Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / net / via-rhine.c
blob8c9d6ae2bb31dae8eab737ae1105649aecde7336
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #ifdef CONFIG_VIA_RHINE_NAPI
77 #define RX_RING_SIZE 64
78 #else
79 #define RX_RING_SIZE 16
80 #endif
83 /* Operational parameters that usually are not changed. */
85 /* Time in jiffies before concluding the transmitter is hung. */
86 #define TX_TIMEOUT (2*HZ)
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 #include <linux/module.h>
91 #include <linux/moduleparam.h>
92 #include <linux/kernel.h>
93 #include <linux/string.h>
94 #include <linux/timer.h>
95 #include <linux/errno.h>
96 #include <linux/ioport.h>
97 #include <linux/slab.h>
98 #include <linux/interrupt.h>
99 #include <linux/pci.h>
100 #include <linux/dma-mapping.h>
101 #include <linux/netdevice.h>
102 #include <linux/etherdevice.h>
103 #include <linux/skbuff.h>
104 #include <linux/init.h>
105 #include <linux/delay.h>
106 #include <linux/mii.h>
107 #include <linux/ethtool.h>
108 #include <linux/crc32.h>
109 #include <linux/bitops.h>
110 #include <asm/processor.h> /* Processor type for cache alignment. */
111 #include <asm/io.h>
112 #include <asm/irq.h>
113 #include <asm/uaccess.h>
114 #include <linux/dmi.h>
116 /* These identify the driver base version and may not be removed. */
117 static char version[] __devinitdata =
118 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
120 /* This driver was written to use PCI memory space. Some early versions
121 of the Rhine may only work correctly with I/O space accesses. */
122 #ifdef CONFIG_VIA_RHINE_MMIO
123 #define USE_MMIO
124 #else
125 #endif
127 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
128 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
129 MODULE_LICENSE("GPL");
131 module_param(max_interrupt_work, int, 0);
132 module_param(debug, int, 0);
133 module_param(rx_copybreak, int, 0);
134 module_param(avoid_D3, bool, 0);
135 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
136 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
137 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
138 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
141 Theory of Operation
143 I. Board Compatibility
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
148 II. Board-specific settings
150 Boards with this chip are functional only in a bus-master PCI slot.
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
158 III. Driver operation
160 IIIa. Ring buffers
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
166 IIIb/c. Transmit/Receive Structure
168 This driver attempts to use a zero-copy receive and transmit scheme.
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
195 IIId. Synchronization
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 dev->priv->lock spinlock. The other thread is the interrupt handler, which
200 is single threaded by the hardware and interrupt handling software.
202 The send packet thread has partial control over the Tx ring. It locks the
203 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
204 is not available it stops the transmit queue by calling netif_stop_queue.
206 The interrupt handler has exclusive control over the Rx ring and records stats
207 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
208 empty by incrementing the dirty_tx mark. If at least half of the entries in
209 the Rx ring are available the transmit queue is woken up if it was stopped.
211 IV. Notes
213 IVb. References
215 Preliminary VT86C100A manual from http://www.via.com.tw/
216 http://www.scyld.com/expert/100mbps.html
217 http://www.scyld.com/expert/NWay.html
218 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
222 IVc. Errata
224 The VT86C100A manual is not reliable information.
225 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
226 in significant performance degradation for bounce buffer copies on transmit
227 and unaligned IP headers on receive.
228 The chip does not pad to minimum transmit length.
233 /* This table drives the PCI probe routines. It's mostly boilerplate in all
234 of the drivers, and will likely be provided by some future kernel.
235 Note the matching code -- the first table entry matchs all 56** cards but
236 second only the 1234 card.
239 enum rhine_revs {
240 VT86C100A = 0x00,
241 VTunknown0 = 0x20,
242 VT6102 = 0x40,
243 VT8231 = 0x50, /* Integrated MAC */
244 VT8233 = 0x60, /* Integrated MAC */
245 VT8235 = 0x74, /* Integrated MAC */
246 VT8237 = 0x78, /* Integrated MAC */
247 VTunknown1 = 0x7C,
248 VT6105 = 0x80,
249 VT6105_B0 = 0x83,
250 VT6105L = 0x8A,
251 VT6107 = 0x8C,
252 VTunknown2 = 0x8E,
253 VT6105M = 0x90, /* Management adapter */
256 enum rhine_quirks {
257 rqWOL = 0x0001, /* Wake-On-LAN support */
258 rqForceReset = 0x0002,
259 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
260 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
261 rqRhineI = 0x0100, /* See comment below */
264 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
265 * MMIO as well as for the collision counter and the Tx FIFO underflow
266 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
269 /* Beware of PCI posted writes */
270 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272 static const struct pci_device_id rhine_pci_tbl[] = {
273 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
274 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
275 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
276 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
277 { } /* terminate list */
279 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
282 /* Offsets to the device registers. */
283 enum register_offsets {
284 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
285 ChipCmd1=0x09,
286 IntrStatus=0x0C, IntrEnable=0x0E,
287 MulticastFilter0=0x10, MulticastFilter1=0x14,
288 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
289 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
290 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
291 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
292 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
293 StickyHW=0x83, IntrStatus2=0x84,
294 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
295 WOLcrClr1=0xA6, WOLcgClr=0xA7,
296 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 /* Bits in ConfigD */
300 enum backoff_bits {
301 BackOptional=0x01, BackModify=0x02,
302 BackCaptureEffect=0x04, BackRandom=0x08
305 #ifdef USE_MMIO
306 /* Registers we check that mmio and reg are the same. */
307 static const int mmio_verify_registers[] = {
308 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
311 #endif
313 /* Bits in the interrupt status/mask registers. */
314 enum intr_status_bits {
315 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
316 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
317 IntrPCIErr=0x0040,
318 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
319 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
320 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
321 IntrRxWakeUp=0x8000,
322 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
323 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
324 IntrTxErrSummary=0x082218,
327 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
328 enum wol_bits {
329 WOLucast = 0x10,
330 WOLmagic = 0x20,
331 WOLbmcast = 0x30,
332 WOLlnkon = 0x40,
333 WOLlnkoff = 0x80,
336 /* The Rx and Tx buffer descriptors. */
337 struct rx_desc {
338 __le32 rx_status;
339 __le32 desc_length; /* Chain flag, Buffer/frame length */
340 __le32 addr;
341 __le32 next_desc;
343 struct tx_desc {
344 __le32 tx_status;
345 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
346 __le32 addr;
347 __le32 next_desc;
350 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
351 #define TXDESC 0x00e08000
353 enum rx_status_bits {
354 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
357 /* Bits in *_desc.*_status */
358 enum desc_status_bits {
359 DescOwn=0x80000000
362 /* Bits in ChipCmd. */
363 enum chip_cmd_bits {
364 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
365 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
366 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
367 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
370 struct rhine_private {
371 /* Descriptor rings */
372 struct rx_desc *rx_ring;
373 struct tx_desc *tx_ring;
374 dma_addr_t rx_ring_dma;
375 dma_addr_t tx_ring_dma;
377 /* The addresses of receive-in-place skbuffs. */
378 struct sk_buff *rx_skbuff[RX_RING_SIZE];
379 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
381 /* The saved address of a sent-in-place packet/buffer, for later free(). */
382 struct sk_buff *tx_skbuff[TX_RING_SIZE];
383 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
385 /* Tx bounce buffers (Rhine-I only) */
386 unsigned char *tx_buf[TX_RING_SIZE];
387 unsigned char *tx_bufs;
388 dma_addr_t tx_bufs_dma;
390 struct pci_dev *pdev;
391 long pioaddr;
392 struct net_device *dev;
393 struct napi_struct napi;
394 struct net_device_stats stats;
395 spinlock_t lock;
397 /* Frequently used values: keep some adjacent for cache effect. */
398 u32 quirks;
399 struct rx_desc *rx_head_desc;
400 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
401 unsigned int cur_tx, dirty_tx;
402 unsigned int rx_buf_sz; /* Based on MTU+slack. */
403 u8 wolopts;
405 u8 tx_thresh, rx_thresh;
407 struct mii_if_info mii_if;
408 void __iomem *base;
411 static int mdio_read(struct net_device *dev, int phy_id, int location);
412 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
413 static int rhine_open(struct net_device *dev);
414 static void rhine_tx_timeout(struct net_device *dev);
415 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
416 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
417 static void rhine_tx(struct net_device *dev);
418 static int rhine_rx(struct net_device *dev, int limit);
419 static void rhine_error(struct net_device *dev, int intr_status);
420 static void rhine_set_rx_mode(struct net_device *dev);
421 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
422 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
423 static const struct ethtool_ops netdev_ethtool_ops;
424 static int rhine_close(struct net_device *dev);
425 static void rhine_shutdown (struct pci_dev *pdev);
427 #define RHINE_WAIT_FOR(condition) do { \
428 int i=1024; \
429 while (!(condition) && --i) \
431 if (debug > 1 && i < 512) \
432 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
433 DRV_NAME, 1024-i, __func__, __LINE__); \
434 } while(0)
436 static inline u32 get_intr_status(struct net_device *dev)
438 struct rhine_private *rp = netdev_priv(dev);
439 void __iomem *ioaddr = rp->base;
440 u32 intr_status;
442 intr_status = ioread16(ioaddr + IntrStatus);
443 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
444 if (rp->quirks & rqStatusWBRace)
445 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
446 return intr_status;
450 * Get power related registers into sane state.
451 * Notify user about past WOL event.
453 static void rhine_power_init(struct net_device *dev)
455 struct rhine_private *rp = netdev_priv(dev);
456 void __iomem *ioaddr = rp->base;
457 u16 wolstat;
459 if (rp->quirks & rqWOL) {
460 /* Make sure chip is in power state D0 */
461 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
463 /* Disable "force PME-enable" */
464 iowrite8(0x80, ioaddr + WOLcgClr);
466 /* Clear power-event config bits (WOL) */
467 iowrite8(0xFF, ioaddr + WOLcrClr);
468 /* More recent cards can manage two additional patterns */
469 if (rp->quirks & rq6patterns)
470 iowrite8(0x03, ioaddr + WOLcrClr1);
472 /* Save power-event status bits */
473 wolstat = ioread8(ioaddr + PwrcsrSet);
474 if (rp->quirks & rq6patterns)
475 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
477 /* Clear power-event status bits */
478 iowrite8(0xFF, ioaddr + PwrcsrClr);
479 if (rp->quirks & rq6patterns)
480 iowrite8(0x03, ioaddr + PwrcsrClr1);
482 if (wolstat) {
483 char *reason;
484 switch (wolstat) {
485 case WOLmagic:
486 reason = "Magic packet";
487 break;
488 case WOLlnkon:
489 reason = "Link went up";
490 break;
491 case WOLlnkoff:
492 reason = "Link went down";
493 break;
494 case WOLucast:
495 reason = "Unicast packet";
496 break;
497 case WOLbmcast:
498 reason = "Multicast/broadcast packet";
499 break;
500 default:
501 reason = "Unknown";
503 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
504 DRV_NAME, reason);
509 static void rhine_chip_reset(struct net_device *dev)
511 struct rhine_private *rp = netdev_priv(dev);
512 void __iomem *ioaddr = rp->base;
514 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
515 IOSYNC;
517 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
518 printk(KERN_INFO "%s: Reset not complete yet. "
519 "Trying harder.\n", DRV_NAME);
521 /* Force reset */
522 if (rp->quirks & rqForceReset)
523 iowrite8(0x40, ioaddr + MiscCmd);
525 /* Reset can take somewhat longer (rare) */
526 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
529 if (debug > 1)
530 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
531 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
532 "failed" : "succeeded");
535 #ifdef USE_MMIO
536 static void enable_mmio(long pioaddr, u32 quirks)
538 int n;
539 if (quirks & rqRhineI) {
540 /* More recent docs say that this bit is reserved ... */
541 n = inb(pioaddr + ConfigA) | 0x20;
542 outb(n, pioaddr + ConfigA);
543 } else {
544 n = inb(pioaddr + ConfigD) | 0x80;
545 outb(n, pioaddr + ConfigD);
548 #endif
551 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
552 * (plus 0x6C for Rhine-I/II)
554 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
556 struct rhine_private *rp = netdev_priv(dev);
557 void __iomem *ioaddr = rp->base;
559 outb(0x20, pioaddr + MACRegEEcsr);
560 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
562 #ifdef USE_MMIO
564 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
565 * MMIO. If reloading EEPROM was done first this could be avoided, but
566 * it is not known if that still works with the "win98-reboot" problem.
568 enable_mmio(pioaddr, rp->quirks);
569 #endif
571 /* Turn off EEPROM-controlled wake-up (magic packet) */
572 if (rp->quirks & rqWOL)
573 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
577 #ifdef CONFIG_NET_POLL_CONTROLLER
578 static void rhine_poll(struct net_device *dev)
580 disable_irq(dev->irq);
581 rhine_interrupt(dev->irq, (void *)dev);
582 enable_irq(dev->irq);
584 #endif
586 #ifdef CONFIG_VIA_RHINE_NAPI
587 static int rhine_napipoll(struct napi_struct *napi, int budget)
589 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
590 struct net_device *dev = rp->dev;
591 void __iomem *ioaddr = rp->base;
592 int work_done;
594 work_done = rhine_rx(dev, budget);
596 if (work_done < budget) {
597 netif_rx_complete(dev, napi);
599 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
600 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
601 IntrTxDone | IntrTxError | IntrTxUnderrun |
602 IntrPCIErr | IntrStatsMax | IntrLinkChange,
603 ioaddr + IntrEnable);
605 return work_done;
607 #endif
609 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
611 struct rhine_private *rp = netdev_priv(dev);
613 /* Reset the chip to erase previous misconfiguration. */
614 rhine_chip_reset(dev);
616 /* Rhine-I needs extra time to recuperate before EEPROM reload */
617 if (rp->quirks & rqRhineI)
618 msleep(5);
620 /* Reload EEPROM controlled bytes cleared by soft reset */
621 rhine_reload_eeprom(pioaddr, dev);
624 static int __devinit rhine_init_one(struct pci_dev *pdev,
625 const struct pci_device_id *ent)
627 struct net_device *dev;
628 struct rhine_private *rp;
629 int i, rc;
630 u32 quirks;
631 long pioaddr;
632 long memaddr;
633 void __iomem *ioaddr;
634 int io_size, phy_id;
635 const char *name;
636 #ifdef USE_MMIO
637 int bar = 1;
638 #else
639 int bar = 0;
640 #endif
641 DECLARE_MAC_BUF(mac);
643 /* when built into the kernel, we only print version if device is found */
644 #ifndef MODULE
645 static int printed_version;
646 if (!printed_version++)
647 printk(version);
648 #endif
650 io_size = 256;
651 phy_id = 0;
652 quirks = 0;
653 name = "Rhine";
654 if (pdev->revision < VTunknown0) {
655 quirks = rqRhineI;
656 io_size = 128;
658 else if (pdev->revision >= VT6102) {
659 quirks = rqWOL | rqForceReset;
660 if (pdev->revision < VT6105) {
661 name = "Rhine II";
662 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
664 else {
665 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
666 if (pdev->revision >= VT6105_B0)
667 quirks |= rq6patterns;
668 if (pdev->revision < VT6105M)
669 name = "Rhine III";
670 else
671 name = "Rhine III (Management Adapter)";
675 rc = pci_enable_device(pdev);
676 if (rc)
677 goto err_out;
679 /* this should always be supported */
680 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
681 if (rc) {
682 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
683 "the card!?\n");
684 goto err_out;
687 /* sanity check */
688 if ((pci_resource_len(pdev, 0) < io_size) ||
689 (pci_resource_len(pdev, 1) < io_size)) {
690 rc = -EIO;
691 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
692 goto err_out;
695 pioaddr = pci_resource_start(pdev, 0);
696 memaddr = pci_resource_start(pdev, 1);
698 pci_set_master(pdev);
700 dev = alloc_etherdev(sizeof(struct rhine_private));
701 if (!dev) {
702 rc = -ENOMEM;
703 printk(KERN_ERR "alloc_etherdev failed\n");
704 goto err_out;
706 SET_NETDEV_DEV(dev, &pdev->dev);
708 rp = netdev_priv(dev);
709 rp->dev = dev;
710 rp->quirks = quirks;
711 rp->pioaddr = pioaddr;
712 rp->pdev = pdev;
714 rc = pci_request_regions(pdev, DRV_NAME);
715 if (rc)
716 goto err_out_free_netdev;
718 ioaddr = pci_iomap(pdev, bar, io_size);
719 if (!ioaddr) {
720 rc = -EIO;
721 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
722 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
723 goto err_out_free_res;
726 #ifdef USE_MMIO
727 enable_mmio(pioaddr, quirks);
729 /* Check that selected MMIO registers match the PIO ones */
730 i = 0;
731 while (mmio_verify_registers[i]) {
732 int reg = mmio_verify_registers[i++];
733 unsigned char a = inb(pioaddr+reg);
734 unsigned char b = readb(ioaddr+reg);
735 if (a != b) {
736 rc = -EIO;
737 printk(KERN_ERR "MMIO do not match PIO [%02x] "
738 "(%02x != %02x)\n", reg, a, b);
739 goto err_out_unmap;
742 #endif /* USE_MMIO */
744 dev->base_addr = (unsigned long)ioaddr;
745 rp->base = ioaddr;
747 /* Get chip registers into a sane state */
748 rhine_power_init(dev);
749 rhine_hw_init(dev, pioaddr);
751 for (i = 0; i < 6; i++)
752 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
753 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
755 if (!is_valid_ether_addr(dev->perm_addr)) {
756 rc = -EIO;
757 printk(KERN_ERR "Invalid MAC address\n");
758 goto err_out_unmap;
761 /* For Rhine-I/II, phy_id is loaded from EEPROM */
762 if (!phy_id)
763 phy_id = ioread8(ioaddr + 0x6C);
765 dev->irq = pdev->irq;
767 spin_lock_init(&rp->lock);
768 rp->mii_if.dev = dev;
769 rp->mii_if.mdio_read = mdio_read;
770 rp->mii_if.mdio_write = mdio_write;
771 rp->mii_if.phy_id_mask = 0x1f;
772 rp->mii_if.reg_num_mask = 0x1f;
774 /* The chip-specific entries in the device structure. */
775 dev->open = rhine_open;
776 dev->hard_start_xmit = rhine_start_tx;
777 dev->stop = rhine_close;
778 dev->get_stats = rhine_get_stats;
779 dev->set_multicast_list = rhine_set_rx_mode;
780 dev->do_ioctl = netdev_ioctl;
781 dev->ethtool_ops = &netdev_ethtool_ops;
782 dev->tx_timeout = rhine_tx_timeout;
783 dev->watchdog_timeo = TX_TIMEOUT;
784 #ifdef CONFIG_NET_POLL_CONTROLLER
785 dev->poll_controller = rhine_poll;
786 #endif
787 #ifdef CONFIG_VIA_RHINE_NAPI
788 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
789 #endif
790 if (rp->quirks & rqRhineI)
791 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
793 /* dev->name not defined before register_netdev()! */
794 rc = register_netdev(dev);
795 if (rc)
796 goto err_out_unmap;
798 printk(KERN_INFO "%s: VIA %s at 0x%lx, %s, IRQ %d.\n",
799 dev->name, name,
800 #ifdef USE_MMIO
801 memaddr,
802 #else
803 (long)ioaddr,
804 #endif
805 print_mac(mac, dev->dev_addr), pdev->irq);
807 pci_set_drvdata(pdev, dev);
810 u16 mii_cmd;
811 int mii_status = mdio_read(dev, phy_id, 1);
812 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
813 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
814 if (mii_status != 0xffff && mii_status != 0x0000) {
815 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
816 printk(KERN_INFO "%s: MII PHY found at address "
817 "%d, status 0x%4.4x advertising %4.4x "
818 "Link %4.4x.\n", dev->name, phy_id,
819 mii_status, rp->mii_if.advertising,
820 mdio_read(dev, phy_id, 5));
822 /* set IFF_RUNNING */
823 if (mii_status & BMSR_LSTATUS)
824 netif_carrier_on(dev);
825 else
826 netif_carrier_off(dev);
830 rp->mii_if.phy_id = phy_id;
831 if (debug > 1 && avoid_D3)
832 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
833 dev->name);
835 return 0;
837 err_out_unmap:
838 pci_iounmap(pdev, ioaddr);
839 err_out_free_res:
840 pci_release_regions(pdev);
841 err_out_free_netdev:
842 free_netdev(dev);
843 err_out:
844 return rc;
847 static int alloc_ring(struct net_device* dev)
849 struct rhine_private *rp = netdev_priv(dev);
850 void *ring;
851 dma_addr_t ring_dma;
853 ring = pci_alloc_consistent(rp->pdev,
854 RX_RING_SIZE * sizeof(struct rx_desc) +
855 TX_RING_SIZE * sizeof(struct tx_desc),
856 &ring_dma);
857 if (!ring) {
858 printk(KERN_ERR "Could not allocate DMA memory.\n");
859 return -ENOMEM;
861 if (rp->quirks & rqRhineI) {
862 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
863 PKT_BUF_SZ * TX_RING_SIZE,
864 &rp->tx_bufs_dma);
865 if (rp->tx_bufs == NULL) {
866 pci_free_consistent(rp->pdev,
867 RX_RING_SIZE * sizeof(struct rx_desc) +
868 TX_RING_SIZE * sizeof(struct tx_desc),
869 ring, ring_dma);
870 return -ENOMEM;
874 rp->rx_ring = ring;
875 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
876 rp->rx_ring_dma = ring_dma;
877 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
879 return 0;
882 static void free_ring(struct net_device* dev)
884 struct rhine_private *rp = netdev_priv(dev);
886 pci_free_consistent(rp->pdev,
887 RX_RING_SIZE * sizeof(struct rx_desc) +
888 TX_RING_SIZE * sizeof(struct tx_desc),
889 rp->rx_ring, rp->rx_ring_dma);
890 rp->tx_ring = NULL;
892 if (rp->tx_bufs)
893 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
894 rp->tx_bufs, rp->tx_bufs_dma);
896 rp->tx_bufs = NULL;
900 static void alloc_rbufs(struct net_device *dev)
902 struct rhine_private *rp = netdev_priv(dev);
903 dma_addr_t next;
904 int i;
906 rp->dirty_rx = rp->cur_rx = 0;
908 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
909 rp->rx_head_desc = &rp->rx_ring[0];
910 next = rp->rx_ring_dma;
912 /* Init the ring entries */
913 for (i = 0; i < RX_RING_SIZE; i++) {
914 rp->rx_ring[i].rx_status = 0;
915 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
916 next += sizeof(struct rx_desc);
917 rp->rx_ring[i].next_desc = cpu_to_le32(next);
918 rp->rx_skbuff[i] = NULL;
920 /* Mark the last entry as wrapping the ring. */
921 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
923 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
924 for (i = 0; i < RX_RING_SIZE; i++) {
925 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
926 rp->rx_skbuff[i] = skb;
927 if (skb == NULL)
928 break;
929 skb->dev = dev; /* Mark as being used by this device. */
931 rp->rx_skbuff_dma[i] =
932 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
933 PCI_DMA_FROMDEVICE);
935 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
936 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
938 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
941 static void free_rbufs(struct net_device* dev)
943 struct rhine_private *rp = netdev_priv(dev);
944 int i;
946 /* Free all the skbuffs in the Rx queue. */
947 for (i = 0; i < RX_RING_SIZE; i++) {
948 rp->rx_ring[i].rx_status = 0;
949 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
950 if (rp->rx_skbuff[i]) {
951 pci_unmap_single(rp->pdev,
952 rp->rx_skbuff_dma[i],
953 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
954 dev_kfree_skb(rp->rx_skbuff[i]);
956 rp->rx_skbuff[i] = NULL;
960 static void alloc_tbufs(struct net_device* dev)
962 struct rhine_private *rp = netdev_priv(dev);
963 dma_addr_t next;
964 int i;
966 rp->dirty_tx = rp->cur_tx = 0;
967 next = rp->tx_ring_dma;
968 for (i = 0; i < TX_RING_SIZE; i++) {
969 rp->tx_skbuff[i] = NULL;
970 rp->tx_ring[i].tx_status = 0;
971 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
972 next += sizeof(struct tx_desc);
973 rp->tx_ring[i].next_desc = cpu_to_le32(next);
974 if (rp->quirks & rqRhineI)
975 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
977 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
981 static void free_tbufs(struct net_device* dev)
983 struct rhine_private *rp = netdev_priv(dev);
984 int i;
986 for (i = 0; i < TX_RING_SIZE; i++) {
987 rp->tx_ring[i].tx_status = 0;
988 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
989 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
990 if (rp->tx_skbuff[i]) {
991 if (rp->tx_skbuff_dma[i]) {
992 pci_unmap_single(rp->pdev,
993 rp->tx_skbuff_dma[i],
994 rp->tx_skbuff[i]->len,
995 PCI_DMA_TODEVICE);
997 dev_kfree_skb(rp->tx_skbuff[i]);
999 rp->tx_skbuff[i] = NULL;
1000 rp->tx_buf[i] = NULL;
1004 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1006 struct rhine_private *rp = netdev_priv(dev);
1007 void __iomem *ioaddr = rp->base;
1009 mii_check_media(&rp->mii_if, debug, init_media);
1011 if (rp->mii_if.full_duplex)
1012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1013 ioaddr + ChipCmd1);
1014 else
1015 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1016 ioaddr + ChipCmd1);
1017 if (debug > 1)
1018 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1019 rp->mii_if.force_media, netif_carrier_ok(dev));
1022 /* Called after status of force_media possibly changed */
1023 static void rhine_set_carrier(struct mii_if_info *mii)
1025 if (mii->force_media) {
1026 /* autoneg is off: Link is always assumed to be up */
1027 if (!netif_carrier_ok(mii->dev))
1028 netif_carrier_on(mii->dev);
1030 else /* Let MMI library update carrier status */
1031 rhine_check_media(mii->dev, 0);
1032 if (debug > 1)
1033 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1034 mii->dev->name, mii->force_media,
1035 netif_carrier_ok(mii->dev));
1038 static void init_registers(struct net_device *dev)
1040 struct rhine_private *rp = netdev_priv(dev);
1041 void __iomem *ioaddr = rp->base;
1042 int i;
1044 for (i = 0; i < 6; i++)
1045 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1047 /* Initialize other registers. */
1048 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1049 /* Configure initial FIFO thresholds. */
1050 iowrite8(0x20, ioaddr + TxConfig);
1051 rp->tx_thresh = 0x20;
1052 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1054 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1055 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1057 rhine_set_rx_mode(dev);
1059 #ifdef CONFIG_VIA_RHINE_NAPI
1060 napi_enable(&rp->napi);
1061 #endif
1063 /* Enable interrupts by setting the interrupt mask. */
1064 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1065 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1066 IntrTxDone | IntrTxError | IntrTxUnderrun |
1067 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1068 ioaddr + IntrEnable);
1070 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1071 ioaddr + ChipCmd);
1072 rhine_check_media(dev, 1);
1075 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1076 static void rhine_enable_linkmon(void __iomem *ioaddr)
1078 iowrite8(0, ioaddr + MIICmd);
1079 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1080 iowrite8(0x80, ioaddr + MIICmd);
1082 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1084 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1087 /* Disable MII link status auto-polling (required for MDIO access) */
1088 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1090 iowrite8(0, ioaddr + MIICmd);
1092 if (quirks & rqRhineI) {
1093 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1095 /* Can be called from ISR. Evil. */
1096 mdelay(1);
1098 /* 0x80 must be set immediately before turning it off */
1099 iowrite8(0x80, ioaddr + MIICmd);
1101 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1103 /* Heh. Now clear 0x80 again. */
1104 iowrite8(0, ioaddr + MIICmd);
1106 else
1107 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1110 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1112 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1114 struct rhine_private *rp = netdev_priv(dev);
1115 void __iomem *ioaddr = rp->base;
1116 int result;
1118 rhine_disable_linkmon(ioaddr, rp->quirks);
1120 /* rhine_disable_linkmon already cleared MIICmd */
1121 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1122 iowrite8(regnum, ioaddr + MIIRegAddr);
1123 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1124 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1125 result = ioread16(ioaddr + MIIData);
1127 rhine_enable_linkmon(ioaddr);
1128 return result;
1131 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1133 struct rhine_private *rp = netdev_priv(dev);
1134 void __iomem *ioaddr = rp->base;
1136 rhine_disable_linkmon(ioaddr, rp->quirks);
1138 /* rhine_disable_linkmon already cleared MIICmd */
1139 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1140 iowrite8(regnum, ioaddr + MIIRegAddr);
1141 iowrite16(value, ioaddr + MIIData);
1142 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1143 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1145 rhine_enable_linkmon(ioaddr);
1148 static int rhine_open(struct net_device *dev)
1150 struct rhine_private *rp = netdev_priv(dev);
1151 void __iomem *ioaddr = rp->base;
1152 int rc;
1154 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1155 dev);
1156 if (rc)
1157 return rc;
1159 if (debug > 1)
1160 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1161 dev->name, rp->pdev->irq);
1163 rc = alloc_ring(dev);
1164 if (rc) {
1165 free_irq(rp->pdev->irq, dev);
1166 return rc;
1168 alloc_rbufs(dev);
1169 alloc_tbufs(dev);
1170 rhine_chip_reset(dev);
1171 init_registers(dev);
1172 if (debug > 2)
1173 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1174 "MII status: %4.4x.\n",
1175 dev->name, ioread16(ioaddr + ChipCmd),
1176 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1178 netif_start_queue(dev);
1180 return 0;
1183 static void rhine_tx_timeout(struct net_device *dev)
1185 struct rhine_private *rp = netdev_priv(dev);
1186 void __iomem *ioaddr = rp->base;
1188 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1189 "%4.4x, resetting...\n",
1190 dev->name, ioread16(ioaddr + IntrStatus),
1191 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1193 /* protect against concurrent rx interrupts */
1194 disable_irq(rp->pdev->irq);
1196 #ifdef CONFIG_VIA_RHINE_NAPI
1197 napi_disable(&rp->napi);
1198 #endif
1200 spin_lock(&rp->lock);
1202 /* clear all descriptors */
1203 free_tbufs(dev);
1204 free_rbufs(dev);
1205 alloc_tbufs(dev);
1206 alloc_rbufs(dev);
1208 /* Reinitialize the hardware. */
1209 rhine_chip_reset(dev);
1210 init_registers(dev);
1212 spin_unlock(&rp->lock);
1213 enable_irq(rp->pdev->irq);
1215 dev->trans_start = jiffies;
1216 rp->stats.tx_errors++;
1217 netif_wake_queue(dev);
1220 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1222 struct rhine_private *rp = netdev_priv(dev);
1223 void __iomem *ioaddr = rp->base;
1224 unsigned entry;
1226 /* Caution: the write order is important here, set the field
1227 with the "ownership" bits last. */
1229 /* Calculate the next Tx descriptor entry. */
1230 entry = rp->cur_tx % TX_RING_SIZE;
1232 if (skb_padto(skb, ETH_ZLEN))
1233 return 0;
1235 rp->tx_skbuff[entry] = skb;
1237 if ((rp->quirks & rqRhineI) &&
1238 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1239 /* Must use alignment buffer. */
1240 if (skb->len > PKT_BUF_SZ) {
1241 /* packet too long, drop it */
1242 dev_kfree_skb(skb);
1243 rp->tx_skbuff[entry] = NULL;
1244 rp->stats.tx_dropped++;
1245 return 0;
1248 /* Padding is not copied and so must be redone. */
1249 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1250 if (skb->len < ETH_ZLEN)
1251 memset(rp->tx_buf[entry] + skb->len, 0,
1252 ETH_ZLEN - skb->len);
1253 rp->tx_skbuff_dma[entry] = 0;
1254 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1255 (rp->tx_buf[entry] -
1256 rp->tx_bufs));
1257 } else {
1258 rp->tx_skbuff_dma[entry] =
1259 pci_map_single(rp->pdev, skb->data, skb->len,
1260 PCI_DMA_TODEVICE);
1261 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1264 rp->tx_ring[entry].desc_length =
1265 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1267 /* lock eth irq */
1268 spin_lock_irq(&rp->lock);
1269 wmb();
1270 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1271 wmb();
1273 rp->cur_tx++;
1275 /* Non-x86 Todo: explicitly flush cache lines here. */
1277 /* Wake the potentially-idle transmit channel */
1278 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1279 ioaddr + ChipCmd1);
1280 IOSYNC;
1282 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1283 netif_stop_queue(dev);
1285 dev->trans_start = jiffies;
1287 spin_unlock_irq(&rp->lock);
1289 if (debug > 4) {
1290 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1291 dev->name, rp->cur_tx-1, entry);
1293 return 0;
1296 /* The interrupt handler does all of the Rx thread work and cleans up
1297 after the Tx thread. */
1298 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1300 struct net_device *dev = dev_instance;
1301 struct rhine_private *rp = netdev_priv(dev);
1302 void __iomem *ioaddr = rp->base;
1303 u32 intr_status;
1304 int boguscnt = max_interrupt_work;
1305 int handled = 0;
1307 while ((intr_status = get_intr_status(dev))) {
1308 handled = 1;
1310 /* Acknowledge all of the current interrupt sources ASAP. */
1311 if (intr_status & IntrTxDescRace)
1312 iowrite8(0x08, ioaddr + IntrStatus2);
1313 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1314 IOSYNC;
1316 if (debug > 4)
1317 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1318 dev->name, intr_status);
1320 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1321 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1322 #ifdef CONFIG_VIA_RHINE_NAPI
1323 iowrite16(IntrTxAborted |
1324 IntrTxDone | IntrTxError | IntrTxUnderrun |
1325 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1326 ioaddr + IntrEnable);
1328 netif_rx_schedule(dev, &rp->napi);
1329 #else
1330 rhine_rx(dev, RX_RING_SIZE);
1331 #endif
1334 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1335 if (intr_status & IntrTxErrSummary) {
1336 /* Avoid scavenging before Tx engine turned off */
1337 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1338 if (debug > 2 &&
1339 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1340 printk(KERN_WARNING "%s: "
1341 "rhine_interrupt() Tx engine "
1342 "still on.\n", dev->name);
1344 rhine_tx(dev);
1347 /* Abnormal error summary/uncommon events handlers. */
1348 if (intr_status & (IntrPCIErr | IntrLinkChange |
1349 IntrStatsMax | IntrTxError | IntrTxAborted |
1350 IntrTxUnderrun | IntrTxDescRace))
1351 rhine_error(dev, intr_status);
1353 if (--boguscnt < 0) {
1354 printk(KERN_WARNING "%s: Too much work at interrupt, "
1355 "status=%#8.8x.\n",
1356 dev->name, intr_status);
1357 break;
1361 if (debug > 3)
1362 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1363 dev->name, ioread16(ioaddr + IntrStatus));
1364 return IRQ_RETVAL(handled);
1367 /* This routine is logically part of the interrupt handler, but isolated
1368 for clarity. */
1369 static void rhine_tx(struct net_device *dev)
1371 struct rhine_private *rp = netdev_priv(dev);
1372 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1374 spin_lock(&rp->lock);
1376 /* find and cleanup dirty tx descriptors */
1377 while (rp->dirty_tx != rp->cur_tx) {
1378 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1379 if (debug > 6)
1380 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1381 entry, txstatus);
1382 if (txstatus & DescOwn)
1383 break;
1384 if (txstatus & 0x8000) {
1385 if (debug > 1)
1386 printk(KERN_DEBUG "%s: Transmit error, "
1387 "Tx status %8.8x.\n",
1388 dev->name, txstatus);
1389 rp->stats.tx_errors++;
1390 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1391 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1392 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1393 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1394 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1395 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1396 rp->stats.tx_fifo_errors++;
1397 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1398 break; /* Keep the skb - we try again */
1400 /* Transmitter restarted in 'abnormal' handler. */
1401 } else {
1402 if (rp->quirks & rqRhineI)
1403 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1404 else
1405 rp->stats.collisions += txstatus & 0x0F;
1406 if (debug > 6)
1407 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1408 (txstatus >> 3) & 0xF,
1409 txstatus & 0xF);
1410 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1411 rp->stats.tx_packets++;
1413 /* Free the original skb. */
1414 if (rp->tx_skbuff_dma[entry]) {
1415 pci_unmap_single(rp->pdev,
1416 rp->tx_skbuff_dma[entry],
1417 rp->tx_skbuff[entry]->len,
1418 PCI_DMA_TODEVICE);
1420 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1421 rp->tx_skbuff[entry] = NULL;
1422 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1424 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1425 netif_wake_queue(dev);
1427 spin_unlock(&rp->lock);
1430 /* Process up to limit frames from receive ring */
1431 static int rhine_rx(struct net_device *dev, int limit)
1433 struct rhine_private *rp = netdev_priv(dev);
1434 int count;
1435 int entry = rp->cur_rx % RX_RING_SIZE;
1437 if (debug > 4) {
1438 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1439 dev->name, entry,
1440 le32_to_cpu(rp->rx_head_desc->rx_status));
1443 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1444 for (count = 0; count < limit; ++count) {
1445 struct rx_desc *desc = rp->rx_head_desc;
1446 u32 desc_status = le32_to_cpu(desc->rx_status);
1447 int data_size = desc_status >> 16;
1449 if (desc_status & DescOwn)
1450 break;
1452 if (debug > 4)
1453 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1454 desc_status);
1456 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1457 if ((desc_status & RxWholePkt) != RxWholePkt) {
1458 printk(KERN_WARNING "%s: Oversized Ethernet "
1459 "frame spanned multiple buffers, entry "
1460 "%#x length %d status %8.8x!\n",
1461 dev->name, entry, data_size,
1462 desc_status);
1463 printk(KERN_WARNING "%s: Oversized Ethernet "
1464 "frame %p vs %p.\n", dev->name,
1465 rp->rx_head_desc, &rp->rx_ring[entry]);
1466 rp->stats.rx_length_errors++;
1467 } else if (desc_status & RxErr) {
1468 /* There was a error. */
1469 if (debug > 2)
1470 printk(KERN_DEBUG "rhine_rx() Rx "
1471 "error was %8.8x.\n",
1472 desc_status);
1473 rp->stats.rx_errors++;
1474 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1475 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1476 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1477 if (desc_status & 0x0002) {
1478 /* this can also be updated outside the interrupt handler */
1479 spin_lock(&rp->lock);
1480 rp->stats.rx_crc_errors++;
1481 spin_unlock(&rp->lock);
1484 } else {
1485 struct sk_buff *skb;
1486 /* Length should omit the CRC */
1487 int pkt_len = data_size - 4;
1489 /* Check if the packet is long enough to accept without
1490 copying to a minimally-sized skbuff. */
1491 if (pkt_len < rx_copybreak &&
1492 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1493 skb_reserve(skb, 2); /* 16 byte align the IP header */
1494 pci_dma_sync_single_for_cpu(rp->pdev,
1495 rp->rx_skbuff_dma[entry],
1496 rp->rx_buf_sz,
1497 PCI_DMA_FROMDEVICE);
1499 skb_copy_to_linear_data(skb,
1500 rp->rx_skbuff[entry]->data,
1501 pkt_len);
1502 skb_put(skb, pkt_len);
1503 pci_dma_sync_single_for_device(rp->pdev,
1504 rp->rx_skbuff_dma[entry],
1505 rp->rx_buf_sz,
1506 PCI_DMA_FROMDEVICE);
1507 } else {
1508 skb = rp->rx_skbuff[entry];
1509 if (skb == NULL) {
1510 printk(KERN_ERR "%s: Inconsistent Rx "
1511 "descriptor chain.\n",
1512 dev->name);
1513 break;
1515 rp->rx_skbuff[entry] = NULL;
1516 skb_put(skb, pkt_len);
1517 pci_unmap_single(rp->pdev,
1518 rp->rx_skbuff_dma[entry],
1519 rp->rx_buf_sz,
1520 PCI_DMA_FROMDEVICE);
1522 skb->protocol = eth_type_trans(skb, dev);
1523 #ifdef CONFIG_VIA_RHINE_NAPI
1524 netif_receive_skb(skb);
1525 #else
1526 netif_rx(skb);
1527 #endif
1528 dev->last_rx = jiffies;
1529 rp->stats.rx_bytes += pkt_len;
1530 rp->stats.rx_packets++;
1532 entry = (++rp->cur_rx) % RX_RING_SIZE;
1533 rp->rx_head_desc = &rp->rx_ring[entry];
1536 /* Refill the Rx ring buffers. */
1537 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1538 struct sk_buff *skb;
1539 entry = rp->dirty_rx % RX_RING_SIZE;
1540 if (rp->rx_skbuff[entry] == NULL) {
1541 skb = dev_alloc_skb(rp->rx_buf_sz);
1542 rp->rx_skbuff[entry] = skb;
1543 if (skb == NULL)
1544 break; /* Better luck next round. */
1545 skb->dev = dev; /* Mark as being used by this device. */
1546 rp->rx_skbuff_dma[entry] =
1547 pci_map_single(rp->pdev, skb->data,
1548 rp->rx_buf_sz,
1549 PCI_DMA_FROMDEVICE);
1550 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1552 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1555 return count;
1559 * Clears the "tally counters" for CRC errors and missed frames(?).
1560 * It has been reported that some chips need a write of 0 to clear
1561 * these, for others the counters are set to 1 when written to and
1562 * instead cleared when read. So we clear them both ways ...
1564 static inline void clear_tally_counters(void __iomem *ioaddr)
1566 iowrite32(0, ioaddr + RxMissed);
1567 ioread16(ioaddr + RxCRCErrs);
1568 ioread16(ioaddr + RxMissed);
1571 static void rhine_restart_tx(struct net_device *dev) {
1572 struct rhine_private *rp = netdev_priv(dev);
1573 void __iomem *ioaddr = rp->base;
1574 int entry = rp->dirty_tx % TX_RING_SIZE;
1575 u32 intr_status;
1578 * If new errors occured, we need to sort them out before doing Tx.
1579 * In that case the ISR will be back here RSN anyway.
1581 intr_status = get_intr_status(dev);
1583 if ((intr_status & IntrTxErrSummary) == 0) {
1585 /* We know better than the chip where it should continue. */
1586 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1587 ioaddr + TxRingPtr);
1589 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1590 ioaddr + ChipCmd);
1591 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1592 ioaddr + ChipCmd1);
1593 IOSYNC;
1595 else {
1596 /* This should never happen */
1597 if (debug > 1)
1598 printk(KERN_WARNING "%s: rhine_restart_tx() "
1599 "Another error occured %8.8x.\n",
1600 dev->name, intr_status);
1605 static void rhine_error(struct net_device *dev, int intr_status)
1607 struct rhine_private *rp = netdev_priv(dev);
1608 void __iomem *ioaddr = rp->base;
1610 spin_lock(&rp->lock);
1612 if (intr_status & IntrLinkChange)
1613 rhine_check_media(dev, 0);
1614 if (intr_status & IntrStatsMax) {
1615 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1616 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1617 clear_tally_counters(ioaddr);
1619 if (intr_status & IntrTxAborted) {
1620 if (debug > 1)
1621 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1622 dev->name, intr_status);
1624 if (intr_status & IntrTxUnderrun) {
1625 if (rp->tx_thresh < 0xE0)
1626 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1627 if (debug > 1)
1628 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1629 "threshold now %2.2x.\n",
1630 dev->name, rp->tx_thresh);
1632 if (intr_status & IntrTxDescRace) {
1633 if (debug > 2)
1634 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1635 dev->name);
1637 if ((intr_status & IntrTxError) &&
1638 (intr_status & (IntrTxAborted |
1639 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1640 if (rp->tx_thresh < 0xE0) {
1641 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1643 if (debug > 1)
1644 printk(KERN_INFO "%s: Unspecified error. Tx "
1645 "threshold now %2.2x.\n",
1646 dev->name, rp->tx_thresh);
1648 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1649 IntrTxError))
1650 rhine_restart_tx(dev);
1652 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1653 IntrTxError | IntrTxAborted | IntrNormalSummary |
1654 IntrTxDescRace)) {
1655 if (debug > 1)
1656 printk(KERN_ERR "%s: Something Wicked happened! "
1657 "%8.8x.\n", dev->name, intr_status);
1660 spin_unlock(&rp->lock);
1663 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1665 struct rhine_private *rp = netdev_priv(dev);
1666 void __iomem *ioaddr = rp->base;
1667 unsigned long flags;
1669 spin_lock_irqsave(&rp->lock, flags);
1670 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1671 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1672 clear_tally_counters(ioaddr);
1673 spin_unlock_irqrestore(&rp->lock, flags);
1675 return &rp->stats;
1678 static void rhine_set_rx_mode(struct net_device *dev)
1680 struct rhine_private *rp = netdev_priv(dev);
1681 void __iomem *ioaddr = rp->base;
1682 u32 mc_filter[2]; /* Multicast hash filter */
1683 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1685 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1686 rx_mode = 0x1C;
1687 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1688 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1689 } else if ((dev->mc_count > multicast_filter_limit)
1690 || (dev->flags & IFF_ALLMULTI)) {
1691 /* Too many to match, or accept all multicasts. */
1692 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1693 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1694 rx_mode = 0x0C;
1695 } else {
1696 struct dev_mc_list *mclist;
1697 int i;
1698 memset(mc_filter, 0, sizeof(mc_filter));
1699 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1700 i++, mclist = mclist->next) {
1701 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1703 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1705 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1706 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1707 rx_mode = 0x0C;
1709 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1712 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1714 struct rhine_private *rp = netdev_priv(dev);
1716 strcpy(info->driver, DRV_NAME);
1717 strcpy(info->version, DRV_VERSION);
1718 strcpy(info->bus_info, pci_name(rp->pdev));
1721 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1723 struct rhine_private *rp = netdev_priv(dev);
1724 int rc;
1726 spin_lock_irq(&rp->lock);
1727 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1728 spin_unlock_irq(&rp->lock);
1730 return rc;
1733 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1735 struct rhine_private *rp = netdev_priv(dev);
1736 int rc;
1738 spin_lock_irq(&rp->lock);
1739 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1740 spin_unlock_irq(&rp->lock);
1741 rhine_set_carrier(&rp->mii_if);
1743 return rc;
1746 static int netdev_nway_reset(struct net_device *dev)
1748 struct rhine_private *rp = netdev_priv(dev);
1750 return mii_nway_restart(&rp->mii_if);
1753 static u32 netdev_get_link(struct net_device *dev)
1755 struct rhine_private *rp = netdev_priv(dev);
1757 return mii_link_ok(&rp->mii_if);
1760 static u32 netdev_get_msglevel(struct net_device *dev)
1762 return debug;
1765 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1767 debug = value;
1770 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1772 struct rhine_private *rp = netdev_priv(dev);
1774 if (!(rp->quirks & rqWOL))
1775 return;
1777 spin_lock_irq(&rp->lock);
1778 wol->supported = WAKE_PHY | WAKE_MAGIC |
1779 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1780 wol->wolopts = rp->wolopts;
1781 spin_unlock_irq(&rp->lock);
1784 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1786 struct rhine_private *rp = netdev_priv(dev);
1787 u32 support = WAKE_PHY | WAKE_MAGIC |
1788 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1790 if (!(rp->quirks & rqWOL))
1791 return -EINVAL;
1793 if (wol->wolopts & ~support)
1794 return -EINVAL;
1796 spin_lock_irq(&rp->lock);
1797 rp->wolopts = wol->wolopts;
1798 spin_unlock_irq(&rp->lock);
1800 return 0;
1803 static const struct ethtool_ops netdev_ethtool_ops = {
1804 .get_drvinfo = netdev_get_drvinfo,
1805 .get_settings = netdev_get_settings,
1806 .set_settings = netdev_set_settings,
1807 .nway_reset = netdev_nway_reset,
1808 .get_link = netdev_get_link,
1809 .get_msglevel = netdev_get_msglevel,
1810 .set_msglevel = netdev_set_msglevel,
1811 .get_wol = rhine_get_wol,
1812 .set_wol = rhine_set_wol,
1815 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1817 struct rhine_private *rp = netdev_priv(dev);
1818 int rc;
1820 if (!netif_running(dev))
1821 return -EINVAL;
1823 spin_lock_irq(&rp->lock);
1824 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1825 spin_unlock_irq(&rp->lock);
1826 rhine_set_carrier(&rp->mii_if);
1828 return rc;
1831 static int rhine_close(struct net_device *dev)
1833 struct rhine_private *rp = netdev_priv(dev);
1834 void __iomem *ioaddr = rp->base;
1836 spin_lock_irq(&rp->lock);
1838 netif_stop_queue(dev);
1839 #ifdef CONFIG_VIA_RHINE_NAPI
1840 napi_disable(&rp->napi);
1841 #endif
1843 if (debug > 1)
1844 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1845 "status was %4.4x.\n",
1846 dev->name, ioread16(ioaddr + ChipCmd));
1848 /* Switch to loopback mode to avoid hardware races. */
1849 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1851 /* Disable interrupts by clearing the interrupt mask. */
1852 iowrite16(0x0000, ioaddr + IntrEnable);
1854 /* Stop the chip's Tx and Rx processes. */
1855 iowrite16(CmdStop, ioaddr + ChipCmd);
1857 spin_unlock_irq(&rp->lock);
1859 free_irq(rp->pdev->irq, dev);
1860 free_rbufs(dev);
1861 free_tbufs(dev);
1862 free_ring(dev);
1864 return 0;
1868 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1870 struct net_device *dev = pci_get_drvdata(pdev);
1871 struct rhine_private *rp = netdev_priv(dev);
1873 unregister_netdev(dev);
1875 pci_iounmap(pdev, rp->base);
1876 pci_release_regions(pdev);
1878 free_netdev(dev);
1879 pci_disable_device(pdev);
1880 pci_set_drvdata(pdev, NULL);
1883 static void rhine_shutdown (struct pci_dev *pdev)
1885 struct net_device *dev = pci_get_drvdata(pdev);
1886 struct rhine_private *rp = netdev_priv(dev);
1887 void __iomem *ioaddr = rp->base;
1889 if (!(rp->quirks & rqWOL))
1890 return; /* Nothing to do for non-WOL adapters */
1892 rhine_power_init(dev);
1894 /* Make sure we use pattern 0, 1 and not 4, 5 */
1895 if (rp->quirks & rq6patterns)
1896 iowrite8(0x04, ioaddr + WOLcgClr);
1898 if (rp->wolopts & WAKE_MAGIC) {
1899 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1901 * Turn EEPROM-controlled wake-up back on -- some hardware may
1902 * not cooperate otherwise.
1904 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1907 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1908 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1910 if (rp->wolopts & WAKE_PHY)
1911 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1913 if (rp->wolopts & WAKE_UCAST)
1914 iowrite8(WOLucast, ioaddr + WOLcrSet);
1916 if (rp->wolopts) {
1917 /* Enable legacy WOL (for old motherboards) */
1918 iowrite8(0x01, ioaddr + PwcfgSet);
1919 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1922 /* Hit power state D3 (sleep) */
1923 if (!avoid_D3)
1924 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1926 /* TODO: Check use of pci_enable_wake() */
1930 #ifdef CONFIG_PM
1931 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1933 struct net_device *dev = pci_get_drvdata(pdev);
1934 struct rhine_private *rp = netdev_priv(dev);
1935 unsigned long flags;
1937 if (!netif_running(dev))
1938 return 0;
1940 #ifdef CONFIG_VIA_RHINE_NAPI
1941 napi_disable(&rp->napi);
1942 #endif
1943 netif_device_detach(dev);
1944 pci_save_state(pdev);
1946 spin_lock_irqsave(&rp->lock, flags);
1947 rhine_shutdown(pdev);
1948 spin_unlock_irqrestore(&rp->lock, flags);
1950 free_irq(dev->irq, dev);
1951 return 0;
1954 static int rhine_resume(struct pci_dev *pdev)
1956 struct net_device *dev = pci_get_drvdata(pdev);
1957 struct rhine_private *rp = netdev_priv(dev);
1958 unsigned long flags;
1959 int ret;
1961 if (!netif_running(dev))
1962 return 0;
1964 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1965 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1967 ret = pci_set_power_state(pdev, PCI_D0);
1968 if (debug > 1)
1969 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1970 dev->name, ret ? "failed" : "succeeded", ret);
1972 pci_restore_state(pdev);
1974 spin_lock_irqsave(&rp->lock, flags);
1975 #ifdef USE_MMIO
1976 enable_mmio(rp->pioaddr, rp->quirks);
1977 #endif
1978 rhine_power_init(dev);
1979 free_tbufs(dev);
1980 free_rbufs(dev);
1981 alloc_tbufs(dev);
1982 alloc_rbufs(dev);
1983 init_registers(dev);
1984 spin_unlock_irqrestore(&rp->lock, flags);
1986 netif_device_attach(dev);
1988 return 0;
1990 #endif /* CONFIG_PM */
1992 static struct pci_driver rhine_driver = {
1993 .name = DRV_NAME,
1994 .id_table = rhine_pci_tbl,
1995 .probe = rhine_init_one,
1996 .remove = __devexit_p(rhine_remove_one),
1997 #ifdef CONFIG_PM
1998 .suspend = rhine_suspend,
1999 .resume = rhine_resume,
2000 #endif /* CONFIG_PM */
2001 .shutdown = rhine_shutdown,
2004 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2006 .ident = "EPIA-M",
2007 .matches = {
2008 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2009 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2013 .ident = "KV7",
2014 .matches = {
2015 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2016 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2019 { NULL }
2022 static int __init rhine_init(void)
2024 /* when a module, this is printed whether or not devices are found in probe */
2025 #ifdef MODULE
2026 printk(version);
2027 #endif
2028 if (dmi_check_system(rhine_dmi_table)) {
2029 /* these BIOSes fail at PXE boot if chip is in D3 */
2030 avoid_D3 = 1;
2031 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2032 "enabled.\n",
2033 DRV_NAME);
2035 else if (avoid_D3)
2036 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2038 return pci_register_driver(&rhine_driver);
2042 static void __exit rhine_cleanup(void)
2044 pci_unregister_driver(&rhine_driver);
2048 module_init(rhine_init);
2049 module_exit(rhine_cleanup);