11A_TURBO;
650 freq = AR5K_INI_RFGAIN_5GHZ;
651 ee_mode = AR5K_EEPROM_MODE_11A;
652 driver_mode = MODE_ATHEROS_TURBO;
653 break;
654 /*Is this ok on 5211 too ?*/
655 case CHANNEL_TG:
656 mode = AR5K_INI_VAL_11G_TURBO;
657 freq = AR5K_INI_RFGAIN_2GHZ;
658 ee_mode = AR5K_EEPROM_MODE_11G;
659 driver_mode = MODE_ATHEROS_TURBOG;
660 break;
661 case CHANNEL_XR:
662 if (ah->ah_version == AR5K_AR5211) {
663 ATH5K_ERR(ah->ah_sc,
664 "XR mode not available on 5211");
665 return -EINVAL;
667 mode = AR5K_INI_VAL_XR;
668 freq = AR5K_INI_RFGAIN_5GHZ;
669 ee_mode = AR5K_EEPROM_MODE_11A;
670 driver_mode = MODE_IEEE80211A;
671 break;
672 default:
673 ATH5K_ERR(ah->ah_sc,
674 "invalid channel: %d\n", channel->freq);
675 return -EINVAL;
678 /* PHY access enable */
679 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
683 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
684 if (ret)
685 return ret;
688 * 5211/5212 Specific
690 if (ah->ah_version != AR5K_AR5210) {
692 * Write initial RF gain settings
693 * This should work for both 5111/5112
695 ret = ath5k_hw_rfgain(ah, freq);
696 if (ret)
697 return ret;
699 mdelay(1);
702 * Write some more initial register settings
704 if (ah->ah_version > AR5K_AR5211){ /* found on 5213+ */
705 ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
707 if (channel->val == CHANNEL_G)
708 ath5k_hw_reg_write(ah, 0x00f80d80, AR5K_PHY(83)); /* 0x00fc0ec0 */
709 else
710 ath5k_hw_reg_write(ah, 0x00000000, AR5K_PHY(83));
712 ath5k_hw_reg_write(ah, 0x000001b5, 0xa228); /* 0x000009b5 */
713 ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
714 ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
715 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
716 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
719 /* Fix for first revision of the RF5112 RF chipset */
720 if (ah->ah_radio >= AR5K_RF5112 &&
721 ah->ah_radio_5ghz_revision <
722 AR5K_SREV_RAD_5112A) {
723 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
724 AR5K_PHY_CCKTXCTL);
725 if (channel->val & CHANNEL_5GHZ)
726 data = 0xffb81020;
727 else
728 data = 0xffb80d20;
729 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
733 * Set TX power (FIXME)
735 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
736 if (ret)
737 return ret;
739 /* Write rate duration table only on AR5212 and if
740 * virtual interface has already been brought up
741 * XXX: rethink this after new mode changes to
742 * mac80211 are integrated */
743 if (ah->ah_version == AR5K_AR5212 &&
744 ah->ah_sc->vif != NULL)
745 ath5k_hw_write_rate_duration(ah, driver_mode);
748 * Write RF registers
749 * TODO:Does this work on 5211 (5111) ?
751 ret = ath5k_hw_rfregs(ah, channel, mode);
752 if (ret)
753 return ret;
756 * Configure additional registers
759 /* Write OFDM timings on 5212*/
760 if (ah->ah_version == AR5K_AR5212 &&
761 channel->val & CHANNEL_OFDM) {
762 ret = ath5k_hw_write_ofdm_timings(ah, channel);
763 if (ret)
764 return ret;
767 /*Enable/disable 802.11b mode on 5111
768 (enable 2111 frequency converter + CCK)*/
769 if (ah->ah_radio == AR5K_RF5111) {
770 if (driver_mode == MODE_IEEE80211B)
771 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
772 AR5K_TXCFG_B_MODE);
773 else
774 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
775 AR5K_TXCFG_B_MODE);
779 * Set channel and calibrate the PHY
781 ret = ath5k_hw_channel(ah, channel);
782 if (ret)
783 return ret;
785 /* Set antenna mode */
786 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
787 ah->ah_antenna[ee_mode][0], 0xfffffc06);
790 * In case a fixed antenna was set as default
791 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
792 * registers.
794 if (s_ant != 0){
795 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
796 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
797 else /* 2 - Aux */
798 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
799 } else {
800 ant[0] = AR5K_ANT_FIXED_A;
801 ant[1] = AR5K_ANT_FIXED_B;
804 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
805 AR5K_PHY_ANT_SWITCH_TABLE_0);
806 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
807 AR5K_PHY_ANT_SWITCH_TABLE_1);
809 /* Commit values from EEPROM */
810 if (ah->ah_radio == AR5K_RF5111)
811 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
812 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
814 ath5k_hw_reg_write(ah,
815 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
816 AR5K_PHY(0x5a));
818 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
819 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
820 0xffffc07f);
821 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
822 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
823 0xfffc0fff);
824 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
825 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
826 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
827 0xffff0000);
829 ath5k_hw_reg_write(ah,
830 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
831 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
832 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
833 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
835 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
836 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
837 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
838 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
839 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
841 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
842 AR5K_PHY_IQ_CORR_ENABLE |
843 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
844 ee->ee_q_cal[ee_mode]);
846 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
847 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
848 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
849 ee->ee_margin_tx_rx[ee_mode]);
851 } else {
852 mdelay(1);
853 /* Disable phy and wait */
854 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
855 mdelay(1);
859 * Restore saved values
861 /*DCU/Antenna selection not available on 5210*/
862 if (ah->ah_version != AR5K_AR5210) {
863 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
864 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
866 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
867 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
868 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
871 * Misc
873 /* XXX: add ah->aid once mac80211 gives this to us */
874 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
876 ath5k_hw_set_opmode(ah);
877 /*PISR/SISR Not available on 5210*/
878 if (ah->ah_version != AR5K_AR5210) {
879 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
880 /* If we later allow tuning for this, store into sc structure */
881 data = AR5K_TUNE_RSSI_THRES |
882 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
883 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
887 * Set Rx/Tx DMA Configuration
888 *(passing dma size not available on 5210)
890 if (ah->ah_version != AR5K_AR5210) {
891 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR,
892 AR5K_DMASIZE_512B | AR5K_TXCFG_DMASIZE);
893 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW,
894 AR5K_DMASIZE_512B);
898 * Enable the PHY and wait until completion
900 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
903 * 5111/5112 Specific
905 if (ah->ah_version != AR5K_AR5210) {
906 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
907 AR5K_PHY_RX_DELAY_M;
908 data = (channel->val & CHANNEL_CCK) ?
909 ((data << 2) / 22) : (data / 10);
911 udelay(100 + data);
912 } else {
913 mdelay(1);
917 * Enable calibration and wait until completion
919 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
920 AR5K_PHY_AGCCTL_CAL);
922 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
923 AR5K_PHY_AGCCTL_CAL, 0, false)) {
924 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
925 channel->freq);
926 return -EAGAIN;
929 ret = ath5k_hw_noise_floor_calibration(ah, channel->freq);
930 if (ret)
931 return ret;
933 ah->ah_calibration = false;
935 /* A and G modes can use QAM modulation which requires enabling
936 * I and Q calibration. Don't bother in B mode. */
937 if (!(driver_mode == MODE_IEEE80211B)) {
938 ah->ah_calibration = true;
939 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
940 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
941 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
942 AR5K_PHY_IQ_RUN);
946 * Reset queues and start beacon timers at the end of the reset routine
948 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
949 /*No QCU on 5210*/
950 if (ah->ah_version != AR5K_AR5210)
951 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
953 ret = ath5k_hw_reset_tx_queue(ah, i);
954 if (ret) {
955 ATH5K_ERR(ah->ah_sc,
956 "failed to reset TX queue #%d\n", i);
957 return ret;
961 /* Pre-enable interrupts on 5211/5212*/
962 if (ah->ah_version != AR5K_AR5210)
963 ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
964 AR5K_INT_FATAL);
967 * Set RF kill flags if supported by the device (read from the EEPROM)
968 * Disable gpio_intr for now since it results system hang.
969 * TODO: Handle this in ath5k_intr
971 #if 0
972 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
973 ath5k_hw_set_gpio_input(ah, 0);
974 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
975 if (ah->ah_gpio[0] == 0)
976 ath5k_hw_set_gpio_intr(ah, 0, 1);
977 else
978 ath5k_hw_set_gpio_intr(ah, 0, 0);
980 #endif
983 * Set the 32MHz reference clock on 5212 phy clock sleep register
985 if (ah->ah_version == AR5K_AR5212) {
986 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
987 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
988 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
989 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
990 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
991 ath5k_hw_reg_write(ah, ah->ah_radio == AR5K_RF5111 ?
992 AR5K_PHY_SPENDING_RF5111 : AR5K_PHY_SPENDING_RF5112,
993 AR5K_PHY_SPENDING);
997 * Disable beacons and reset the register
999 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1000 AR5K_BEACON_RESET_TSF);
1002 return 0;
1006 * Reset chipset
1008 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
1010 int ret;
1011 u32 mask = val ? val : ~0U;
1013 ATH5K_TRACE(ah->ah_sc);
1015 /* Read-and-clear RX Descriptor Pointer*/
1016 ath5k_hw_reg_read(ah, AR5K_RXDP);
1019 * Reset the device and wait until success
1021 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
1023 /* Wait at least 128 PCI clocks */
1024 udelay(15);
1026 if (ah->ah_version == AR5K_AR5210) {
1027 val &= AR5K_RESET_CTL_CHIP;
1028 mask &= AR5K_RESET_CTL_CHIP;
1029 } else {
1030 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1031 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1034 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
1037 * Reset configuration register (for hw byte-swap). Note that this
1038 * is only set for big endian. We do the necessary magic in
1039 * AR5K_INIT_CFG.
1041 if ((val & AR5K_RESET_CTL_PCU) == 0)
1042 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
1044 return ret;
1048 * Power management functions
1052 * Sleep control
1054 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
1055 bool set_chip, u16 sleep_duration)
1057 unsigned int i;
1058 u32 staid;
1060 ATH5K_TRACE(ah->ah_sc);
1061 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
1063 switch (mode) {
1064 case AR5K_PM_AUTO:
1065 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
1066 /* fallthrough */
1067 case AR5K_PM_NETWORK_SLEEP:
1068 if (set_chip == true)
1069 ath5k_hw_reg_write(ah,
1070 AR5K_SLEEP_CTL_SLE | sleep_duration,
1071 AR5K_SLEEP_CTL);
1073 staid |= AR5K_STA_ID1_PWR_SV;
1074 break;
1076 case AR5K_PM_FULL_SLEEP:
1077 if (set_chip == true)
1078 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
1079 AR5K_SLEEP_CTL);
1081 staid |= AR5K_STA_ID1_PWR_SV;
1082 break;
1084 case AR5K_PM_AWAKE:
1085 if (set_chip == false)
1086 goto commit;
1088 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1089 AR5K_SLEEP_CTL);
1091 for (i = 5000; i > 0; i--) {
1092 /* Check if the chip did wake up */
1093 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1094 AR5K_PCICFG_SPWR_DN) == 0)
1095 break;
1097 /* Wait a bit and retry */
1098 udelay(200);
1099 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1100 AR5K_SLEEP_CTL);
1103 /* Fail if the chip didn't wake up */
1104 if (i <= 0)
1105 return -EIO;
1107 staid &= ~AR5K_STA_ID1_PWR_SV;
1108 break;
1110 default:
1111 return -EINVAL;
1114 commit:
1115 ah->ah_power_mode = mode;
1116 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
1118 return 0;
1121 /***********************\
1122 DMA Related Functions
1123 \***********************/
1126 * Receive functions
1130 * Start DMA receive
1132 void ath5k_hw_start_rx(struct ath5k_hw *ah)
1134 ATH5K_TRACE(ah->ah_sc);
1135 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
1139 * Stop DMA receive
1141 int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
1143 unsigned int i;
1145 ATH5K_TRACE(ah->ah_sc);
1146 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
1149 * It may take some time to disable the DMA receive unit
1151 for (i = 2000; i > 0 &&
1152 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
1153 i--)
1154 udelay(10);
1156 return i ? 0 : -EBUSY;
1160 * Get the address of the RX Descriptor
1162 u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
1164 return ath5k_hw_reg_read(ah, AR5K_RXDP);
1168 * Set the address of the RX Descriptor
1170 void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
1172 ATH5K_TRACE(ah->ah_sc);
1174 /*TODO:Shouldn't we check if RX is enabled first ?*/
1175 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
1179 * Transmit functions
1183 * Start DMA transmit for a specific queue
1184 * (see also QCU/DCU functions)
1186 int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
1188 u32 tx_queue;
1190 ATH5K_TRACE(ah->ah_sc);
1191 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1193 /* Return if queue is declared inactive */
1194 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1195 return -EIO;
1197 if (ah->ah_version == AR5K_AR5210) {
1198 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1201 * Set the queue by type on 5210
1203 switch (ah->ah_txq[queue].tqi_type) {
1204 case AR5K_TX_QUEUE_DATA:
1205 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
1206 break;
1207 case AR5K_TX_QUEUE_BEACON:
1208 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1209 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
1210 AR5K_BSR);
1211 break;
1212 case AR5K_TX_QUEUE_CAB:
1213 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1214 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
1215 AR5K_BCR_BDMAE, AR5K_BSR);
1216 break;
1217 default:
1218 return -EINVAL;
1220 /* Start queue */
1221 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1222 } else {
1223 /* Return if queue is disabled */
1224 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
1225 return -EIO;
1227 /* Start queue */
1228 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
1231 return 0;
1235 * Stop DMA transmit for a specific queue
1236 * (see also QCU/DCU functions)
1238 int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
1240 unsigned int i = 100;
1241 u32 tx_queue, pending;
1243 ATH5K_TRACE(ah->ah_sc);
1244 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1246 /* Return if queue is declared inactive */
1247 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1248 return -EIO;
1250 if (ah->ah_version == AR5K_AR5210) {
1251 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1254 * Set by queue type
1256 switch (ah->ah_txq[queue].tqi_type) {
1257 case AR5K_TX_QUEUE_DATA:
1258 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
1259 break;
1260 case AR5K_TX_QUEUE_BEACON:
1261 case AR5K_TX_QUEUE_CAB:
1262 /* XXX Fix me... */
1263 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
1264 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
1265 break;
1266 default:
1267 return -EINVAL;
1270 /* Stop queue */
1271 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1272 } else {
1274 * Schedule TX disable and wait until queue is empty
1276 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
1278 /*Check for pending frames*/
1279 do {
1280 pending = ath5k_hw_reg_read(ah,
1281 AR5K_QUEUE_STATUS(queue)) &
1282 AR5K_QCU_STS_FRMPENDCNT;
1283 udelay(100);
1284 } while (--i && pending);
1286 /* Clear register */
1287 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
1290 /* TODO: Check for success else return error */
1291 return 0;
1295 * Get the address of the TX Descriptor for a specific queue
1296 * (see also QCU/DCU functions)
1298 u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
1300 u16 tx_reg;
1302 ATH5K_TRACE(ah->ah_sc);
1303 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1306 * Get the transmit queue descriptor pointer from the selected queue
1308 /*5210 doesn't have QCU*/
1309 if (ah->ah_version == AR5K_AR5210) {
1310 switch (ah->ah_txq[queue].tqi_type) {
1311 case AR5K_TX_QUEUE_DATA:
1312 tx_reg = AR5K_NOQCU_TXDP0;
1313 break;
1314 case AR5K_TX_QUEUE_BEACON:
1315 case AR5K_TX_QUEUE_CAB:
1316 tx_reg = AR5K_NOQCU_TXDP1;
1317 break;
1318 default:
1319 return 0xffffffff;
1321 } else {
1322 tx_reg = AR5K_QUEUE_TXDP(queue);
1325 return ath5k_hw_reg_read(ah, tx_reg);
1329 * Set the address of the TX Descriptor for a specific queue
1330 * (see also QCU/DCU functions)
1332 int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
1334 u16 tx_reg;
1336 ATH5K_TRACE(ah->ah_sc);
1337 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1340 * Set the transmit queue descriptor pointer register by type
1341 * on 5210
1343 if (ah->ah_version == AR5K_AR5210) {
1344 switch (ah->ah_txq[queue].tqi_type) {
1345 case AR5K_TX_QUEUE_DATA:
1346 tx_reg = AR5K_NOQCU_TXDP0;
1347 break;
1348 case AR5K_TX_QUEUE_BEACON:
1349 case AR5K_TX_QUEUE_CAB:
1350 tx_reg = AR5K_NOQCU_TXDP1;
1351 break;
1352 default:
1353 return -EINVAL;
1355 } else {
1357 * Set the transmit queue descriptor pointer for
1358 * the selected queue on QCU for 5211+
1359 * (this won't work if the queue is still active)
1361 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
1362 return -EIO;
1364 tx_reg = AR5K_QUEUE_TXDP(queue);
1367 /* Set descriptor pointer */
1368 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
1370 return 0;
1374 * Update tx trigger level
1376 int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
1378 u32 trigger_level, imr;
1379 int ret = -EIO;
1381 ATH5K_TRACE(ah->ah_sc);
1384 * Disable interrupts by setting the mask
1386 imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
1388 /*TODO: Boundary check on trigger_level*/
1389 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
1390 AR5K_TXCFG_TXFULL);
1392 if (increase == false) {
1393 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
1394 goto done;
1395 } else
1396 trigger_level +=
1397 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
1400 * Update trigger level on success
1402 if (ah->ah_version == AR5K_AR5210)
1403 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
1404 else
1405 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1406 AR5K_TXCFG_TXFULL, trigger_level);
1408 ret = 0;
1410 done:
1412 * Restore interrupt mask
1414 ath5k_hw_set_intr(ah, imr);
1416 return ret;
1420 * Interrupt handling
1424 * Check if we have pending interrupts
1426 bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
1428 ATH5K_TRACE(ah->ah_sc);
1429 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
1433 * Get interrupt mask (ISR)
1435 int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
1437 u32 data;
1439 ATH5K_TRACE(ah->ah_sc);
1442 * Read interrupt status from the Interrupt Status register
1443 * on 5210
1445 if (ah->ah_version == AR5K_AR5210) {
1446 data = ath5k_hw_reg_read(ah, AR5K_ISR);
1447 if (unlikely(data == AR5K_INT_NOCARD)) {
1448 *interrupt_mask = data;
1449 return -ENODEV;
1451 } else {
1453 * Read interrupt status from the Read-And-Clear shadow register
1454 * Note: PISR/SISR Not available on 5210
1456 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
1460 * Get abstract interrupt mask (driver-compatible)
1462 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
1464 if (unlikely(data == AR5K_INT_NOCARD))
1465 return -ENODEV;
1467 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
1468 *interrupt_mask |= AR5K_INT_RX;
1470 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
1471 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
1472 *interrupt_mask |= AR5K_INT_TX;
1474 if (ah->ah_version != AR5K_AR5210) {
1475 /*HIU = Host Interface Unit (PCI etc)*/
1476 if (unlikely(data & (AR5K_ISR_HIUERR)))
1477 *interrupt_mask |= AR5K_INT_FATAL;
1479 /*Beacon Not Ready*/
1480 if (unlikely(data & (AR5K_ISR_BNR)))
1481 *interrupt_mask |= AR5K_INT_BNR;
1485 * XXX: BMISS interrupts may occur after association.
1486 * I found this on 5210 code but it needs testing. If this is
1487 * true we should disable them before assoc and re-enable them
1488 * after a successfull assoc + some jiffies.
1490 #if 0
1491 interrupt_mask &= ~AR5K_INT_BMISS;
1492 #endif
1495 * In case we didn't handle anything,
1496 * print the register value.
1498 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
1499 ATH5K_PRINTF("0x%08x\n", data);
1501 return 0;
1505 * Set interrupt mask
1507 enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
1509 enum ath5k_int old_mask, int_mask;
1512 * Disable card interrupts to prevent any race conditions
1513 * (they will be re-enabled afterwards).
1515 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
1517 old_mask = ah->ah_imr;
1520 * Add additional, chipset-dependent interrupt mask flags
1521 * and write them to the IMR (interrupt mask register).
1523 int_mask = new_mask & AR5K_INT_COMMON;
1525 if (new_mask & AR5K_INT_RX)
1526 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
1527 AR5K_IMR_RXDESC;
1529 if (new_mask & AR5K_INT_TX)
1530 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
1531 AR5K_IMR_TXURN;
1533 if (ah->ah_version != AR5K_AR5210) {
1534 if (new_mask & AR5K_INT_FATAL) {
1535 int_mask |= AR5K_IMR_HIUERR;
1536 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
1537 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
1541 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
1543 /* Store new interrupt mask */
1544 ah->ah_imr = new_mask;
1546 /* ..re-enable interrupts */
1547 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
1549 return old_mask;
1553 /*************************\
1554 EEPROM access functions
1555 \*************************/
1558 * Read from eeprom
1560 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
1562 u32 status, timeout;
1564 ATH5K_TRACE(ah->ah_sc);
1566 * Initialize EEPROM access
1568 if (ah->ah_version == AR5K_AR5210) {
1569 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1570 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
1571 } else {
1572 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1573 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1574 AR5K_EEPROM_CMD_READ);
1577 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1578 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1579 if (status & AR5K_EEPROM_STAT_RDDONE) {
1580 if (status & AR5K_EEPROM_STAT_RDERR)
1581 return -EIO;
1582 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
1583 0xffff);
1584 return 0;
1586 udelay(15);
1589 return -ETIMEDOUT;
1593 * Write to eeprom - currently disabled, use at your own risk
1595 static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
1597 #if 0
1598 u32 status, timeout;
1600 ATH5K_TRACE(ah->ah_sc);
1603 * Initialize eeprom access
1606 if (ah->ah_version == AR5K_AR5210) {
1607 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1608 } else {
1609 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1610 AR5K_EEPROM_CMD_RESET);
1614 * Write data to data register
1617 if (ah->ah_version == AR5K_AR5210) {
1618 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
1619 } else {
1620 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1621 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
1622 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1623 AR5K_EEPROM_CMD_WRITE);
1627 * Check status
1630 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1631 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1632 if (status & AR5K_EEPROM_STAT_WRDONE) {
1633 if (status & AR5K_EEPROM_STAT_WRERR)
1634 return EIO;
1635 return 0;
1637 udelay(15);
1639 #endif
1640 ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
1641 return -EIO;
1645 * Translate binary channel representation in EEPROM to frequency
1647 static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
1649 u16 val;
1651 if (bin == AR5K_EEPROM_CHANNEL_DIS)
1652 return bin;
1654 if (mode == AR5K_EEPROM_MODE_11A) {
1655 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1656 val = (5 * bin) + 4800;
1657 else
1658 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
1659 (bin * 10) + 5100;
1660 } else {
1661 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1662 val = bin + 2300;
1663 else
1664 val = bin + 2400;
1667 return val;
1671 * Read antenna infos from eeprom
1673 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
1674 unsigned int mode)
1676 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1677 u32 o = *offset;
1678 u16 val;
1679 int ret, i = 0;
1681 AR5K_EEPROM_READ(o++, val);
1682 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1683 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
1684 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1686 AR5K_EEPROM_READ(o++, val);
1687 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1688 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1689 ee->ee_ant_control[mode][i++] = val & 0x3f;
1691 AR5K_EEPROM_READ(o++, val);
1692 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
1693 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
1694 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
1696 AR5K_EEPROM_READ(o++, val);
1697 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
1698 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
1699 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
1700 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1702 AR5K_EEPROM_READ(o++, val);
1703 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1704 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1705 ee->ee_ant_control[mode][i++] = val & 0x3f;
1707 /* Get antenna modes */
1708 ah->ah_antenna[mode][0] =
1709 (ee->ee_ant_control[mode][0] << 4) | 0x1;
1710 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
1711 ee->ee_ant_control[mode][1] |
1712 (ee->ee_ant_control[mode][2] << 6) |
1713 (ee->ee_ant_control[mode][3] << 12) |
1714 (ee->ee_ant_control[mode][4] << 18) |
1715 (ee->ee_ant_control[mode][5] << 24);
1716 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
1717 ee->ee_ant_control[mode][6] |
1718 (ee->ee_ant_control[mode][7] << 6) |
1719 (ee->ee_ant_control[mode][8] << 12) |
1720 (ee->ee_ant_control[mode][9] << 18) |
1721 (ee->ee_ant_control[mode][10] << 24);
1723 /* return new offset */
1724 *offset = o;
1726 return 0;
1730 * Read supported modes from eeprom
1732 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
1733 unsigned int mode)
1735 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1736 u32 o = *offset;
1737 u16 val;
1738 int ret;
1740 AR5K_EEPROM_READ(o++, val);
1741 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
1742 ee->ee_thr_62[mode] = val & 0xff;
1744 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1745 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
1747 AR5K_EEPROM_READ(o++, val);
1748 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
1749 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
1751 AR5K_EEPROM_READ(o++, val);
1752 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
1754 if ((val & 0xff) & 0x80)
1755 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
1756 else
1757 ee->ee_noise_floor_thr[mode] = val & 0xff;
1759 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1760 ee->ee_noise_floor_thr[mode] =
1761 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
1763 AR5K_EEPROM_READ(o++, val);
1764 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
1765 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
1766 ee->ee_xpd[mode] = val & 0x1;
1768 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
1769 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
1771 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
1772 AR5K_EEPROM_READ(o++, val);
1773 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
1775 if (mode == AR5K_EEPROM_MODE_11A)
1776 ee->ee_xr_power[mode] = val & 0x3f;
1777 else {
1778 ee->ee_ob[mode][0] = val & 0x7;
1779 ee->ee_db[mode][0] = (val >> 3) & 0x7;
1783 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
1784 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
1785 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
1786 } else {
1787 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
1789 AR5K_EEPROM_READ(o++, val);
1790 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
1792 if (mode == AR5K_EEPROM_MODE_11G)
1793 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1796 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
1797 mode == AR5K_EEPROM_MODE_11A) {
1798 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1799 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1802 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
1803 mode == AR5K_EEPROM_MODE_11G)
1804 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
1806 /* return new offset */
1807 *offset = o;
1809 return 0;
1813 * Initialize eeprom & capabilities structs
1815 static int ath5k_eeprom_init(struct ath5k_hw *ah)
1817 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1818 unsigned int mode, i;
1819 int ret;
1820 u32 offset;
1821 u16 val;
1823 /* Initial TX thermal adjustment values */
1824 ee->ee_tx_clip = 4;
1825 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
1826 ee->ee_gain_select = 1;
1829 * Read values from EEPROM and store them in the capability structure
1831 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
1832 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
1833 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
1834 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
1835 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
1837 /* Return if we have an old EEPROM */
1838 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
1839 return 0;
1841 #ifdef notyet
1843 * Validate the checksum of the EEPROM date. There are some
1844 * devices with invalid EEPROMs.
1846 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
1847 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
1848 cksum ^= val;
1850 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
1851 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
1852 return -EIO;
1854 #endif
1856 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
1857 ee_ant_gain);
1859 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1860 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
1861 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
1864 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
1865 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
1866 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
1867 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
1869 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
1870 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
1871 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
1875 * Get conformance test limit values
1877 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
1878 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
1880 for (i = 0; i < ee->ee_ctls; i++) {
1881 AR5K_EEPROM_READ(offset++, val);
1882 ee->ee_ctl[i] = (val >> 8) & 0xff;
1883 ee->ee_ctl[i + 1] = val & 0xff;
1887 * Get values for 802.11a (5GHz)
1889 mode = AR5K_EEPROM_MODE_11A;
1891 ee->ee_turbo_max_power[mode] =
1892 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
1894 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
1896 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1897 if (ret)
1898 return ret;
1900 AR5K_EEPROM_READ(offset++, val);
1901 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1902 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
1903 ee->ee_db[mode][3] = (val >> 2) & 0x7;
1904 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1906 AR5K_EEPROM_READ(offset++, val);
1907 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
1908 ee->ee_db[mode][2] = (val >> 12) & 0x7;
1909 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
1910 ee->ee_db[mode][1] = (val >> 6) & 0x7;
1911 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
1912 ee->ee_db[mode][0] = val & 0x7;
1914 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1915 if (ret)
1916 return ret;
1918 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
1919 AR5K_EEPROM_READ(offset++, val);
1920 ee->ee_margin_tx_rx[mode] = val & 0x3f;
1924 * Get values for 802.11b (2.4GHz)
1926 mode = AR5K_EEPROM_MODE_11B;
1927 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
1929 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1930 if (ret)
1931 return ret;
1933 AR5K_EEPROM_READ(offset++, val);
1934 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1935 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1936 ee->ee_db[mode][1] = val & 0x7;
1938 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1939 if (ret)
1940 return ret;
1942 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1943 AR5K_EEPROM_READ(offset++, val);
1944 ee->ee_cal_pier[mode][0] =
1945 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1946 ee->ee_cal_pier[mode][1] =
1947 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1949 AR5K_EEPROM_READ(offset++, val);
1950 ee->ee_cal_pier[mode][2] =
1951 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1954 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1955 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1958 * Get values for 802.11g (2.4GHz)
1960 mode = AR5K_EEPROM_MODE_11G;
1961 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
1963 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1964 if (ret)
1965 return ret;
1967 AR5K_EEPROM_READ(offset++, val);
1968 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1969 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1970 ee->ee_db[mode][1] = val & 0x7;
1972 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1973 if (ret)
1974 return ret;
1976 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1977 AR5K_EEPROM_READ(offset++, val);
1978 ee->ee_cal_pier[mode][0] =
1979 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1980 ee->ee_cal_pier[mode][1] =
1981 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1983 AR5K_EEPROM_READ(offset++, val);
1984 ee->ee_turbo_max_power[mode] = val & 0x7f;
1985 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
1987 AR5K_EEPROM_READ(offset++, val);
1988 ee->ee_cal_pier[mode][2] =
1989 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1991 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1992 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1994 AR5K_EEPROM_READ(offset++, val);
1995 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1996 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1998 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
1999 AR5K_EEPROM_READ(offset++, val);
2000 ee->ee_cck_ofdm_gain_delta = val & 0xff;
2005 * Read 5GHz EEPROM channels
2008 return 0;
2012 * Read the MAC address from eeprom
2014 static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
2016 u8 mac_d[ETH_ALEN];
2017 u32 total, offset;
2018 u16 data;
2019 int octet, ret;
2021 memset(mac, 0, ETH_ALEN);
2022 memset(mac_d, 0, ETH_ALEN);
2024 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
2025 if (ret)
2026 return ret;
2028 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
2029 ret = ath5k_hw_eeprom_read(ah, offset, &data);
2030 if (ret)
2031 return ret;
2033 total += data;
2034 mac_d[octet + 1] = data & 0xff;
2035 mac_d[octet] = data >> 8;
2036 octet += 2;
2039 memcpy(mac, mac_d, ETH_ALEN);
2041 if (!total || total == 3 * 0xffff)
2042 return -EINVAL;
2044 return 0;
2048 * Read/Write regulatory domain
2050 static bool ath5k_eeprom_regulation_domain(struct ath5k_hw *ah, bool write,
2051 enum ath5k_regdom *regdomain)
2053 u16 ee_regdomain;
2055 /* Read current value */
2056 if (write != true) {
2057 ee_regdomain = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2058 *regdomain = ath5k_regdom_to_ieee(ee_regdomain);
2059 return true;
2062 ee_regdomain = ath5k_regdom_from_ieee(*regdomain);
2064 /* Try to write a new value */
2065 if (ah->ah_capabilities.cap_eeprom.ee_protect &
2066 AR5K_EEPROM_PROTECT_WR_128_191)
2067 return false;
2068 if (ath5k_hw_eeprom_write(ah, AR5K_EEPROM_REG_DOMAIN, ee_regdomain)!=0)
2069 return false;
2071 ah->ah_capabilities.cap_eeprom.ee_regdomain = ee_regdomain;
2073 return true;
2077 * Use the above to write a new regulatory domain
2079 int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain)
2081 enum ath5k_regdom ieee_regdomain;
2083 ieee_regdomain = ath5k_regdom_to_ieee(regdomain);
2085 if (ath5k_eeprom_regulation_domain(ah, true, &ieee_regdomain) == true)
2086 return 0;
2088 return -EIO;
2092 * Fill the capabilities struct
2094 static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
2096 u16 ee_header;
2098 ATH5K_TRACE(ah->ah_sc);
2099 /* Capabilities stored in the EEPROM */
2100 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
2102 if (ah->ah_version == AR5K_AR5210) {
2104 * Set radio capabilities
2105 * (The AR5110 only supports the middle 5GHz band)
2107 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
2108 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
2109 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
2110 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
2112 /* Set supported modes */
2113 __set_bit(MODE_IEEE80211A, ah->ah_capabilities.cap_mode);
2114 __set_bit(MODE_ATHEROS_TURBO, ah->ah_capabilities.cap_mode);
2115 } else {
2117 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
2118 * XXX and from 2312 to 2732GHz. There are problems with the
2119 * XXX current ieee80211 implementation because the IEEE
2120 * XXX channel mapping does not support negative channel
2121 * XXX numbers (2312MHz is channel -19). Of course, this
2122 * XXX doesn't matter because these channels are out of range
2123 * XXX but some regulation domains like MKK (Japan) will
2124 * XXX support frequencies somewhere around 4.8GHz.
2128 * Set radio capabilities
2131 if (AR5K_EEPROM_HDR_11A(ee_header)) {
2132 ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2133 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
2135 /* Set supported modes */
2136 __set_bit(MODE_IEEE80211A,
2137 ah->ah_capabilities.cap_mode);
2138 __set_bit(MODE_ATHEROS_TURBO,
2139 ah->ah_capabilities.cap_mode);
2140 if (ah->ah_version == AR5K_AR5212)
2141 __set_bit(MODE_ATHEROS_TURBOG,
2142 ah->ah_capabilities.cap_mode);
2145 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
2146 * connected */
2147 if (AR5K_EEPROM_HDR_11B(ee_header) ||
2148 AR5K_EEPROM_HDR_11G(ee_header)) {
2149 ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2150 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
2152 if (AR5K_EEPROM_HDR_11B(ee_header))
2153 __set_bit(MODE_IEEE80211B,
2154 ah->ah_capabilities.cap_mode);
2156 if (AR5K_EEPROM_HDR_11G(ee_header))
2157 __set_bit(MODE_IEEE80211G,
2158 ah->ah_capabilities.cap_mode);
2162 /* GPIO */
2163 ah->ah_gpio_npins = AR5K_NUM_GPIO;
2165 /* Set number of supported TX queues */
2166 if (ah->ah_version == AR5K_AR5210)
2167 ah->ah_capabilities.cap_queues.q_tx_num =
2168 AR5K_NUM_TX_QUEUES_NOQCU;
2169 else
2170 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
2172 return 0;
2175 /*********************************\
2176 Protocol Control Unit Functions
2177 \*********************************/
2180 * Set Operation mode
2182 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
2184 u32 pcu_reg, beacon_reg, low_id, high_id;
2186 pcu_reg = 0;
2187 beacon_reg = 0;
2189 ATH5K_TRACE(ah->ah_sc);
2191 switch (ah->ah_op_mode) {
2192 case IEEE80211_IF_TYPE_IBSS:
2193 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
2194 (ah->ah_version == AR5K_AR5210 ?
2195 AR5K_STA_ID1_NO_PSPOLL : 0);
2196 beacon_reg |= AR5K_BCR_ADHOC;
2197 break;
2199 case IEEE80211_IF_TYPE_AP:
2200 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
2201 (ah->ah_version == AR5K_AR5210 ?
2202 AR5K_STA_ID1_NO_PSPOLL : 0);
2203 beacon_reg |= AR5K_BCR_AP;
2204 break;
2206 case IEEE80211_IF_TYPE_STA:
2207 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2208 (ah->ah_version == AR5K_AR5210 ?
2209 AR5K_STA_ID1_PWR_SV : 0);
2210 case IEEE80211_IF_TYPE_MNTR:
2211 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2212 (ah->ah_version == AR5K_AR5210 ?
2213 AR5K_STA_ID1_NO_PSPOLL : 0);
2214 break;
2216 default:
2217 return -EINVAL;
2221 * Set PCU registers
2223 low_id = AR5K_LOW_ID(ah->ah_sta_id);
2224 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
2225 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2226 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
2229 * Set Beacon Control Register on 5210
2231 if (ah->ah_version == AR5K_AR5210)
2232 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
2234 return 0;
2238 * BSSID Functions
2242 * Get station id
2244 void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
2246 ATH5K_TRACE(ah->ah_sc);
2247 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
2251 * Set station id
2253 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
2255 u32 low_id, high_id;
2257 ATH5K_TRACE(ah->ah_sc);
2258 /* Set new station ID */
2259 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
2261 low_id = AR5K_LOW_ID(mac);
2262 high_id = AR5K_HIGH_ID(mac);
2264 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2265 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
2267 return 0;
2271 * Set BSSID
2273 void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
2275 u32 low_id, high_id;
2276 u16 tim_offset = 0;
2279 * Set simple BSSID mask on 5212
2281 if (ah->ah_version == AR5K_AR5212) {
2282 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM0);
2283 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM1);
2287 * Set BSSID which triggers the "SME Join" operation
2289 low_id = AR5K_LOW_ID(bssid);
2290 high_id = AR5K_HIGH_ID(bssid);
2291 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
2292 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
2293 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
2295 if (assoc_id == 0) {
2296 ath5k_hw_disable_pspoll(ah);
2297 return;
2300 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
2301 tim_offset ? tim_offset + 4 : 0);
2303 ath5k_hw_enable_pspoll(ah, NULL, 0);
2306 * ath5k_hw_set_bssid_mask - set common bits we should listen to
2308 * The bssid_mask is a utility used by AR5212 hardware to inform the hardware
2309 * which bits of the interface's MAC address should be looked at when trying
2310 * to decide which packets to ACK. In station mode every bit matters. In AP
2311 * mode with a single BSS every bit matters as well. In AP mode with
2312 * multiple BSSes not every bit matters.
2314 * @ah: the &struct ath5k_hw
2315 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
2317 * Note that this is a simple filter and *does* not filter out all
2318 * relevant frames. Some non-relevant frames will get through, probability
2319 * jocks are welcomed to compute.
2321 * When handling multiple BSSes (or VAPs) you can get the BSSID mask by
2322 * computing the set of:
2324 * ~ ( MAC XOR BSSID )
2326 * When you do this you are essentially computing the common bits. Later it
2327 * is assumed the harware will "and" (&) the BSSID mask with the MAC address
2328 * to obtain the relevant bits which should match on the destination frame.
2330 * Simple example: on your card you have have two BSSes you have created with
2331 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
2332 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
2333 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
2336 * MAC: 0001 |
2337 * BSSID-01: 0100 | --> Belongs to us
2338 * BSSID-02: 1001 |
2340 * -------------------
2341 * BSSID-03: 0110 | --> External
2342 * -------------------
2344 * Our bssid_mask would then be:
2346 * On loop iteration for BSSID-01:
2347 * ~(0001 ^ 0100) -> ~(0101)
2348 * -> 1010
2349 * bssid_mask = 1010
2351 * On loop iteration for BSSID-02:
2352 * bssid_mask &= ~(0001 ^ 1001)
2353 * bssid_mask = (1010) & ~(0001 ^ 1001)
2354 * bssid_mask = (1010) & ~(1001)
2355 * bssid_mask = (1010) & (0110)
2356 * bssid_mask = 0010
2358 * A bssid_mask of 0010 means "only pay attention to the second least
2359 * significant bit". This is because its the only bit common
2360 * amongst the MAC and all BSSIDs we support. To findout what the real
2361 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
2362 * or our MAC address (we assume the hardware uses the MAC address).
2364 * Now, suppose there's an incoming frame for BSSID-03:
2366 * IFRAME-01: 0110
2368 * An easy eye-inspeciton of this already should tell you that this frame
2369 * will not pass our check. This is beacuse the bssid_mask tells the
2370 * hardware to only look at the second least significant bit and the
2371 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
2372 * as 1, which does not match 0.
2374 * So with IFRAME-01 we *assume* the hardware will do:
2376 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2377 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
2378 * --> allow = (0010) == 0000 ? 1 : 0;
2379 * --> allow = 0
2381 * Lets now test a frame that should work:
2383 * IFRAME-02: 0001 (we should allow)
2385 * allow = (0001 & 1010) == 1010
2387 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2388 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
2389 * --> allow = (0010) == (0010)
2390 * --> allow = 1
2392 * Other examples:
2394 * IFRAME-03: 0100 --> allowed
2395 * IFRAME-04: 1001 --> allowed
2396 * IFRAME-05: 1101 --> allowed but its not for us!!!
2399 int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
2401 u32 low_id, high_id;
2402 ATH5K_TRACE(ah->ah_sc);
2404 if (ah->ah_version == AR5K_AR5212) {
2405 low_id = AR5K_LOW_ID(mask);
2406 high_id = AR5K_HIGH_ID(mask);
2408 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
2409 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
2411 return 0;
2414 return -EIO;
2418 * Receive start/stop functions
2422 * Start receive on PCU
2424 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
2426 ATH5K_TRACE(ah->ah_sc);
2427 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2431 * Stop receive on PCU
2433 void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
2435 ATH5K_TRACE(ah->ah_sc);
2436 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2440 * RX Filter functions
2444 * Set multicast filter
2446 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
2448 ATH5K_TRACE(ah->ah_sc);
2449 /* Set the multicat filter */
2450 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
2451 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
2455 * Set multicast filter by index
2457 int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
2460 ATH5K_TRACE(ah->ah_sc);
2461 if (index >= 64)
2462 return -EINVAL;
2463 else if (index >= 32)
2464 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
2465 (1 << (index - 32)));
2466 else
2467 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2469 return 0;
2473 * Clear Multicast filter by index
2475 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
2478 ATH5K_TRACE(ah->ah_sc);
2479 if (index >= 64)
2480 return -EINVAL;
2481 else if (index >= 32)
2482 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
2483 (1 << (index - 32)));
2484 else
2485 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2487 return 0;
2491 * Get current rx filter
2493 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
2495 u32 data, filter = 0;
2497 ATH5K_TRACE(ah->ah_sc);
2498 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
2500 /*Radar detection for 5212*/
2501 if (ah->ah_version == AR5K_AR5212) {
2502 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
2504 if (data & AR5K_PHY_ERR_FIL_RADAR)
2505 filter |= AR5K_RX_FILTER_RADARERR;
2506 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
2507 filter |= AR5K_RX_FILTER_PHYERR;
2510 return filter;
2514 * Set rx filter
2516 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
2518 u32 data = 0;
2520 ATH5K_TRACE(ah->ah_sc);
2522 /* Set PHY error filter register on 5212*/
2523 if (ah->ah_version == AR5K_AR5212) {
2524 if (filter & AR5K_RX_FILTER_RADARERR)
2525 data |= AR5K_PHY_ERR_FIL_RADAR;
2526 if (filter & AR5K_RX_FILTER_PHYERR)
2527 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
2531 * The AR5210 uses promiscous mode to detect radar activity
2533 if (ah->ah_version == AR5K_AR5210 &&
2534 (filter & AR5K_RX_FILTER_RADARERR)) {
2535 filter &= ~AR5K_RX_FILTER_RADARERR;
2536 filter |= AR5K_RX_FILTER_PROM;
2539 /*Zero length DMA*/
2540 if (data)
2541 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2542 else
2543 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2545 /*Write RX Filter register*/
2546 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
2548 /*Write PHY error filter register on 5212*/
2549 if (ah->ah_version == AR5K_AR5212)
2550 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
2555 * Beacon related functions
2559 * Get a 32bit TSF
2561 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
2563 ATH5K_TRACE(ah->ah_sc);
2564 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
2568 * Get the full 64bit TSF
2570 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
2572 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
2573 ATH5K_TRACE(ah->ah_sc);
2575 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
2579 * Force a TSF reset
2581 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
2583 ATH5K_TRACE(ah->ah_sc);
2584 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
2588 * Initialize beacon timers
2590 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
2592 u32 timer1, timer2, timer3;
2594 ATH5K_TRACE(ah->ah_sc);
2596 * Set the additional timers by mode
2598 switch (ah->ah_op_mode) {
2599 case IEEE80211_IF_TYPE_STA:
2600 if (ah->ah_version == AR5K_AR5210) {
2601 timer1 = 0xffffffff;
2602 timer2 = 0xffffffff;
2603 } else {
2604 timer1 = 0x0000ffff;
2605 timer2 = 0x0007ffff;
2607 break;
2609 default:
2610 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
2611 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
2614 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
2617 * Set the beacon register and enable all timers.
2618 * (next beacon, DMA beacon, software beacon, ATIM window time)
2620 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
2621 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
2622 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
2623 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
2625 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
2626 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
2627 AR5K_BEACON);
2630 #if 0
2632 * Set beacon timers
2634 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
2635 const struct ath5k_beacon_state *state)
2637 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
2640 * TODO: should be changed through *state
2641 * review struct ath5k_beacon_state struct
2643 * XXX: These are used for cfp period bellow, are they
2644 * ok ? Is it O.K. for tsf here to be 0 or should we use
2645 * get_tsf ?
2647 u32 dtim_count = 0; /* XXX */
2648 u32 cfp_count = 0; /* XXX */
2649 u32 tsf = 0; /* XXX */
2651 ATH5K_TRACE(ah->ah_sc);
2652 /* Return on an invalid beacon state */
2653 if (state->bs_interval < 1)
2654 return -EINVAL;
2656 interval = state->bs_interval;
2657 dtim = state->bs_dtim_period;
2660 * PCF support?
2662 if (state->bs_cfp_period > 0) {
2664 * Enable PCF mode and set the CFP
2665 * (Contention Free Period) and timer registers
2667 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2668 state->bs_interval;
2669 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2670 state->bs_interval;
2672 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
2673 AR5K_STA_ID1_DEFAULT_ANTENNA |
2674 AR5K_STA_ID1_PCF);
2675 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
2676 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
2677 AR5K_CFP_DUR);
2678 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
2679 next_cfp)) << 3, AR5K_TIMER2);
2680 } else {
2681 /* Disable PCF mode */
2682 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2683 AR5K_STA_ID1_DEFAULT_ANTENNA |
2684 AR5K_STA_ID1_PCF);
2688 * Enable the beacon timer register
2690 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
2693 * Start the beacon timers
2695 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
2696 (AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
2697 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2698 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2699 AR5K_BEACON_PERIOD), AR5K_BEACON);
2702 * Write new beacon miss threshold, if it appears to be valid
2703 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
2704 * and return if its not in range. We can test this by reading value and
2705 * setting value to a largest value and seeing which values register.
2708 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
2709 state->bs_bmiss_threshold);
2712 * Set sleep control register
2713 * XXX: Didn't find this in 5210 code but since this register
2714 * exists also in ar5k's 5210 headers i leave it as common code.
2716 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
2717 (state->bs_sleep_duration - 3) << 3);
2720 * Set enhanced sleep registers on 5212
2722 if (ah->ah_version == AR5K_AR5212) {
2723 if (state->bs_sleep_duration > state->bs_interval &&
2724 roundup(state->bs_sleep_duration, interval) ==
2725 state->bs_sleep_duration)
2726 interval = state->bs_sleep_duration;
2728 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
2729 roundup(state->bs_sleep_duration, dtim) ==
2730 state->bs_sleep_duration))
2731 dtim = state->bs_sleep_duration;
2733 if (interval > dtim)
2734 return -EINVAL;
2736 next_beacon = interval == dtim ? state->bs_next_dtim :
2737 state->bs_next_beacon;
2739 ath5k_hw_reg_write(ah,
2740 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
2741 AR5K_SLEEP0_NEXT_DTIM) |
2742 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
2743 AR5K_SLEEP0_ENH_SLEEP_EN |
2744 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
2746 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
2747 AR5K_SLEEP1_NEXT_TIM) |
2748 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
2750 ath5k_hw_reg_write(ah,
2751 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
2752 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
2755 return 0;
2759 * Reset beacon timers
2761 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
2763 ATH5K_TRACE(ah->ah_sc);
2765 * Disable beacon timer
2767 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
2770 * Disable some beacon register values
2772 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2773 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
2774 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
2778 * Wait for beacon queue to finish
2780 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
2782 unsigned int i;
2783 int ret;
2785 ATH5K_TRACE(ah->ah_sc);
2787 /* 5210 doesn't have QCU*/
2788 if (ah->ah_version == AR5K_AR5210) {
2790 * Wait for beaconn queue to finish by checking
2791 * Control Register and Beacon Status Register.
2793 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
2794 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
2796 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
2797 break;
2798 udelay(10);
2801 /* Timeout... */
2802 if (i <= 0) {
2804 * Re-schedule the beacon queue
2806 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
2807 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
2808 AR5K_BCR);
2810 return -EIO;
2812 ret = 0;
2813 } else {
2814 /*5211/5212*/
2815 ret = ath5k_hw_register_timeout(ah,
2816 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
2817 AR5K_QCU_STS_FRMPENDCNT, 0, false);
2819 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
2820 return -EIO;
2823 return ret;
2825 #endif
2828 * Update mib counters (statistics)
2830 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
2831 struct ath5k_mib_stats *statistics)
2833 ATH5K_TRACE(ah->ah_sc);
2834 /* Read-And-Clear */
2835 statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
2836 statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
2837 statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
2838 statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
2839 statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
2841 /* Reset profile count registers on 5212*/
2842 if (ah->ah_version == AR5K_AR5212) {
2843 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
2844 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
2845 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
2846 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
2850 /** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
2852 * @ah: the &struct ath5k_hw
2853 * @high: determines if to use low bit rate or now
2855 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
2857 if (ah->ah_version != AR5K_AR5212)
2858 return;
2859 else {
2860 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
2861 if (high)
2862 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
2863 else
2864 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
2870 * ACK/CTS Timeouts
2874 * Set ACK timeout on PCU
2876 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
2878 ATH5K_TRACE(ah->ah_sc);
2879 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
2880 ah->ah_turbo) <= timeout)
2881 return -EINVAL;
2883 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
2884 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2886 return 0;
2890 * Read the ACK timeout from PCU
2892 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
2894 ATH5K_TRACE(ah->ah_sc);
2896 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2897 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
2901 * Set CTS timeout on PCU
2903 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
2905 ATH5K_TRACE(ah->ah_sc);
2906 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
2907 ah->ah_turbo) <= timeout)
2908 return -EINVAL;
2910 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
2911 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2913 return 0;
2917 * Read CTS timeout from PCU
2919 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
2921 ATH5K_TRACE(ah->ah_sc);
2922 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2923 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
2927 * Key table (WEP) functions
2930 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
2932 unsigned int i;
2934 ATH5K_TRACE(ah->ah_sc);
2935 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2937 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
2938 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
2940 /* Set NULL encryption on non-5210*/
2941 if (ah->ah_version != AR5K_AR5210)
2942 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
2943 AR5K_KEYTABLE_TYPE(entry));
2945 return 0;
2948 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
2950 ATH5K_TRACE(ah->ah_sc);
2951 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2953 /* Check the validation flag at the end of the entry */
2954 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
2955 AR5K_KEYTABLE_VALID;
2958 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
2959 const struct ieee80211_key_conf *key, const u8 *mac)
2961 unsigned int i;
2962 __le32 key_v[5] = {};
2963 u32 keytype;
2965 ATH5K_TRACE(ah->ah_sc);
2967 /* key->keylen comes in from mac80211 in bytes */
2969 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
2970 return -EOPNOTSUPP;
2972 switch (key->keylen) {
2973 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
2974 case 40 / 8:
2975 memcpy(&key_v[0], key->key, 5);
2976 keytype = AR5K_KEYTABLE_TYPE_40;
2977 break;
2979 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
2980 case 104 / 8:
2981 memcpy(&key_v[0], &key->key[0], 6);
2982 memcpy(&key_v[2], &key->key[6], 6);
2983 memcpy(&key_v[4], &key->key[12], 1);
2984 keytype = AR5K_KEYTABLE_TYPE_104;
2985 break;
2986 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
2987 case 128 / 8:
2988 memcpy(&key_v[0], &key->key[0], 6);
2989 memcpy(&key_v[2], &key->key[6], 6);
2990 memcpy(&key_v[4], &key->key[12], 4);
2991 keytype = AR5K_KEYTABLE_TYPE_128;
2992 break;
2994 default:
2995 return -EINVAL; /* shouldn't happen */
2998 for (i = 0; i < ARRAY_SIZE(key_v); i++)
2999 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
3000 AR5K_KEYTABLE_OFF(entry, i));
3002 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
3004 return ath5k_hw_set_key_lladdr(ah, entry, mac);
3007 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
3009 u32 low_id, high_id;
3011 ATH5K_TRACE(ah->ah_sc);
3012 /* Invalid entry (key table overflow) */
3013 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3015 /* MAC may be NULL if it's a broadcast key. In this case no need to
3016 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
3017 if (unlikely(mac == NULL)) {
3018 low_id = 0xffffffff;
3019 high_id = 0xffff | AR5K_KEYTABLE_VALID;
3020 } else {
3021 low_id = AR5K_LOW_ID(mac);
3022 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
3025 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
3026 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
3028 return 0;
3032 /********************************************\
3033 Queue Control Unit, DFS Control Unit Functions
3034 \********************************************/
3037 * Initialize a transmit queue
3039 int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
3040 struct ath5k_txq_info *queue_info)
3042 unsigned int queue;
3043 int ret;
3045 ATH5K_TRACE(ah->ah_sc);
3048 * Get queue by type
3050 /*5210 only has 2 queues*/
3051 if (ah->ah_version == AR5K_AR5210) {
3052 switch (queue_type) {
3053 case AR5K_TX_QUEUE_DATA:
3054 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
3055 break;
3056 case AR5K_TX_QUEUE_BEACON:
3057 case AR5K_TX_QUEUE_CAB:
3058 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
3059 break;
3060 default:
3061 return -EINVAL;
3063 } else {
3064 switch (queue_type) {
3065 case AR5K_TX_QUEUE_DATA:
3066 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
3067 ah->ah_txq[queue].tqi_type !=
3068 AR5K_TX_QUEUE_INACTIVE; queue++) {
3070 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
3071 return -EINVAL;
3073 break;
3074 case AR5K_TX_QUEUE_UAPSD:
3075 queue = AR5K_TX_QUEUE_ID_UAPSD;
3076 break;
3077 case AR5K_TX_QUEUE_BEACON:
3078 queue = AR5K_TX_QUEUE_ID_BEACON;
3079 break;
3080 case AR5K_TX_QUEUE_CAB:
3081 queue = AR5K_TX_QUEUE_ID_CAB;
3082 break;
3083 case AR5K_TX_QUEUE_XR_DATA:
3084 if (ah->ah_version != AR5K_AR5212)
3085 ATH5K_ERR(ah->ah_sc,
3086 "XR data queues only supported in"
3087 " 5212!\n");
3088 queue = AR5K_TX_QUEUE_ID_XR_DATA;
3089 break;
3090 default:
3091 return -EINVAL;
3096 * Setup internal queue structure
3098 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
3099 ah->ah_txq[queue].tqi_type = queue_type;
3101 if (queue_info != NULL) {
3102 queue_info->tqi_type = queue_type;
3103 ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
3104 if (ret)
3105 return ret;
3108 * We use ah_txq_status to hold a temp value for
3109 * the Secondary interrupt mask registers on 5211+
3110 * check out ath5k_hw_reset_tx_queue
3112 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
3114 return queue;
3118 * Setup a transmit queue
3120 int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
3121 const struct ath5k_txq_info *queue_info)
3123 ATH5K_TRACE(ah->ah_sc);
3124 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3126 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3127 return -EIO;
3129 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
3131 /*XXX: Is this supported on 5210 ?*/
3132 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
3133 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
3134 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
3135 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
3136 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
3138 return 0;
3142 * Get properties for a specific transmit queue
3144 int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
3145 struct ath5k_txq_info *queue_info)
3147 ATH5K_TRACE(ah->ah_sc);
3148 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
3149 return 0;
3153 * Set a transmit queue inactive
3155 void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3157 ATH5K_TRACE(ah->ah_sc);
3158 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
3159 return;
3161 /* This queue will be skipped in further operations */
3162 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
3163 /*For SIMR setup*/
3164 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
3168 * Set DFS params for a transmit queue
3170 int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3172 u32 cw_min, cw_max, retry_lg, retry_sh;
3173 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
3175 ATH5K_TRACE(ah->ah_sc);
3176 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3178 tq = &ah->ah_txq[queue];
3180 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
3181 return 0;
3183 if (ah->ah_version == AR5K_AR5210) {
3184 /* Only handle data queues, others will be ignored */
3185 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
3186 return 0;
3188 /* Set Slot time */
3189 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3190 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
3191 AR5K_SLOT_TIME);
3192 /* Set ACK_CTS timeout */
3193 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3194 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
3195 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
3196 /* Set Transmit Latency */
3197 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3198 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
3199 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
3200 /* Set IFS0 */
3201 if (ah->ah_turbo == true)
3202 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
3203 (ah->ah_aifs + tq->tqi_aifs) *
3204 AR5K_INIT_SLOT_TIME_TURBO) <<
3205 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
3206 AR5K_IFS0);
3207 else
3208 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
3209 (ah->ah_aifs + tq->tqi_aifs) *
3210 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
3211 AR5K_INIT_SIFS, AR5K_IFS0);
3213 /* Set IFS1 */
3214 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3215 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
3216 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
3217 /* Set PHY register 0x9844 (??) */
3218 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3219 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
3220 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
3221 AR5K_PHY(17));
3222 /* Set Frame Control Register */
3223 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3224 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
3225 AR5K_PHY_TURBO_SHORT | 0x2020) :
3226 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
3227 AR5K_PHY_FRAME_CTL_5210);
3231 * Calculate cwmin/max by channel mode
3233 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
3234 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
3235 ah->ah_aifs = AR5K_TUNE_AIFS;
3236 /*XR is only supported on 5212*/
3237 if (IS_CHAN_XR(ah->ah_current_channel) &&
3238 ah->ah_version == AR5K_AR5212) {
3239 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
3240 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
3241 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
3242 /*B mode is not supported on 5210*/
3243 } else if (IS_CHAN_B(ah->ah_current_channel) &&
3244 ah->ah_version != AR5K_AR5210) {
3245 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
3246 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
3247 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
3250 cw_min = 1;
3251 while (cw_min < ah->ah_cw_min)
3252 cw_min = (cw_min << 1) | 1;
3254 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
3255 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
3256 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
3257 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
3260 * Calculate and set retry limits
3262 if (ah->ah_software_retry == true) {
3263 /* XXX Need to test this */
3264 retry_lg = ah->ah_limit_tx_retries;
3265 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
3266 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
3267 } else {
3268 retry_lg = AR5K_INIT_LG_RETRY;
3269 retry_sh = AR5K_INIT_SH_RETRY;
3272 /*No QCU/DCU [5210]*/
3273 if (ah->ah_version == AR5K_AR5210) {
3274 ath5k_hw_reg_write(ah,
3275 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
3276 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3277 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
3278 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3279 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
3280 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
3281 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
3282 AR5K_NODCU_RETRY_LMT);
3283 } else {
3284 /*QCU/DCU [5211+]*/
3285 ath5k_hw_reg_write(ah,
3286 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3287 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
3288 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3289 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
3290 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
3291 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
3292 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
3294 /*===Rest is also for QCU/DCU only [5211+]===*/
3297 * Set initial content window (cw_min/cw_max)
3298 * and arbitrated interframe space (aifs)...
3300 ath5k_hw_reg_write(ah,
3301 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
3302 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
3303 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
3304 AR5K_DCU_LCL_IFS_AIFS),
3305 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
3308 * Set misc registers
3310 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
3311 AR5K_QUEUE_MISC(queue));
3313 if (tq->tqi_cbr_period) {
3314 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
3315 AR5K_QCU_CBRCFG_INTVAL) |
3316 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
3317 AR5K_QCU_CBRCFG_ORN_THRES),
3318 AR5K_QUEUE_CBRCFG(queue));
3319 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3320 AR5K_QCU_MISC_FRSHED_CBR);
3321 if (tq->tqi_cbr_overflow_limit)
3322 AR5K_REG_ENABLE_BITS(ah,
3323 AR5K_QUEUE_MISC(queue),
3324 AR5K_QCU_MISC_CBR_THRES_ENABLE);
3327 if (tq->tqi_ready_time)
3328 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
3329 AR5K_QCU_RDYTIMECFG_INTVAL) |
3330 AR5K_QCU_RDYTIMECFG_ENABLE,
3331 AR5K_QUEUE_RDYTIMECFG(queue));
3333 if (tq->tqi_burst_time) {
3334 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
3335 AR5K_DCU_CHAN_TIME_DUR) |
3336 AR5K_DCU_CHAN_TIME_ENABLE,
3337 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
3339 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
3340 AR5K_REG_ENABLE_BITS(ah,
3341 AR5K_QUEUE_MISC(queue),
3342 AR5K_QCU_MISC_TXE);
3345 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
3346 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
3347 AR5K_QUEUE_DFS_MISC(queue));
3349 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
3350 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
3351 AR5K_QUEUE_DFS_MISC(queue));
3354 * Set registers by queue type
3356 switch (tq->tqi_type) {
3357 case AR5K_TX_QUEUE_BEACON:
3358 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3359 AR5K_QCU_MISC_FRSHED_DBA_GT |
3360 AR5K_QCU_MISC_CBREXP_BCN |
3361 AR5K_QCU_MISC_BCN_ENABLE);
3363 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3364 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3365 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
3366 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
3367 AR5K_DCU_MISC_BCN_ENABLE);
3369 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
3370 (AR5K_TUNE_SW_BEACON_RESP -
3371 AR5K_TUNE_DMA_BEACON_RESP) -
3372 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
3373 AR5K_QCU_RDYTIMECFG_ENABLE,
3374 AR5K_QUEUE_RDYTIMECFG(queue));
3375 break;
3377 case AR5K_TX_QUEUE_CAB:
3378 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3379 AR5K_QCU_MISC_FRSHED_DBA_GT |
3380 AR5K_QCU_MISC_CBREXP |
3381 AR5K_QCU_MISC_CBREXP_BCN);
3383 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3384 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3385 AR5K_DCU_MISC_ARBLOCK_CTL_S));
3386 break;
3388 case AR5K_TX_QUEUE_UAPSD:
3389 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3390 AR5K_QCU_MISC_CBREXP);
3391 break;
3393 case AR5K_TX_QUEUE_DATA:
3394 default:
3395 break;
3399 * Enable interrupts for this tx queue
3400 * in the secondary interrupt mask registers
3402 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
3403 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
3405 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
3406 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
3408 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
3409 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
3411 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
3412 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
3414 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
3415 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
3418 /* Update secondary interrupt mask registers */
3419 ah->ah_txq_imr_txok &= ah->ah_txq_status;
3420 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
3421 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
3422 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
3423 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
3425 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
3426 AR5K_SIMR0_QCU_TXOK) |
3427 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
3428 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
3429 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
3430 AR5K_SIMR1_QCU_TXERR) |
3431 AR5K_REG_SM(ah->ah_txq_imr_txeol,
3432 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
3433 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
3434 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
3437 return 0;
3441 * Get number of pending frames
3442 * for a specific queue [5211+]
3444 u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
3445 ATH5K_TRACE(ah->ah_sc);
3446 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3448 /* Return if queue is declared inactive */
3449 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3450 return false;
3452 /* XXX: How about AR5K_CFG_TXCNT ? */
3453 if (ah->ah_version == AR5K_AR5210)
3454 return false;
3456 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
3460 * Set slot time
3462 int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
3464 ATH5K_TRACE(ah->ah_sc);
3465 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
3466 return -EINVAL;
3468 if (ah->ah_version == AR5K_AR5210)
3469 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
3470 ah->ah_turbo), AR5K_SLOT_TIME);
3471 else
3472 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
3474 return 0;
3478 * Get slot time
3480 unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
3482 ATH5K_TRACE(ah->ah_sc);
3483 if (ah->ah_version == AR5K_AR5210)
3484 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
3485 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
3486 else
3487 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
3491 /******************************\
3492 Hardware Descriptor Functions
3493 \******************************/
3496 * TX Descriptor
3500 * Initialize the 2-word tx descriptor on 5210/5211
3502 static int
3503 ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3504 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
3505 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
3506 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
3507 unsigned int rtscts_rate, unsigned int rtscts_duration)
3509 u32 frame_type;
3510 struct ath5k_hw_2w_tx_desc *tx_desc;
3511 unsigned int frame_len;
3513 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3516 * Validate input
3517 * - Zero retries don't make sense.
3518 * - A zero rate will put the HW into a mode where it continously sends
3519 * noise on the channel, so it is important to avoid this.
3521 if (unlikely(tx_tries0 == 0)) {
3522 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3523 WARN_ON(1);
3524 return -EINVAL;
3526 if (unlikely(tx_rate0 == 0)) {
3527 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3528 WARN_ON(1);
3529 return -EINVAL;
3532 /* Clear status descriptor */
3533 memset(desc->ds_hw, 0, sizeof(struct ath5k_hw_tx_status));
3535 /* Initialize control descriptor */
3536 tx_desc->tx_control_0 = 0;
3537 tx_desc->tx_control_1 = 0;
3539 /* Setup control descriptor */
3541 /* Verify and set frame length */
3543 /* remove padding we might have added before */
3544 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3546 if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
3547 return -EINVAL;
3549 tx_desc->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
3551 /* Verify and set buffer length */
3553 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3554 if(type == AR5K_PKT_TYPE_BEACON)
3555 pkt_len = roundup(pkt_len, 4);
3557 if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
3558 return -EINVAL;
3560 tx_desc->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
3563 * Verify and set header length
3564 * XXX: I only found that on 5210 code, does it work on 5211 ?
3566 if (ah->ah_version == AR5K_AR5210) {
3567 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
3568 return -EINVAL;
3569 tx_desc->tx_control_0 |=
3570 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
3573 /*Diferences between 5210-5211*/
3574 if (ah->ah_version == AR5K_AR5210) {
3575 switch (type) {
3576 case AR5K_PKT_TYPE_BEACON:
3577 case AR5K_PKT_TYPE_PROBE_RESP:
3578 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
3579 case AR5K_PKT_TYPE_PIFS:
3580 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
3581 default:
3582 frame_type = type /*<< 2 ?*/;
3585 tx_desc->tx_control_0 |=
3586 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
3587 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3588 } else {
3589 tx_desc->tx_control_0 |=
3590 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
3591 AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
3592 tx_desc->tx_control_1 |=
3593 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
3595 #define _TX_FLAGS(_c, _flag) \
3596 if (flags & AR5K_TXDESC_##_flag) \
3597 tx_desc->tx_control_##_c |= \
3598 AR5K_2W_TX_DESC_CTL##_c##_##_flag
3600 _TX_FLAGS(0, CLRDMASK);
3601 _TX_FLAGS(0, VEOL);
3602 _TX_FLAGS(0, INTREQ);
3603 _TX_FLAGS(0, RTSENA);
3604 _TX_FLAGS(1, NOACK);
3606 #undef _TX_FLAGS
3609 * WEP crap
3611 if (key_index != AR5K_TXKEYIX_INVALID) {
3612 tx_desc->tx_control_0 |=
3613 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3614 tx_desc->tx_control_1 |=
3615 AR5K_REG_SM(key_index,
3616 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3620 * RTS/CTS Duration [5210 ?]
3622 if ((ah->ah_version == AR5K_AR5210) &&
3623 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
3624 tx_desc->tx_control_1 |= rtscts_duration &
3625 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
3627 return 0;
3631 * Initialize the 4-word tx descriptor on 5212
3633 static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
3634 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
3635 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
3636 unsigned int tx_tries0, unsigned int key_index,
3637 unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
3638 unsigned int rtscts_duration)
3640 struct ath5k_hw_4w_tx_desc *tx_desc;
3641 struct ath5k_hw_tx_status *tx_status;
3642 unsigned int frame_len;
3644 ATH5K_TRACE(ah->ah_sc);
3645 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3646 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3649 * Validate input
3650 * - Zero retries don't make sense.
3651 * - A zero rate will put the HW into a mode where it continously sends
3652 * noise on the channel, so it is important to avoid this.
3654 if (unlikely(tx_tries0 == 0)) {
3655 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3656 WARN_ON(1);
3657 return -EINVAL;
3659 if (unlikely(tx_rate0 == 0)) {
3660 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3661 WARN_ON(1);
3662 return -EINVAL;
3665 /* Clear status descriptor */
3666 memset(tx_status, 0, sizeof(struct ath5k_hw_tx_status));
3668 /* Initialize control descriptor */
3669 tx_desc->tx_control_0 = 0;
3670 tx_desc->tx_control_1 = 0;
3671 tx_desc->tx_control_2 = 0;
3672 tx_desc->tx_control_3 = 0;
3674 /* Setup control descriptor */
3676 /* Verify and set frame length */
3678 /* remove padding we might have added before */
3679 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3681 if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
3682 return -EINVAL;
3684 tx_desc->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
3686 /* Verify and set buffer length */
3688 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3689 if(type == AR5K_PKT_TYPE_BEACON)
3690 pkt_len = roundup(pkt_len, 4);
3692 if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
3693 return -EINVAL;
3695 tx_desc->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
3697 tx_desc->tx_control_0 |=
3698 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
3699 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
3700 tx_desc->tx_control_1 |= AR5K_REG_SM(type,
3701 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
3702 tx_desc->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
3703 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
3704 tx_desc->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3706 #define _TX_FLAGS(_c, _flag) \
3707 if (flags & AR5K_TXDESC_##_flag) \
3708 tx_desc->tx_control_##_c |= \
3709 AR5K_4W_TX_DESC_CTL##_c##_##_flag
3711 _TX_FLAGS(0, CLRDMASK);
3712 _TX_FLAGS(0, VEOL);
3713 _TX_FLAGS(0, INTREQ);
3714 _TX_FLAGS(0, RTSENA);
3715 _TX_FLAGS(0, CTSENA);
3716 _TX_FLAGS(1, NOACK);
3718 #undef _TX_FLAGS
3721 * WEP crap
3723 if (key_index != AR5K_TXKEYIX_INVALID) {
3724 tx_desc->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3725 tx_desc->tx_control_1 |= AR5K_REG_SM(key_index,
3726 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3730 * RTS/CTS
3732 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
3733 if ((flags & AR5K_TXDESC_RTSENA) &&
3734 (flags & AR5K_TXDESC_CTSENA))
3735 return -EINVAL;
3736 tx_desc->tx_control_2 |= rtscts_duration &
3737 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
3738 tx_desc->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
3739 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
3742 return 0;
3746 * Initialize a 4-word multirate tx descriptor on 5212
3748 static int
3749 ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3750 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
3751 unsigned int tx_rate3, u_int tx_tries3)
3753 struct ath5k_hw_4w_tx_desc *tx_desc;
3756 * Rates can be 0 as long as the retry count is 0 too.
3757 * A zero rate and nonzero retry count will put the HW into a mode where
3758 * it continously sends noise on the channel, so it is important to
3759 * avoid this.
3761 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
3762 (tx_rate2 == 0 && tx_tries2 != 0) ||
3763 (tx_rate3 == 0 && tx_tries3 != 0))) {
3764 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3765 WARN_ON(1);
3766 return -EINVAL;
3769 if (ah->ah_version == AR5K_AR5212) {
3770 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3772 #define _XTX_TRIES(_n) \
3773 if (tx_tries##_n) { \
3774 tx_desc->tx_control_2 |= \
3775 AR5K_REG_SM(tx_tries##_n, \
3776 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
3777 tx_desc->tx_control_3 |= \
3778 AR5K_REG_SM(tx_rate##_n, \
3779 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
3782 _XTX_TRIES(1);
3783 _XTX_TRIES(2);
3784 _XTX_TRIES(3);
3786 #undef _XTX_TRIES
3788 return 1;
3791 return 0;
3795 * Proccess the tx status descriptor on 5210/5211
3797 static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
3798 struct ath5k_desc *desc)
3800 struct ath5k_hw_tx_status *tx_status;
3801 struct ath5k_hw_2w_tx_desc *tx_desc;
3803 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3804 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[0];
3806 /* No frame has been send or error */
3807 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3808 return -EINPROGRESS;
3811 * Get descriptor status
3813 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3814 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3815 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3816 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3817 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3818 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3819 /*TODO: desc->ds_us.tx.ts_virtcol + test*/
3820 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3821 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3822 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3823 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3824 desc->ds_us.tx.ts_antenna = 1;
3825 desc->ds_us.tx.ts_status = 0;
3826 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_0,
3827 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3829 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3830 if (tx_status->tx_status_0 &
3831 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3832 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3834 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3835 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3837 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3838 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3841 return 0;
3845 * Proccess a tx descriptor on 5212
3847 static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
3848 struct ath5k_desc *desc)
3850 struct ath5k_hw_tx_status *tx_status;
3851 struct ath5k_hw_4w_tx_desc *tx_desc;
3853 ATH5K_TRACE(ah->ah_sc);
3854 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3855 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3857 /* No frame has been send or error */
3858 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3859 return -EINPROGRESS;
3862 * Get descriptor status
3864 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3865 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3866 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3867 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3868 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3869 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3870 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3871 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3872 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3873 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3874 desc->ds_us.tx.ts_antenna = (tx_status->tx_status_1 &
3875 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
3876 desc->ds_us.tx.ts_status = 0;
3878 switch (AR5K_REG_MS(tx_status->tx_status_1,
3879 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
3880 case 0:
3881 desc->ds_us.tx.ts_rate = tx_desc->tx_control_3 &
3882 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3883 break;
3884 case 1:
3885 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3886 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
3887 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3888 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
3889 break;
3890 case 2:
3891 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3892 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
3893 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3894 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
3895 break;
3896 case 3:
3897 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3898 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
3899 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3900 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
3901 break;
3904 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3905 if (tx_status->tx_status_0 &
3906 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3907 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3909 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3910 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3912 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3913 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3916 return 0;
3920 * RX Descriptor
3924 * Initialize an rx descriptor
3926 int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3927 u32 size, unsigned int flags)
3929 struct ath5k_rx_desc *rx_desc;
3931 ATH5K_TRACE(ah->ah_sc);
3932 rx_desc = (struct ath5k_rx_desc *)&desc->ds_ctl0;
3935 *Clear ds_hw
3936 * If we don't clean the status descriptor,
3937 * while scanning we get too many results,
3938 * most of them virtual, after some secs
3939 * of scanning system hangs. M.F.
3941 memset(desc->ds_hw, 0, sizeof(desc->ds_hw));
3943 /*Initialize rx descriptor*/
3944 rx_desc->rx_control_0 = 0;
3945 rx_desc->rx_control_1 = 0;
3947 /* Setup descriptor */
3948 rx_desc->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
3949 if (unlikely(rx_desc->rx_control_1 != size))
3950 return -EINVAL;
3952 if (flags & AR5K_RXDESC_INTREQ)
3953 rx_desc->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
3955 return 0;
3959 * Proccess the rx status descriptor on 5210/5211
3961 static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *ah,
3962 struct ath5k_desc *desc)
3964 struct ath5k_hw_old_rx_status *rx_status;
3966 rx_status = (struct ath5k_hw_old_rx_status *)&desc->ds_hw[0];
3968 /* No frame received / not ready */
3969 if (unlikely((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_DONE)
3970 == 0))
3971 return -EINPROGRESS;
3974 * Frame receive status
3976 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
3977 AR5K_OLD_RX_DESC_STATUS0_DATA_LEN;
3978 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
3979 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_SIGNAL);
3980 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
3981 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_RATE);
3982 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
3983 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_ANTENNA;
3984 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
3985 AR5K_OLD_RX_DESC_STATUS0_MORE;
3986 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
3987 AR5K_OLD_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
3988 desc->ds_us.rx.rs_status = 0;
3991 * Key table status
3993 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX_VALID)
3994 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
3995 AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX);
3996 else
3997 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
4000 * Receive/descriptor errors
4002 if ((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_FRAME_RECEIVE_OK)
4003 == 0) {
4004 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_CRC_ERROR)
4005 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
4007 if (rx_status->rx_status_1 &
4008 AR5K_OLD_RX_DESC_STATUS1_FIFO_OVERRUN)
4009 desc->ds_us.rx.rs_status |= AR5K_RXERR_FIFO;
4011 if (rx_status->rx_status_1 &
4012 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR) {
4013 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4014 desc->ds_us.rx.rs_phyerr =
4015 AR5K_REG_MS(rx_status->rx_status_1,
4016 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR);
4019 if (rx_status->rx_status_1 &
4020 AR5K_OLD_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4021 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4024 return 0;
4028 * Proccess the rx status descriptor on 5212
4030 static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *ah,
4031 struct ath5k_desc *desc)
4033 struct ath5k_hw_new_rx_status *rx_status;
4034 struct ath5k_hw_rx_error *rx_err;
4036 ATH5K_TRACE(ah->ah_sc);
4037 rx_status = (struct ath5k_hw_new_rx_status *)&desc->ds_hw[0];
4039 /* Overlay on error */
4040 rx_err = (struct ath5k_hw_rx_error *)&desc->ds_hw[0];
4042 /* No frame received / not ready */
4043 if (unlikely((rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_DONE)
4044 == 0))
4045 return -EINPROGRESS;
4048 * Frame receive status
4050 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
4051 AR5K_NEW_RX_DESC_STATUS0_DATA_LEN;
4052 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
4053 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_SIGNAL);
4054 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
4055 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_RATE);
4056 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
4057 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_ANTENNA;
4058 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
4059 AR5K_NEW_RX_DESC_STATUS0_MORE;
4060 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
4061 AR5K_NEW_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
4062 desc->ds_us.rx.rs_status = 0;
4065 * Key table status
4067 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX_VALID)
4068 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
4069 AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX);
4070 else
4071 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
4074 * Receive/descriptor errors
4076 if ((rx_status->rx_status_1 &
4077 AR5K_NEW_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4078 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_CRC_ERROR)
4079 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
4081 if (rx_status->rx_status_1 &
4082 AR5K_NEW_RX_DESC_STATUS1_PHY_ERROR) {
4083 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4084 desc->ds_us.rx.rs_phyerr =
4085 AR5K_REG_MS(rx_err->rx_error_1,
4086 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
4089 if (rx_status->rx_status_1 &
4090 AR5K_NEW_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4091 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4093 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_MIC_ERROR)
4094 desc->ds_us.rx.rs_status |= AR5K_RXERR_MIC;
4097 return 0;
4101 /****************\
4102 GPIO Functions
4103 \****************/
4106 * Set led state
4108 void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
4110 u32 led;
4111 /*5210 has different led mode handling*/
4112 u32 led_5210;
4114 ATH5K_TRACE(ah->ah_sc);
4116 /*Reset led status*/
4117 if (ah->ah_version != AR5K_AR5210)
4118 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
4119 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
4120 else
4121 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
4124 * Some blinking values, define at your wish
4126 switch (state) {
4127 case AR5K_LED_SCAN:
4128 case AR5K_LED_AUTH:
4129 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
4130 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
4131 break;
4133 case AR5K_LED_INIT:
4134 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
4135 led_5210 = AR5K_PCICFG_LED_PEND;
4136 break;
4138 case AR5K_LED_ASSOC:
4139 case AR5K_LED_RUN:
4140 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
4141 led_5210 = AR5K_PCICFG_LED_ASSOC;
4142 break;
4144 default:
4145 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
4146 led_5210 = AR5K_PCICFG_LED_PEND;
4147 break;
4150 /*Write new status to the register*/
4151 if (ah->ah_version != AR5K_AR5210)
4152 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
4153 else
4154 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
4158 * Set GPIO outputs
4160 int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
4162 ATH5K_TRACE(ah->ah_sc);
4163 if (gpio > AR5K_NUM_GPIO)
4164 return -EINVAL;
4166 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4167 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
4169 return 0;
4173 * Set GPIO inputs
4175 int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
4177 ATH5K_TRACE(ah->ah_sc);
4178 if (gpio > AR5K_NUM_GPIO)
4179 return -EINVAL;
4181 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4182 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
4184 return 0;
4188 * Get GPIO state
4190 u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
4192 ATH5K_TRACE(ah->ah_sc);
4193 if (gpio > AR5K_NUM_GPIO)
4194 return 0xffffffff;
4196 /* GPIO input magic */
4197 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
4198 0x1;
4202 * Set GPIO state
4204 int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
4206 u32 data;
4207 ATH5K_TRACE(ah->ah_sc);
4209 if (gpio > AR5K_NUM_GPIO)
4210 return -EINVAL;
4212 /* GPIO output magic */
4213 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
4215 data &= ~(1 << gpio);
4216 data |= (val & 1) << gpio;
4218 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
4220 return 0;
4224 * Initialize the GPIO interrupt (RFKill switch)
4226 void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
4227 u32 interrupt_level)
4229 u32 data;
4231 ATH5K_TRACE(ah->ah_sc);
4232 if (gpio > AR5K_NUM_GPIO)
4233 return;
4236 * Set the GPIO interrupt
4238 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
4239 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
4240 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
4241 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
4243 ath5k_hw_reg_write(ah, interrupt_level ? data :
4244 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
4246 ah->ah_imr |= AR5K_IMR_GPIO;
4248 /* Enable GPIO interrupts */
4249 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
4253 /*********************************\
4254 Regulatory Domain/Channels Setup
4255 \*********************************/
4257 u16 ath5k_get_regdomain(struct ath5k_hw *ah)
4259 u16 regdomain;
4260 enum ath5k_regdom ieee_regdomain;
4261 #ifdef COUNTRYCODE
4262 u16 code;
4263 #endif
4265 ath5k_eeprom_regulation_domain(ah, false, &ieee_regdomain);
4266 ah->ah_capabilities.cap_regdomain.reg_hw = ieee_regdomain;
4268 #ifdef COUNTRYCODE
4270 * Get the regulation domain by country code. This will ignore
4271 * the settings found in the EEPROM.
4273 code = ieee80211_name2countrycode(COUNTRYCODE);
4274 ieee_regdomain = ieee80211_countrycode2regdomain(code);
4275 #endif
4277 regdomain = ath5k_regdom_from_ieee(ieee_regdomain);
4278 ah->ah_capabilities.cap_regdomain.reg_current = regdomain;
4280 return regdomain;
4284 /****************\
4285 Misc functions
4286 \****************/
4288 int ath5k_hw_get_capability(struct ath5k_hw *ah,
4289 enum ath5k_capability_type cap_type,
4290 u32 capability, u32 *result)
4292 ATH5K_TRACE(ah->ah_sc);
4294 switch (cap_type) {
4295 case AR5K_CAP_NUM_TXQUEUES:
4296 if (result) {
4297 if (ah->ah_version == AR5K_AR5210)
4298 *result = AR5K_NUM_TX_QUEUES_NOQCU;
4299 else
4300 *result = AR5K_NUM_TX_QUEUES;
4301 goto yes;
4303 case AR5K_CAP_VEOL:
4304 goto yes;
4305 case AR5K_CAP_COMPRESSION:
4306 if (ah->ah_version == AR5K_AR5212)
4307 goto yes;
4308 else
4309 goto no;
4310 case AR5K_CAP_BURST:
4311 goto yes;
4312 case AR5K_CAP_TPC:
4313 goto yes;
4314 case AR5K_CAP_BSSIDMASK:
4315 if (ah->ah_version == AR5K_AR5212)
4316 goto yes;
4317 else
4318 goto no;
4319 case AR5K_CAP_XR:
4320 if (ah->ah_version == AR5K_AR5212)
4321 goto yes;
4322 else
4323 goto no;
4324 default:
4325 goto no;
4329 return -EINVAL;
4330 yes:
4331 return 0;
4334 static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
4335 u16 assoc_id)
4337 ATH5K_TRACE(ah->ah_sc);
4339 if (ah->ah_version == AR5K_AR5210) {
4340 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
4341 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4342 return 0;
4345 return -EIO;
4348 static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
4350 ATH5K_TRACE(ah->ah_sc);
4352 if (ah->ah_version == AR5K_AR5210) {
4353 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
4354 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4355 return 0;
4358 return -EIO;