Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / net / cassini.c
blob14299f8063af16341011a49e7156f2b60688465f
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
79 #include <linux/mm.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
91 #include <linux/ip.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
99 #include <asm/io.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108 #define USE_NAPI
109 #define cas_skb_release(x) netif_receive_skb(x)
110 #else
111 #define cas_skb_release(x) netif_rx(x)
112 #endif
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #include "cassini.h"
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
129 #undef USE_PCI_INTB
130 #undef USE_PCI_INTC
131 #undef USE_PCI_INTD
132 #undef USE_QOS
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.5"
146 #define DRV_MODULE_RELDATE "4 Jan 2008"
148 #define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180 #if 1
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
185 #else
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
189 #endif
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 * Value in seconds, for user input.
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 static int link_transition_timeout;
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246 static void cas_set_link_modes(struct cas *cp);
248 static inline void cas_lock_tx(struct cas *cp)
250 int i;
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
256 static inline void cas_lock_all(struct cas *cp)
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275 } while (0)
277 static inline void cas_unlock_tx(struct cas *cp)
279 int i;
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
285 static inline void cas_unlock_all(struct cas *cp)
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
298 static void cas_disable_irq(struct cas *cp, const int ring)
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317 case 3:
318 #endif
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322 #endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
331 static inline void cas_mask_intr(struct cas *cp)
333 int i;
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
339 static void cas_enable_irq(struct cas *cp, const int ring)
341 if (ring == 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343 return;
346 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347 switch (ring) {
348 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349 #ifdef USE_PCI_INTB
350 case 1:
351 #endif
352 #ifdef USE_PCI_INTC
353 case 2:
354 #endif
355 #ifdef USE_PCI_INTD
356 case 3:
357 #endif
358 writel(INTRN_MASK_RX_EN, cp->regs +
359 REG_PLUS_INTRN_MASK(ring));
360 break;
361 #endif
362 default:
363 break;
368 static inline void cas_unmask_intr(struct cas *cp)
370 int i;
372 for (i = 0; i < N_RX_COMP_RINGS; i++)
373 cas_enable_irq(cp, i);
376 static inline void cas_entropy_gather(struct cas *cp)
378 #ifdef USE_ENTROPY_DEV
379 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380 return;
382 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383 readl(cp->regs + REG_ENTROPY_IV),
384 sizeof(uint64_t)*8);
385 #endif
388 static inline void cas_entropy_reset(struct cas *cp)
390 #ifdef USE_ENTROPY_DEV
391 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392 return;
394 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395 cp->regs + REG_BIM_LOCAL_DEV_EN);
396 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402 #endif
405 /* access to the phy. the following assumes that we've initialized the MIF to
406 * be in frame rather than bit-bang mode
408 static u16 cas_phy_read(struct cas *cp, int reg)
410 u32 cmd;
411 int limit = STOP_TRIES_PHY;
413 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416 cmd |= MIF_FRAME_TURN_AROUND_MSB;
417 writel(cmd, cp->regs + REG_MIF_FRAME);
419 /* poll for completion */
420 while (limit-- > 0) {
421 udelay(10);
422 cmd = readl(cp->regs + REG_MIF_FRAME);
423 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424 return (cmd & MIF_FRAME_DATA_MASK);
426 return 0xFFFF; /* -1 */
429 static int cas_phy_write(struct cas *cp, int reg, u16 val)
431 int limit = STOP_TRIES_PHY;
432 u32 cmd;
434 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437 cmd |= MIF_FRAME_TURN_AROUND_MSB;
438 cmd |= val & MIF_FRAME_DATA_MASK;
439 writel(cmd, cp->regs + REG_MIF_FRAME);
441 /* poll for completion */
442 while (limit-- > 0) {
443 udelay(10);
444 cmd = readl(cp->regs + REG_MIF_FRAME);
445 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446 return 0;
448 return -1;
451 static void cas_phy_powerup(struct cas *cp)
453 u16 ctl = cas_phy_read(cp, MII_BMCR);
455 if ((ctl & BMCR_PDOWN) == 0)
456 return;
457 ctl &= ~BMCR_PDOWN;
458 cas_phy_write(cp, MII_BMCR, ctl);
461 static void cas_phy_powerdown(struct cas *cp)
463 u16 ctl = cas_phy_read(cp, MII_BMCR);
465 if (ctl & BMCR_PDOWN)
466 return;
467 ctl |= BMCR_PDOWN;
468 cas_phy_write(cp, MII_BMCR, ctl);
471 /* cp->lock held. note: the last put_page will free the buffer */
472 static int cas_page_free(struct cas *cp, cas_page_t *page)
474 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
475 PCI_DMA_FROMDEVICE);
476 __free_pages(page->buffer, cp->page_order);
477 kfree(page);
478 return 0;
481 #ifdef RX_COUNT_BUFFERS
482 #define RX_USED_ADD(x, y) ((x)->used += (y))
483 #define RX_USED_SET(x, y) ((x)->used = (y))
484 #else
485 #define RX_USED_ADD(x, y)
486 #define RX_USED_SET(x, y)
487 #endif
489 /* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
492 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
494 cas_page_t *page;
496 page = kmalloc(sizeof(cas_page_t), flags);
497 if (!page)
498 return NULL;
500 INIT_LIST_HEAD(&page->list);
501 RX_USED_SET(page, 0);
502 page->buffer = alloc_pages(flags, cp->page_order);
503 if (!page->buffer)
504 goto page_err;
505 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506 cp->page_size, PCI_DMA_FROMDEVICE);
507 return page;
509 page_err:
510 kfree(page);
511 return NULL;
514 /* initialize spare pool of rx buffers, but allocate during the open */
515 static void cas_spare_init(struct cas *cp)
517 spin_lock(&cp->rx_inuse_lock);
518 INIT_LIST_HEAD(&cp->rx_inuse_list);
519 spin_unlock(&cp->rx_inuse_lock);
521 spin_lock(&cp->rx_spare_lock);
522 INIT_LIST_HEAD(&cp->rx_spare_list);
523 cp->rx_spares_needed = RX_SPARE_COUNT;
524 spin_unlock(&cp->rx_spare_lock);
527 /* used on close. free all the spare buffers. */
528 static void cas_spare_free(struct cas *cp)
530 struct list_head list, *elem, *tmp;
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list);
534 spin_lock(&cp->rx_spare_lock);
535 list_splice(&cp->rx_spare_list, &list);
536 INIT_LIST_HEAD(&cp->rx_spare_list);
537 spin_unlock(&cp->rx_spare_lock);
538 list_for_each_safe(elem, tmp, &list) {
539 cas_page_free(cp, list_entry(elem, cas_page_t, list));
542 INIT_LIST_HEAD(&list);
543 #if 1
545 * Looks like Adrian had protected this with a different
546 * lock than used everywhere else to manipulate this list.
548 spin_lock(&cp->rx_inuse_lock);
549 list_splice(&cp->rx_inuse_list, &list);
550 INIT_LIST_HEAD(&cp->rx_inuse_list);
551 spin_unlock(&cp->rx_inuse_lock);
552 #else
553 spin_lock(&cp->rx_spare_lock);
554 list_splice(&cp->rx_inuse_list, &list);
555 INIT_LIST_HEAD(&cp->rx_inuse_list);
556 spin_unlock(&cp->rx_spare_lock);
557 #endif
558 list_for_each_safe(elem, tmp, &list) {
559 cas_page_free(cp, list_entry(elem, cas_page_t, list));
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
566 struct list_head list, *elem, *tmp;
567 int needed, i;
569 /* check inuse list. if we don't need any more free buffers,
570 * just free it
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list);
575 spin_lock(&cp->rx_inuse_lock);
576 list_splice(&cp->rx_inuse_list, &list);
577 INIT_LIST_HEAD(&cp->rx_inuse_list);
578 spin_unlock(&cp->rx_inuse_lock);
580 list_for_each_safe(elem, tmp, &list) {
581 cas_page_t *page = list_entry(elem, cas_page_t, list);
583 if (page_count(page->buffer) > 1)
584 continue;
586 list_del(elem);
587 spin_lock(&cp->rx_spare_lock);
588 if (cp->rx_spares_needed > 0) {
589 list_add(elem, &cp->rx_spare_list);
590 cp->rx_spares_needed--;
591 spin_unlock(&cp->rx_spare_lock);
592 } else {
593 spin_unlock(&cp->rx_spare_lock);
594 cas_page_free(cp, page);
598 /* put any inuse buffers back on the list */
599 if (!list_empty(&list)) {
600 spin_lock(&cp->rx_inuse_lock);
601 list_splice(&list, &cp->rx_inuse_list);
602 spin_unlock(&cp->rx_inuse_lock);
605 spin_lock(&cp->rx_spare_lock);
606 needed = cp->rx_spares_needed;
607 spin_unlock(&cp->rx_spare_lock);
608 if (!needed)
609 return;
611 /* we still need spares, so try to allocate some */
612 INIT_LIST_HEAD(&list);
613 i = 0;
614 while (i < needed) {
615 cas_page_t *spare = cas_page_alloc(cp, flags);
616 if (!spare)
617 break;
618 list_add(&spare->list, &list);
619 i++;
622 spin_lock(&cp->rx_spare_lock);
623 list_splice(&list, &cp->rx_spare_list);
624 cp->rx_spares_needed -= i;
625 spin_unlock(&cp->rx_spare_lock);
628 /* pull a page from the list. */
629 static cas_page_t *cas_page_dequeue(struct cas *cp)
631 struct list_head *entry;
632 int recover;
634 spin_lock(&cp->rx_spare_lock);
635 if (list_empty(&cp->rx_spare_list)) {
636 /* try to do a quick recovery */
637 spin_unlock(&cp->rx_spare_lock);
638 cas_spare_recover(cp, GFP_ATOMIC);
639 spin_lock(&cp->rx_spare_lock);
640 if (list_empty(&cp->rx_spare_list)) {
641 if (netif_msg_rx_err(cp))
642 printk(KERN_ERR "%s: no spare buffers "
643 "available.\n", cp->dev->name);
644 spin_unlock(&cp->rx_spare_lock);
645 return NULL;
649 entry = cp->rx_spare_list.next;
650 list_del(entry);
651 recover = ++cp->rx_spares_needed;
652 spin_unlock(&cp->rx_spare_lock);
654 /* trigger the timer to do the recovery */
655 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
656 #if 1
657 atomic_inc(&cp->reset_task_pending);
658 atomic_inc(&cp->reset_task_pending_spare);
659 schedule_work(&cp->reset_task);
660 #else
661 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
662 schedule_work(&cp->reset_task);
663 #endif
665 return list_entry(entry, cas_page_t, list);
669 static void cas_mif_poll(struct cas *cp, const int enable)
671 u32 cfg;
673 cfg = readl(cp->regs + REG_MIF_CFG);
674 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
676 if (cp->phy_type & CAS_PHY_MII_MDIO1)
677 cfg |= MIF_CFG_PHY_SELECT;
679 /* poll and interrupt on link status change. */
680 if (enable) {
681 cfg |= MIF_CFG_POLL_EN;
682 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
683 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
685 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
686 cp->regs + REG_MIF_MASK);
687 writel(cfg, cp->regs + REG_MIF_CFG);
690 /* Must be invoked under cp->lock */
691 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
693 u16 ctl;
694 #if 1
695 int lcntl;
696 int changed = 0;
697 int oldstate = cp->lstate;
698 int link_was_not_down = !(oldstate == link_down);
699 #endif
700 /* Setup link parameters */
701 if (!ep)
702 goto start_aneg;
703 lcntl = cp->link_cntl;
704 if (ep->autoneg == AUTONEG_ENABLE)
705 cp->link_cntl = BMCR_ANENABLE;
706 else {
707 cp->link_cntl = 0;
708 if (ep->speed == SPEED_100)
709 cp->link_cntl |= BMCR_SPEED100;
710 else if (ep->speed == SPEED_1000)
711 cp->link_cntl |= CAS_BMCR_SPEED1000;
712 if (ep->duplex == DUPLEX_FULL)
713 cp->link_cntl |= BMCR_FULLDPLX;
715 #if 1
716 changed = (lcntl != cp->link_cntl);
717 #endif
718 start_aneg:
719 if (cp->lstate == link_up) {
720 printk(KERN_INFO "%s: PCS link down.\n",
721 cp->dev->name);
722 } else {
723 if (changed) {
724 printk(KERN_INFO "%s: link configuration changed\n",
725 cp->dev->name);
728 cp->lstate = link_down;
729 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
730 if (!cp->hw_running)
731 return;
732 #if 1
734 * WTZ: If the old state was link_up, we turn off the carrier
735 * to replicate everything we do elsewhere on a link-down
736 * event when we were already in a link-up state..
738 if (oldstate == link_up)
739 netif_carrier_off(cp->dev);
740 if (changed && link_was_not_down) {
742 * WTZ: This branch will simply schedule a full reset after
743 * we explicitly changed link modes in an ioctl. See if this
744 * fixes the link-problems we were having for forced mode.
746 atomic_inc(&cp->reset_task_pending);
747 atomic_inc(&cp->reset_task_pending_all);
748 schedule_work(&cp->reset_task);
749 cp->timer_ticks = 0;
750 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
751 return;
753 #endif
754 if (cp->phy_type & CAS_PHY_SERDES) {
755 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
757 if (cp->link_cntl & BMCR_ANENABLE) {
758 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
759 cp->lstate = link_aneg;
760 } else {
761 if (cp->link_cntl & BMCR_FULLDPLX)
762 val |= PCS_MII_CTRL_DUPLEX;
763 val &= ~PCS_MII_AUTONEG_EN;
764 cp->lstate = link_force_ok;
766 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
767 writel(val, cp->regs + REG_PCS_MII_CTRL);
769 } else {
770 cas_mif_poll(cp, 0);
771 ctl = cas_phy_read(cp, MII_BMCR);
772 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
773 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
774 ctl |= cp->link_cntl;
775 if (ctl & BMCR_ANENABLE) {
776 ctl |= BMCR_ANRESTART;
777 cp->lstate = link_aneg;
778 } else {
779 cp->lstate = link_force_ok;
781 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
782 cas_phy_write(cp, MII_BMCR, ctl);
783 cas_mif_poll(cp, 1);
786 cp->timer_ticks = 0;
787 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
790 /* Must be invoked under cp->lock. */
791 static int cas_reset_mii_phy(struct cas *cp)
793 int limit = STOP_TRIES_PHY;
794 u16 val;
796 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
797 udelay(100);
798 while (limit--) {
799 val = cas_phy_read(cp, MII_BMCR);
800 if ((val & BMCR_RESET) == 0)
801 break;
802 udelay(10);
804 return (limit <= 0);
807 static void cas_saturn_firmware_load(struct cas *cp)
809 cas_saturn_patch_t *patch = cas_saturn_patch;
811 cas_phy_powerdown(cp);
813 /* expanded memory access mode */
814 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
816 /* pointer configuration for new firmware */
817 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
818 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
819 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
820 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
821 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
822 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
823 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
824 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
826 /* download new firmware */
827 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
828 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
829 while (patch->addr) {
830 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
831 patch++;
834 /* enable firmware */
835 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
836 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
840 /* phy initialization */
841 static void cas_phy_init(struct cas *cp)
843 u16 val;
845 /* if we're in MII/GMII mode, set up phy */
846 if (CAS_PHY_MII(cp->phy_type)) {
847 writel(PCS_DATAPATH_MODE_MII,
848 cp->regs + REG_PCS_DATAPATH_MODE);
850 cas_mif_poll(cp, 0);
851 cas_reset_mii_phy(cp); /* take out of isolate mode */
853 if (PHY_LUCENT_B0 == cp->phy_id) {
854 /* workaround link up/down issue with lucent */
855 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
856 cas_phy_write(cp, MII_BMCR, 0x00f1);
857 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
859 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
860 /* workarounds for broadcom phy */
861 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
862 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
863 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
864 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
865 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
866 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
867 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
868 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
869 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
870 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
871 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
873 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
874 val = cas_phy_read(cp, BROADCOM_MII_REG4);
875 val = cas_phy_read(cp, BROADCOM_MII_REG4);
876 if (val & 0x0080) {
877 /* link workaround */
878 cas_phy_write(cp, BROADCOM_MII_REG4,
879 val & ~0x0080);
882 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
883 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
884 SATURN_PCFG_FSI : 0x0,
885 cp->regs + REG_SATURN_PCFG);
887 /* load firmware to address 10Mbps auto-negotiation
888 * issue. NOTE: this will need to be changed if the
889 * default firmware gets fixed.
891 if (PHY_NS_DP83065 == cp->phy_id) {
892 cas_saturn_firmware_load(cp);
894 cas_phy_powerup(cp);
897 /* advertise capabilities */
898 val = cas_phy_read(cp, MII_BMCR);
899 val &= ~BMCR_ANENABLE;
900 cas_phy_write(cp, MII_BMCR, val);
901 udelay(10);
903 cas_phy_write(cp, MII_ADVERTISE,
904 cas_phy_read(cp, MII_ADVERTISE) |
905 (ADVERTISE_10HALF | ADVERTISE_10FULL |
906 ADVERTISE_100HALF | ADVERTISE_100FULL |
907 CAS_ADVERTISE_PAUSE |
908 CAS_ADVERTISE_ASYM_PAUSE));
910 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
911 /* make sure that we don't advertise half
912 * duplex to avoid a chip issue
914 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
915 val &= ~CAS_ADVERTISE_1000HALF;
916 val |= CAS_ADVERTISE_1000FULL;
917 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
920 } else {
921 /* reset pcs for serdes */
922 u32 val;
923 int limit;
925 writel(PCS_DATAPATH_MODE_SERDES,
926 cp->regs + REG_PCS_DATAPATH_MODE);
928 /* enable serdes pins on saturn */
929 if (cp->cas_flags & CAS_FLAG_SATURN)
930 writel(0, cp->regs + REG_SATURN_PCFG);
932 /* Reset PCS unit. */
933 val = readl(cp->regs + REG_PCS_MII_CTRL);
934 val |= PCS_MII_RESET;
935 writel(val, cp->regs + REG_PCS_MII_CTRL);
937 limit = STOP_TRIES;
938 while (limit-- > 0) {
939 udelay(10);
940 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
941 PCS_MII_RESET) == 0)
942 break;
944 if (limit <= 0)
945 printk(KERN_WARNING "%s: PCS reset bit would not "
946 "clear [%08x].\n", cp->dev->name,
947 readl(cp->regs + REG_PCS_STATE_MACHINE));
949 /* Make sure PCS is disabled while changing advertisement
950 * configuration.
952 writel(0x0, cp->regs + REG_PCS_CFG);
954 /* Advertise all capabilities except half-duplex. */
955 val = readl(cp->regs + REG_PCS_MII_ADVERT);
956 val &= ~PCS_MII_ADVERT_HD;
957 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
958 PCS_MII_ADVERT_ASYM_PAUSE);
959 writel(val, cp->regs + REG_PCS_MII_ADVERT);
961 /* enable PCS */
962 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
964 /* pcs workaround: enable sync detect */
965 writel(PCS_SERDES_CTRL_SYNCD_EN,
966 cp->regs + REG_PCS_SERDES_CTRL);
971 static int cas_pcs_link_check(struct cas *cp)
973 u32 stat, state_machine;
974 int retval = 0;
976 /* The link status bit latches on zero, so you must
977 * read it twice in such a case to see a transition
978 * to the link being up.
980 stat = readl(cp->regs + REG_PCS_MII_STATUS);
981 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
982 stat = readl(cp->regs + REG_PCS_MII_STATUS);
984 /* The remote-fault indication is only valid
985 * when autoneg has completed.
987 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
988 PCS_MII_STATUS_REMOTE_FAULT)) ==
989 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
990 if (netif_msg_link(cp))
991 printk(KERN_INFO "%s: PCS RemoteFault\n",
992 cp->dev->name);
995 /* work around link detection issue by querying the PCS state
996 * machine directly.
998 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
999 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1000 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1001 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1002 stat |= PCS_MII_STATUS_LINK_STATUS;
1005 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1006 if (cp->lstate != link_up) {
1007 if (cp->opened) {
1008 cp->lstate = link_up;
1009 cp->link_transition = LINK_TRANSITION_LINK_UP;
1011 cas_set_link_modes(cp);
1012 netif_carrier_on(cp->dev);
1015 } else if (cp->lstate == link_up) {
1016 cp->lstate = link_down;
1017 if (link_transition_timeout != 0 &&
1018 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1019 !cp->link_transition_jiffies_valid) {
1021 * force a reset, as a workaround for the
1022 * link-failure problem. May want to move this to a
1023 * point a bit earlier in the sequence. If we had
1024 * generated a reset a short time ago, we'll wait for
1025 * the link timer to check the status until a
1026 * timer expires (link_transistion_jiffies_valid is
1027 * true when the timer is running.) Instead of using
1028 * a system timer, we just do a check whenever the
1029 * link timer is running - this clears the flag after
1030 * a suitable delay.
1032 retval = 1;
1033 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1034 cp->link_transition_jiffies = jiffies;
1035 cp->link_transition_jiffies_valid = 1;
1036 } else {
1037 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1039 netif_carrier_off(cp->dev);
1040 if (cp->opened && netif_msg_link(cp)) {
1041 printk(KERN_INFO "%s: PCS link down.\n",
1042 cp->dev->name);
1045 /* Cassini only: if you force a mode, there can be
1046 * sync problems on link down. to fix that, the following
1047 * things need to be checked:
1048 * 1) read serialink state register
1049 * 2) read pcs status register to verify link down.
1050 * 3) if link down and serial link == 0x03, then you need
1051 * to global reset the chip.
1053 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1054 /* should check to see if we're in a forced mode */
1055 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1056 if (stat == 0x03)
1057 return 1;
1059 } else if (cp->lstate == link_down) {
1060 if (link_transition_timeout != 0 &&
1061 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1062 !cp->link_transition_jiffies_valid) {
1063 /* force a reset, as a workaround for the
1064 * link-failure problem. May want to move
1065 * this to a point a bit earlier in the
1066 * sequence.
1068 retval = 1;
1069 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1070 cp->link_transition_jiffies = jiffies;
1071 cp->link_transition_jiffies_valid = 1;
1072 } else {
1073 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1077 return retval;
1080 static int cas_pcs_interrupt(struct net_device *dev,
1081 struct cas *cp, u32 status)
1083 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1085 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1086 return 0;
1087 return cas_pcs_link_check(cp);
1090 static int cas_txmac_interrupt(struct net_device *dev,
1091 struct cas *cp, u32 status)
1093 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1095 if (!txmac_stat)
1096 return 0;
1098 if (netif_msg_intr(cp))
1099 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1100 cp->dev->name, txmac_stat);
1102 /* Defer timer expiration is quite normal,
1103 * don't even log the event.
1105 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1106 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1107 return 0;
1109 spin_lock(&cp->stat_lock[0]);
1110 if (txmac_stat & MAC_TX_UNDERRUN) {
1111 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1112 dev->name);
1113 cp->net_stats[0].tx_fifo_errors++;
1116 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1117 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1118 dev->name);
1119 cp->net_stats[0].tx_errors++;
1122 /* The rest are all cases of one of the 16-bit TX
1123 * counters expiring.
1125 if (txmac_stat & MAC_TX_COLL_NORMAL)
1126 cp->net_stats[0].collisions += 0x10000;
1128 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129 cp->net_stats[0].tx_aborted_errors += 0x10000;
1130 cp->net_stats[0].collisions += 0x10000;
1133 if (txmac_stat & MAC_TX_COLL_LATE) {
1134 cp->net_stats[0].tx_aborted_errors += 0x10000;
1135 cp->net_stats[0].collisions += 0x10000;
1137 spin_unlock(&cp->stat_lock[0]);
1139 /* We do not keep track of MAC_TX_COLL_FIRST and
1140 * MAC_TX_PEAK_ATTEMPTS events.
1142 return 0;
1145 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1147 cas_hp_inst_t *inst;
1148 u32 val;
1149 int i;
1151 i = 0;
1152 while ((inst = firmware) && inst->note) {
1153 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1155 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1159 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1168 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173 ++firmware;
1174 ++i;
1178 static void cas_init_rx_dma(struct cas *cp)
1180 u64 desc_dma = cp->block_dvma;
1181 u32 val;
1182 int i, size;
1184 /* rx free descriptors */
1185 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188 if ((N_RX_DESC_RINGS > 1) &&
1189 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1190 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191 writel(val, cp->regs + REG_RX_CFG);
1193 val = (unsigned long) cp->init_rxds[0] -
1194 (unsigned long) cp->init_block;
1195 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1199 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200 /* rx desc 2 is for IPSEC packets. however,
1201 * we don't it that for that purpose.
1203 val = (unsigned long) cp->init_rxds[1] -
1204 (unsigned long) cp->init_block;
1205 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206 writel((desc_dma + val) & 0xffffffff, cp->regs +
1207 REG_PLUS_RX_DB1_LOW);
1208 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209 REG_PLUS_RX_KICK1);
1212 /* rx completion registers */
1213 val = (unsigned long) cp->init_rxcs[0] -
1214 (unsigned long) cp->init_block;
1215 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1218 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219 /* rx comp 2-4 */
1220 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221 val = (unsigned long) cp->init_rxcs[i] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs +
1224 REG_PLUS_RX_CBN_HI(i));
1225 writel((desc_dma + val) & 0xffffffff, cp->regs +
1226 REG_PLUS_RX_CBN_LOW(i));
1230 /* read selective clear regs to prevent spurious interrupts
1231 * on reset because complete == kick.
1232 * selective clear set up to prevent interrupts on resets
1234 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1237 for (i = 1; i < N_RX_COMP_RINGS; i++)
1238 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1240 /* 2 is different from 3 and 4 */
1241 if (N_RX_COMP_RINGS > 1)
1242 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1243 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1245 for (i = 2; i < N_RX_COMP_RINGS; i++)
1246 writel(INTR_RX_DONE_ALT,
1247 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1250 /* set up pause thresholds */
1251 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1252 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1253 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1254 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1255 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1257 /* zero out dma reassembly buffers */
1258 for (i = 0; i < 64; i++) {
1259 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1260 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1261 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1262 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1265 /* make sure address register is 0 for normal operation */
1266 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1267 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1269 /* interrupt mitigation */
1270 #ifdef USE_RX_BLANK
1271 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1272 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1273 writel(val, cp->regs + REG_RX_BLANK);
1274 #else
1275 writel(0x0, cp->regs + REG_RX_BLANK);
1276 #endif
1278 /* interrupt generation as a function of low water marks for
1279 * free desc and completion entries. these are used to trigger
1280 * housekeeping for rx descs. we don't use the free interrupt
1281 * as it's not very useful
1283 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1284 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1285 writel(val, cp->regs + REG_RX_AE_THRESH);
1286 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1287 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1288 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1291 /* Random early detect registers. useful for congestion avoidance.
1292 * this should be tunable.
1294 writel(0x0, cp->regs + REG_RX_RED);
1296 /* receive page sizes. default == 2K (0x800) */
1297 val = 0;
1298 if (cp->page_size == 0x1000)
1299 val = 0x1;
1300 else if (cp->page_size == 0x2000)
1301 val = 0x2;
1302 else if (cp->page_size == 0x4000)
1303 val = 0x3;
1305 /* round mtu + offset. constrain to page size. */
1306 size = cp->dev->mtu + 64;
1307 if (size > cp->page_size)
1308 size = cp->page_size;
1310 if (size <= 0x400)
1311 i = 0x0;
1312 else if (size <= 0x800)
1313 i = 0x1;
1314 else if (size <= 0x1000)
1315 i = 0x2;
1316 else
1317 i = 0x3;
1319 cp->mtu_stride = 1 << (i + 10);
1320 val = CAS_BASE(RX_PAGE_SIZE, val);
1321 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1322 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1323 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1324 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1326 /* enable the header parser if desired */
1327 if (CAS_HP_FIRMWARE == cas_prog_null)
1328 return;
1330 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1331 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1332 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1333 writel(val, cp->regs + REG_HP_CFG);
1336 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1338 memset(rxc, 0, sizeof(*rxc));
1339 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1342 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1343 * flipping is protected by the fact that the chip will not
1344 * hand back the same page index while it's being processed.
1346 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1348 cas_page_t *page = cp->rx_pages[1][index];
1349 cas_page_t *new;
1351 if (page_count(page->buffer) == 1)
1352 return page;
1354 new = cas_page_dequeue(cp);
1355 if (new) {
1356 spin_lock(&cp->rx_inuse_lock);
1357 list_add(&page->list, &cp->rx_inuse_list);
1358 spin_unlock(&cp->rx_inuse_lock);
1360 return new;
1363 /* this needs to be changed if we actually use the ENC RX DESC ring */
1364 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1365 const int index)
1367 cas_page_t **page0 = cp->rx_pages[0];
1368 cas_page_t **page1 = cp->rx_pages[1];
1370 /* swap if buffer is in use */
1371 if (page_count(page0[index]->buffer) > 1) {
1372 cas_page_t *new = cas_page_spare(cp, index);
1373 if (new) {
1374 page1[index] = page0[index];
1375 page0[index] = new;
1378 RX_USED_SET(page0[index], 0);
1379 return page0[index];
1382 static void cas_clean_rxds(struct cas *cp)
1384 /* only clean ring 0 as ring 1 is used for spare buffers */
1385 struct cas_rx_desc *rxd = cp->init_rxds[0];
1386 int i, size;
1388 /* release all rx flows */
1389 for (i = 0; i < N_RX_FLOWS; i++) {
1390 struct sk_buff *skb;
1391 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1392 cas_skb_release(skb);
1396 /* initialize descriptors */
1397 size = RX_DESC_RINGN_SIZE(0);
1398 for (i = 0; i < size; i++) {
1399 cas_page_t *page = cas_page_swap(cp, 0, i);
1400 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1401 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1402 CAS_BASE(RX_INDEX_RING, 0));
1405 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1406 cp->rx_last[0] = 0;
1407 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1410 static void cas_clean_rxcs(struct cas *cp)
1412 int i, j;
1414 /* take ownership of rx comp descriptors */
1415 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1416 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1417 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1418 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1419 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1420 cas_rxc_init(rxc + j);
1425 #if 0
1426 /* When we get a RX fifo overflow, the RX unit is probably hung
1427 * so we do the following.
1429 * If any part of the reset goes wrong, we return 1 and that causes the
1430 * whole chip to be reset.
1432 static int cas_rxmac_reset(struct cas *cp)
1434 struct net_device *dev = cp->dev;
1435 int limit;
1436 u32 val;
1438 /* First, reset MAC RX. */
1439 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1440 for (limit = 0; limit < STOP_TRIES; limit++) {
1441 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1442 break;
1443 udelay(10);
1445 if (limit == STOP_TRIES) {
1446 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1447 "chip.\n", dev->name);
1448 return 1;
1451 /* Second, disable RX DMA. */
1452 writel(0, cp->regs + REG_RX_CFG);
1453 for (limit = 0; limit < STOP_TRIES; limit++) {
1454 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1455 break;
1456 udelay(10);
1458 if (limit == STOP_TRIES) {
1459 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1460 "chip.\n", dev->name);
1461 return 1;
1464 mdelay(5);
1466 /* Execute RX reset command. */
1467 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1468 for (limit = 0; limit < STOP_TRIES; limit++) {
1469 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1470 break;
1471 udelay(10);
1473 if (limit == STOP_TRIES) {
1474 printk(KERN_ERR "%s: RX reset command will not execute, "
1475 "resetting whole chip.\n", dev->name);
1476 return 1;
1479 /* reset driver rx state */
1480 cas_clean_rxds(cp);
1481 cas_clean_rxcs(cp);
1483 /* Now, reprogram the rest of RX unit. */
1484 cas_init_rx_dma(cp);
1486 /* re-enable */
1487 val = readl(cp->regs + REG_RX_CFG);
1488 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1489 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1490 val = readl(cp->regs + REG_MAC_RX_CFG);
1491 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1492 return 0;
1494 #endif
1496 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1497 u32 status)
1499 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1501 if (!stat)
1502 return 0;
1504 if (netif_msg_intr(cp))
1505 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1506 cp->dev->name, stat);
1508 /* these are all rollovers */
1509 spin_lock(&cp->stat_lock[0]);
1510 if (stat & MAC_RX_ALIGN_ERR)
1511 cp->net_stats[0].rx_frame_errors += 0x10000;
1513 if (stat & MAC_RX_CRC_ERR)
1514 cp->net_stats[0].rx_crc_errors += 0x10000;
1516 if (stat & MAC_RX_LEN_ERR)
1517 cp->net_stats[0].rx_length_errors += 0x10000;
1519 if (stat & MAC_RX_OVERFLOW) {
1520 cp->net_stats[0].rx_over_errors++;
1521 cp->net_stats[0].rx_fifo_errors++;
1524 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1525 * events.
1527 spin_unlock(&cp->stat_lock[0]);
1528 return 0;
1531 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1532 u32 status)
1534 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1536 if (!stat)
1537 return 0;
1539 if (netif_msg_intr(cp))
1540 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1541 cp->dev->name, stat);
1543 /* This interrupt is just for pause frame and pause
1544 * tracking. It is useful for diagnostics and debug
1545 * but probably by default we will mask these events.
1547 if (stat & MAC_CTRL_PAUSE_STATE)
1548 cp->pause_entered++;
1550 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1551 cp->pause_last_time_recvd = (stat >> 16);
1553 return 0;
1557 /* Must be invoked under cp->lock. */
1558 static inline int cas_mdio_link_not_up(struct cas *cp)
1560 u16 val;
1562 switch (cp->lstate) {
1563 case link_force_ret:
1564 if (netif_msg_link(cp))
1565 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1566 " forced mode\n", cp->dev->name);
1567 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1568 cp->timer_ticks = 5;
1569 cp->lstate = link_force_ok;
1570 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1571 break;
1573 case link_aneg:
1574 val = cas_phy_read(cp, MII_BMCR);
1576 /* Try forced modes. we try things in the following order:
1577 * 1000 full -> 100 full/half -> 10 half
1579 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1580 val |= BMCR_FULLDPLX;
1581 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1582 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1583 cas_phy_write(cp, MII_BMCR, val);
1584 cp->timer_ticks = 5;
1585 cp->lstate = link_force_try;
1586 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587 break;
1589 case link_force_try:
1590 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1591 val = cas_phy_read(cp, MII_BMCR);
1592 cp->timer_ticks = 5;
1593 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1594 val &= ~CAS_BMCR_SPEED1000;
1595 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1596 cas_phy_write(cp, MII_BMCR, val);
1597 break;
1600 if (val & BMCR_SPEED100) {
1601 if (val & BMCR_FULLDPLX) /* fd failed */
1602 val &= ~BMCR_FULLDPLX;
1603 else { /* 100Mbps failed */
1604 val &= ~BMCR_SPEED100;
1606 cas_phy_write(cp, MII_BMCR, val);
1607 break;
1609 default:
1610 break;
1612 return 0;
1616 /* must be invoked with cp->lock held */
1617 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1619 int restart;
1621 if (bmsr & BMSR_LSTATUS) {
1622 /* Ok, here we got a link. If we had it due to a forced
1623 * fallback, and we were configured for autoneg, we
1624 * retry a short autoneg pass. If you know your hub is
1625 * broken, use ethtool ;)
1627 if ((cp->lstate == link_force_try) &&
1628 (cp->link_cntl & BMCR_ANENABLE)) {
1629 cp->lstate = link_force_ret;
1630 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1631 cas_mif_poll(cp, 0);
1632 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1633 cp->timer_ticks = 5;
1634 if (cp->opened && netif_msg_link(cp))
1635 printk(KERN_INFO "%s: Got link after fallback, retrying"
1636 " autoneg once...\n", cp->dev->name);
1637 cas_phy_write(cp, MII_BMCR,
1638 cp->link_fcntl | BMCR_ANENABLE |
1639 BMCR_ANRESTART);
1640 cas_mif_poll(cp, 1);
1642 } else if (cp->lstate != link_up) {
1643 cp->lstate = link_up;
1644 cp->link_transition = LINK_TRANSITION_LINK_UP;
1646 if (cp->opened) {
1647 cas_set_link_modes(cp);
1648 netif_carrier_on(cp->dev);
1651 return 0;
1654 /* link not up. if the link was previously up, we restart the
1655 * whole process
1657 restart = 0;
1658 if (cp->lstate == link_up) {
1659 cp->lstate = link_down;
1660 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1662 netif_carrier_off(cp->dev);
1663 if (cp->opened && netif_msg_link(cp))
1664 printk(KERN_INFO "%s: Link down\n",
1665 cp->dev->name);
1666 restart = 1;
1668 } else if (++cp->timer_ticks > 10)
1669 cas_mdio_link_not_up(cp);
1671 return restart;
1674 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1675 u32 status)
1677 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1678 u16 bmsr;
1680 /* check for a link change */
1681 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1682 return 0;
1684 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1685 return cas_mii_link_check(cp, bmsr);
1688 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1689 u32 status)
1691 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1693 if (!stat)
1694 return 0;
1696 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1697 readl(cp->regs + REG_BIM_DIAG));
1699 /* cassini+ has this reserved */
1700 if ((stat & PCI_ERR_BADACK) &&
1701 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1702 printk("<No ACK64# during ABS64 cycle> ");
1704 if (stat & PCI_ERR_DTRTO)
1705 printk("<Delayed transaction timeout> ");
1706 if (stat & PCI_ERR_OTHER)
1707 printk("<other> ");
1708 if (stat & PCI_ERR_BIM_DMA_WRITE)
1709 printk("<BIM DMA 0 write req> ");
1710 if (stat & PCI_ERR_BIM_DMA_READ)
1711 printk("<BIM DMA 0 read req> ");
1712 printk("\n");
1714 if (stat & PCI_ERR_OTHER) {
1715 u16 cfg;
1717 /* Interrogate PCI config space for the
1718 * true cause.
1720 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1721 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1722 dev->name, cfg);
1723 if (cfg & PCI_STATUS_PARITY)
1724 printk(KERN_ERR "%s: PCI parity error detected.\n",
1725 dev->name);
1726 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1727 printk(KERN_ERR "%s: PCI target abort.\n",
1728 dev->name);
1729 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1730 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1731 dev->name);
1732 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1733 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1734 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1735 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1736 dev->name);
1737 if (cfg & PCI_STATUS_DETECTED_PARITY)
1738 printk(KERN_ERR "%s: PCI parity error.\n",
1739 dev->name);
1741 /* Write the error bits back to clear them. */
1742 cfg &= (PCI_STATUS_PARITY |
1743 PCI_STATUS_SIG_TARGET_ABORT |
1744 PCI_STATUS_REC_TARGET_ABORT |
1745 PCI_STATUS_REC_MASTER_ABORT |
1746 PCI_STATUS_SIG_SYSTEM_ERROR |
1747 PCI_STATUS_DETECTED_PARITY);
1748 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1751 /* For all PCI errors, we should reset the chip. */
1752 return 1;
1755 /* All non-normal interrupt conditions get serviced here.
1756 * Returns non-zero if we should just exit the interrupt
1757 * handler right now (ie. if we reset the card which invalidates
1758 * all of the other original irq status bits).
1760 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1761 u32 status)
1763 if (status & INTR_RX_TAG_ERROR) {
1764 /* corrupt RX tag framing */
1765 if (netif_msg_rx_err(cp))
1766 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1767 cp->dev->name);
1768 spin_lock(&cp->stat_lock[0]);
1769 cp->net_stats[0].rx_errors++;
1770 spin_unlock(&cp->stat_lock[0]);
1771 goto do_reset;
1774 if (status & INTR_RX_LEN_MISMATCH) {
1775 /* length mismatch. */
1776 if (netif_msg_rx_err(cp))
1777 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1778 cp->dev->name);
1779 spin_lock(&cp->stat_lock[0]);
1780 cp->net_stats[0].rx_errors++;
1781 spin_unlock(&cp->stat_lock[0]);
1782 goto do_reset;
1785 if (status & INTR_PCS_STATUS) {
1786 if (cas_pcs_interrupt(dev, cp, status))
1787 goto do_reset;
1790 if (status & INTR_TX_MAC_STATUS) {
1791 if (cas_txmac_interrupt(dev, cp, status))
1792 goto do_reset;
1795 if (status & INTR_RX_MAC_STATUS) {
1796 if (cas_rxmac_interrupt(dev, cp, status))
1797 goto do_reset;
1800 if (status & INTR_MAC_CTRL_STATUS) {
1801 if (cas_mac_interrupt(dev, cp, status))
1802 goto do_reset;
1805 if (status & INTR_MIF_STATUS) {
1806 if (cas_mif_interrupt(dev, cp, status))
1807 goto do_reset;
1810 if (status & INTR_PCI_ERROR_STATUS) {
1811 if (cas_pci_interrupt(dev, cp, status))
1812 goto do_reset;
1814 return 0;
1816 do_reset:
1817 #if 1
1818 atomic_inc(&cp->reset_task_pending);
1819 atomic_inc(&cp->reset_task_pending_all);
1820 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1821 dev->name, status);
1822 schedule_work(&cp->reset_task);
1823 #else
1824 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1825 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1826 schedule_work(&cp->reset_task);
1827 #endif
1828 return 1;
1831 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1832 * determining whether to do a netif_stop/wakeup
1834 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1835 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1836 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1837 const int len)
1839 unsigned long off = addr + len;
1841 if (CAS_TABORT(cp) == 1)
1842 return 0;
1843 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1844 return 0;
1845 return TX_TARGET_ABORT_LEN;
1848 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1850 struct cas_tx_desc *txds;
1851 struct sk_buff **skbs;
1852 struct net_device *dev = cp->dev;
1853 int entry, count;
1855 spin_lock(&cp->tx_lock[ring]);
1856 txds = cp->init_txds[ring];
1857 skbs = cp->tx_skbs[ring];
1858 entry = cp->tx_old[ring];
1860 count = TX_BUFF_COUNT(ring, entry, limit);
1861 while (entry != limit) {
1862 struct sk_buff *skb = skbs[entry];
1863 dma_addr_t daddr;
1864 u32 dlen;
1865 int frag;
1867 if (!skb) {
1868 /* this should never occur */
1869 entry = TX_DESC_NEXT(ring, entry);
1870 continue;
1873 /* however, we might get only a partial skb release. */
1874 count -= skb_shinfo(skb)->nr_frags +
1875 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1876 if (count < 0)
1877 break;
1879 if (netif_msg_tx_done(cp))
1880 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1881 cp->dev->name, ring, entry);
1883 skbs[entry] = NULL;
1884 cp->tx_tiny_use[ring][entry].nbufs = 0;
1886 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1887 struct cas_tx_desc *txd = txds + entry;
1889 daddr = le64_to_cpu(txd->buffer);
1890 dlen = CAS_VAL(TX_DESC_BUFLEN,
1891 le64_to_cpu(txd->control));
1892 pci_unmap_page(cp->pdev, daddr, dlen,
1893 PCI_DMA_TODEVICE);
1894 entry = TX_DESC_NEXT(ring, entry);
1896 /* tiny buffer may follow */
1897 if (cp->tx_tiny_use[ring][entry].used) {
1898 cp->tx_tiny_use[ring][entry].used = 0;
1899 entry = TX_DESC_NEXT(ring, entry);
1903 spin_lock(&cp->stat_lock[ring]);
1904 cp->net_stats[ring].tx_packets++;
1905 cp->net_stats[ring].tx_bytes += skb->len;
1906 spin_unlock(&cp->stat_lock[ring]);
1907 dev_kfree_skb_irq(skb);
1909 cp->tx_old[ring] = entry;
1911 /* this is wrong for multiple tx rings. the net device needs
1912 * multiple queues for this to do the right thing. we wait
1913 * for 2*packets to be available when using tiny buffers
1915 if (netif_queue_stopped(dev) &&
1916 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1917 netif_wake_queue(dev);
1918 spin_unlock(&cp->tx_lock[ring]);
1921 static void cas_tx(struct net_device *dev, struct cas *cp,
1922 u32 status)
1924 int limit, ring;
1925 #ifdef USE_TX_COMPWB
1926 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1927 #endif
1928 if (netif_msg_intr(cp))
1929 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1930 cp->dev->name, status, (unsigned long long)compwb);
1931 /* process all the rings */
1932 for (ring = 0; ring < N_TX_RINGS; ring++) {
1933 #ifdef USE_TX_COMPWB
1934 /* use the completion writeback registers */
1935 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1936 CAS_VAL(TX_COMPWB_LSB, compwb);
1937 compwb = TX_COMPWB_NEXT(compwb);
1938 #else
1939 limit = readl(cp->regs + REG_TX_COMPN(ring));
1940 #endif
1941 if (cp->tx_old[ring] != limit)
1942 cas_tx_ringN(cp, ring, limit);
1947 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1948 int entry, const u64 *words,
1949 struct sk_buff **skbref)
1951 int dlen, hlen, len, i, alloclen;
1952 int off, swivel = RX_SWIVEL_OFF_VAL;
1953 struct cas_page *page;
1954 struct sk_buff *skb;
1955 void *addr, *crcaddr;
1956 __sum16 csum;
1957 char *p;
1959 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1960 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1961 len = hlen + dlen;
1963 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1964 alloclen = len;
1965 else
1966 alloclen = max(hlen, RX_COPY_MIN);
1968 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1969 if (skb == NULL)
1970 return -1;
1972 *skbref = skb;
1973 skb_reserve(skb, swivel);
1975 p = skb->data;
1976 addr = crcaddr = NULL;
1977 if (hlen) { /* always copy header pages */
1978 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1979 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1980 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1981 swivel;
1983 i = hlen;
1984 if (!dlen) /* attach FCS */
1985 i += cp->crc_size;
1986 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1987 PCI_DMA_FROMDEVICE);
1988 addr = cas_page_map(page->buffer);
1989 memcpy(p, addr + off, i);
1990 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1991 PCI_DMA_FROMDEVICE);
1992 cas_page_unmap(addr);
1993 RX_USED_ADD(page, 0x100);
1994 p += hlen;
1995 swivel = 0;
1999 if (alloclen < (hlen + dlen)) {
2000 skb_frag_t *frag = skb_shinfo(skb)->frags;
2002 /* normal or jumbo packets. we use frags */
2003 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2007 hlen = min(cp->page_size - off, dlen);
2008 if (hlen < 0) {
2009 if (netif_msg_rx_err(cp)) {
2010 printk(KERN_DEBUG "%s: rx page overflow: "
2011 "%d\n", cp->dev->name, hlen);
2013 dev_kfree_skb_irq(skb);
2014 return -1;
2016 i = hlen;
2017 if (i == dlen) /* attach FCS */
2018 i += cp->crc_size;
2019 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2020 PCI_DMA_FROMDEVICE);
2022 /* make sure we always copy a header */
2023 swivel = 0;
2024 if (p == (char *) skb->data) { /* not split */
2025 addr = cas_page_map(page->buffer);
2026 memcpy(p, addr + off, RX_COPY_MIN);
2027 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2028 PCI_DMA_FROMDEVICE);
2029 cas_page_unmap(addr);
2030 off += RX_COPY_MIN;
2031 swivel = RX_COPY_MIN;
2032 RX_USED_ADD(page, cp->mtu_stride);
2033 } else {
2034 RX_USED_ADD(page, hlen);
2036 skb_put(skb, alloclen);
2038 skb_shinfo(skb)->nr_frags++;
2039 skb->data_len += hlen - swivel;
2040 skb->truesize += hlen - swivel;
2041 skb->len += hlen - swivel;
2043 get_page(page->buffer);
2044 frag->page = page->buffer;
2045 frag->page_offset = off;
2046 frag->size = hlen - swivel;
2048 /* any more data? */
2049 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2050 hlen = dlen;
2051 off = 0;
2053 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2054 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2055 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2056 hlen + cp->crc_size,
2057 PCI_DMA_FROMDEVICE);
2058 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2059 hlen + cp->crc_size,
2060 PCI_DMA_FROMDEVICE);
2062 skb_shinfo(skb)->nr_frags++;
2063 skb->data_len += hlen;
2064 skb->len += hlen;
2065 frag++;
2067 get_page(page->buffer);
2068 frag->page = page->buffer;
2069 frag->page_offset = 0;
2070 frag->size = hlen;
2071 RX_USED_ADD(page, hlen + cp->crc_size);
2074 if (cp->crc_size) {
2075 addr = cas_page_map(page->buffer);
2076 crcaddr = addr + off + hlen;
2079 } else {
2080 /* copying packet */
2081 if (!dlen)
2082 goto end_copy_pkt;
2084 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2085 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2086 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2087 hlen = min(cp->page_size - off, dlen);
2088 if (hlen < 0) {
2089 if (netif_msg_rx_err(cp)) {
2090 printk(KERN_DEBUG "%s: rx page overflow: "
2091 "%d\n", cp->dev->name, hlen);
2093 dev_kfree_skb_irq(skb);
2094 return -1;
2096 i = hlen;
2097 if (i == dlen) /* attach FCS */
2098 i += cp->crc_size;
2099 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2100 PCI_DMA_FROMDEVICE);
2101 addr = cas_page_map(page->buffer);
2102 memcpy(p, addr + off, i);
2103 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2104 PCI_DMA_FROMDEVICE);
2105 cas_page_unmap(addr);
2106 if (p == (char *) skb->data) /* not split */
2107 RX_USED_ADD(page, cp->mtu_stride);
2108 else
2109 RX_USED_ADD(page, i);
2111 /* any more data? */
2112 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2113 p += hlen;
2114 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2115 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2116 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2117 dlen + cp->crc_size,
2118 PCI_DMA_FROMDEVICE);
2119 addr = cas_page_map(page->buffer);
2120 memcpy(p, addr, dlen + cp->crc_size);
2121 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2122 dlen + cp->crc_size,
2123 PCI_DMA_FROMDEVICE);
2124 cas_page_unmap(addr);
2125 RX_USED_ADD(page, dlen + cp->crc_size);
2127 end_copy_pkt:
2128 if (cp->crc_size) {
2129 addr = NULL;
2130 crcaddr = skb->data + alloclen;
2132 skb_put(skb, alloclen);
2135 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2136 if (cp->crc_size) {
2137 /* checksum includes FCS. strip it out. */
2138 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2139 csum_unfold(csum)));
2140 if (addr)
2141 cas_page_unmap(addr);
2143 skb->csum = csum_unfold(~csum);
2144 skb->ip_summed = CHECKSUM_COMPLETE;
2145 skb->protocol = eth_type_trans(skb, cp->dev);
2146 return len;
2150 /* we can handle up to 64 rx flows at a time. we do the same thing
2151 * as nonreassm except that we batch up the buffers.
2152 * NOTE: we currently just treat each flow as a bunch of packets that
2153 * we pass up. a better way would be to coalesce the packets
2154 * into a jumbo packet. to do that, we need to do the following:
2155 * 1) the first packet will have a clean split between header and
2156 * data. save both.
2157 * 2) each time the next flow packet comes in, extend the
2158 * data length and merge the checksums.
2159 * 3) on flow release, fix up the header.
2160 * 4) make sure the higher layer doesn't care.
2161 * because packets get coalesced, we shouldn't run into fragment count
2162 * issues.
2164 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2165 struct sk_buff *skb)
2167 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2168 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2170 /* this is protected at a higher layer, so no need to
2171 * do any additional locking here. stick the buffer
2172 * at the end.
2174 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2175 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2176 while ((skb = __skb_dequeue(flow))) {
2177 cas_skb_release(skb);
2182 /* put rx descriptor back on ring. if a buffer is in use by a higher
2183 * layer, this will need to put in a replacement.
2185 static void cas_post_page(struct cas *cp, const int ring, const int index)
2187 cas_page_t *new;
2188 int entry;
2190 entry = cp->rx_old[ring];
2192 new = cas_page_swap(cp, ring, index);
2193 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2194 cp->init_rxds[ring][entry].index =
2195 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2196 CAS_BASE(RX_INDEX_RING, ring));
2198 entry = RX_DESC_ENTRY(ring, entry + 1);
2199 cp->rx_old[ring] = entry;
2201 if (entry % 4)
2202 return;
2204 if (ring == 0)
2205 writel(entry, cp->regs + REG_RX_KICK);
2206 else if ((N_RX_DESC_RINGS > 1) &&
2207 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2208 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2212 /* only when things are bad */
2213 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2215 unsigned int entry, last, count, released;
2216 int cluster;
2217 cas_page_t **page = cp->rx_pages[ring];
2219 entry = cp->rx_old[ring];
2221 if (netif_msg_intr(cp))
2222 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2223 cp->dev->name, ring, entry);
2225 cluster = -1;
2226 count = entry & 0x3;
2227 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2228 released = 0;
2229 while (entry != last) {
2230 /* make a new buffer if it's still in use */
2231 if (page_count(page[entry]->buffer) > 1) {
2232 cas_page_t *new = cas_page_dequeue(cp);
2233 if (!new) {
2234 /* let the timer know that we need to
2235 * do this again
2237 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2238 if (!timer_pending(&cp->link_timer))
2239 mod_timer(&cp->link_timer, jiffies +
2240 CAS_LINK_FAST_TIMEOUT);
2241 cp->rx_old[ring] = entry;
2242 cp->rx_last[ring] = num ? num - released : 0;
2243 return -ENOMEM;
2245 spin_lock(&cp->rx_inuse_lock);
2246 list_add(&page[entry]->list, &cp->rx_inuse_list);
2247 spin_unlock(&cp->rx_inuse_lock);
2248 cp->init_rxds[ring][entry].buffer =
2249 cpu_to_le64(new->dma_addr);
2250 page[entry] = new;
2254 if (++count == 4) {
2255 cluster = entry;
2256 count = 0;
2258 released++;
2259 entry = RX_DESC_ENTRY(ring, entry + 1);
2261 cp->rx_old[ring] = entry;
2263 if (cluster < 0)
2264 return 0;
2266 if (ring == 0)
2267 writel(cluster, cp->regs + REG_RX_KICK);
2268 else if ((N_RX_DESC_RINGS > 1) &&
2269 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2270 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2271 return 0;
2275 /* process a completion ring. packets are set up in three basic ways:
2276 * small packets: should be copied header + data in single buffer.
2277 * large packets: header and data in a single buffer.
2278 * split packets: header in a separate buffer from data.
2279 * data may be in multiple pages. data may be > 256
2280 * bytes but in a single page.
2282 * NOTE: RX page posting is done in this routine as well. while there's
2283 * the capability of using multiple RX completion rings, it isn't
2284 * really worthwhile due to the fact that the page posting will
2285 * force serialization on the single descriptor ring.
2287 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2289 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2290 int entry, drops;
2291 int npackets = 0;
2293 if (netif_msg_intr(cp))
2294 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2295 cp->dev->name, ring,
2296 readl(cp->regs + REG_RX_COMP_HEAD),
2297 cp->rx_new[ring]);
2299 entry = cp->rx_new[ring];
2300 drops = 0;
2301 while (1) {
2302 struct cas_rx_comp *rxc = rxcs + entry;
2303 struct sk_buff *skb;
2304 int type, len;
2305 u64 words[4];
2306 int i, dring;
2308 words[0] = le64_to_cpu(rxc->word1);
2309 words[1] = le64_to_cpu(rxc->word2);
2310 words[2] = le64_to_cpu(rxc->word3);
2311 words[3] = le64_to_cpu(rxc->word4);
2313 /* don't touch if still owned by hw */
2314 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2315 if (type == 0)
2316 break;
2318 /* hw hasn't cleared the zero bit yet */
2319 if (words[3] & RX_COMP4_ZERO) {
2320 break;
2323 /* get info on the packet */
2324 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2325 spin_lock(&cp->stat_lock[ring]);
2326 cp->net_stats[ring].rx_errors++;
2327 if (words[3] & RX_COMP4_LEN_MISMATCH)
2328 cp->net_stats[ring].rx_length_errors++;
2329 if (words[3] & RX_COMP4_BAD)
2330 cp->net_stats[ring].rx_crc_errors++;
2331 spin_unlock(&cp->stat_lock[ring]);
2333 /* We'll just return it to Cassini. */
2334 drop_it:
2335 spin_lock(&cp->stat_lock[ring]);
2336 ++cp->net_stats[ring].rx_dropped;
2337 spin_unlock(&cp->stat_lock[ring]);
2338 goto next;
2341 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2342 if (len < 0) {
2343 ++drops;
2344 goto drop_it;
2347 /* see if it's a flow re-assembly or not. the driver
2348 * itself handles release back up.
2350 if (RX_DONT_BATCH || (type == 0x2)) {
2351 /* non-reassm: these always get released */
2352 cas_skb_release(skb);
2353 } else {
2354 cas_rx_flow_pkt(cp, words, skb);
2357 spin_lock(&cp->stat_lock[ring]);
2358 cp->net_stats[ring].rx_packets++;
2359 cp->net_stats[ring].rx_bytes += len;
2360 spin_unlock(&cp->stat_lock[ring]);
2361 cp->dev->last_rx = jiffies;
2363 next:
2364 npackets++;
2366 /* should it be released? */
2367 if (words[0] & RX_COMP1_RELEASE_HDR) {
2368 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2369 dring = CAS_VAL(RX_INDEX_RING, i);
2370 i = CAS_VAL(RX_INDEX_NUM, i);
2371 cas_post_page(cp, dring, i);
2374 if (words[0] & RX_COMP1_RELEASE_DATA) {
2375 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2376 dring = CAS_VAL(RX_INDEX_RING, i);
2377 i = CAS_VAL(RX_INDEX_NUM, i);
2378 cas_post_page(cp, dring, i);
2381 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2382 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2383 dring = CAS_VAL(RX_INDEX_RING, i);
2384 i = CAS_VAL(RX_INDEX_NUM, i);
2385 cas_post_page(cp, dring, i);
2388 /* skip to the next entry */
2389 entry = RX_COMP_ENTRY(ring, entry + 1 +
2390 CAS_VAL(RX_COMP1_SKIP, words[0]));
2391 #ifdef USE_NAPI
2392 if (budget && (npackets >= budget))
2393 break;
2394 #endif
2396 cp->rx_new[ring] = entry;
2398 if (drops)
2399 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2400 cp->dev->name);
2401 return npackets;
2405 /* put completion entries back on the ring */
2406 static void cas_post_rxcs_ringN(struct net_device *dev,
2407 struct cas *cp, int ring)
2409 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410 int last, entry;
2412 last = cp->rx_cur[ring];
2413 entry = cp->rx_new[ring];
2414 if (netif_msg_intr(cp))
2415 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2416 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2417 entry);
2419 /* zero and re-mark descriptors */
2420 while (last != entry) {
2421 cas_rxc_init(rxc + last);
2422 last = RX_COMP_ENTRY(ring, last + 1);
2424 cp->rx_cur[ring] = last;
2426 if (ring == 0)
2427 writel(last, cp->regs + REG_RX_COMP_TAIL);
2428 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2429 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2434 /* cassini can use all four PCI interrupts for the completion ring.
2435 * rings 3 and 4 are identical
2437 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2438 static inline void cas_handle_irqN(struct net_device *dev,
2439 struct cas *cp, const u32 status,
2440 const int ring)
2442 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2443 cas_post_rxcs_ringN(dev, cp, ring);
2446 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2448 struct net_device *dev = dev_id;
2449 struct cas *cp = netdev_priv(dev);
2450 unsigned long flags;
2451 int ring;
2452 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2454 /* check for shared irq */
2455 if (status == 0)
2456 return IRQ_NONE;
2458 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2459 spin_lock_irqsave(&cp->lock, flags);
2460 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462 cas_mask_intr(cp);
2463 netif_rx_schedule(dev, &cp->napi);
2464 #else
2465 cas_rx_ringN(cp, ring, 0);
2466 #endif
2467 status &= ~INTR_RX_DONE_ALT;
2470 if (status)
2471 cas_handle_irqN(dev, cp, status, ring);
2472 spin_unlock_irqrestore(&cp->lock, flags);
2473 return IRQ_HANDLED;
2475 #endif
2477 #ifdef USE_PCI_INTB
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 if (status & INTR_RX_BUF_UNAVAIL_1) {
2482 /* Frame arrived, no free RX buffers available.
2483 * NOTE: we can get this on a link transition. */
2484 cas_post_rxds_ringN(cp, 1, 0);
2485 spin_lock(&cp->stat_lock[1]);
2486 cp->net_stats[1].rx_dropped++;
2487 spin_unlock(&cp->stat_lock[1]);
2490 if (status & INTR_RX_BUF_AE_1)
2491 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492 RX_AE_FREEN_VAL(1));
2494 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495 cas_post_rxcs_ringN(cp, 1);
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 struct net_device *dev = dev_id;
2502 struct cas *cp = netdev_priv(dev);
2503 unsigned long flags;
2504 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506 /* check for shared interrupt */
2507 if (status == 0)
2508 return IRQ_NONE;
2510 spin_lock_irqsave(&cp->lock, flags);
2511 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512 #ifdef USE_NAPI
2513 cas_mask_intr(cp);
2514 netif_rx_schedule(dev, &cp->napi);
2515 #else
2516 cas_rx_ringN(cp, 1, 0);
2517 #endif
2518 status &= ~INTR_RX_DONE_ALT;
2520 if (status)
2521 cas_handle_irq1(cp, status);
2522 spin_unlock_irqrestore(&cp->lock, flags);
2523 return IRQ_HANDLED;
2525 #endif
2527 static inline void cas_handle_irq(struct net_device *dev,
2528 struct cas *cp, const u32 status)
2530 /* housekeeping interrupts */
2531 if (status & INTR_ERROR_MASK)
2532 cas_abnormal_irq(dev, cp, status);
2534 if (status & INTR_RX_BUF_UNAVAIL) {
2535 /* Frame arrived, no free RX buffers available.
2536 * NOTE: we can get this on a link transition.
2538 cas_post_rxds_ringN(cp, 0, 0);
2539 spin_lock(&cp->stat_lock[0]);
2540 cp->net_stats[0].rx_dropped++;
2541 spin_unlock(&cp->stat_lock[0]);
2542 } else if (status & INTR_RX_BUF_AE) {
2543 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544 RX_AE_FREEN_VAL(0));
2547 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548 cas_post_rxcs_ringN(dev, cp, 0);
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 struct net_device *dev = dev_id;
2554 struct cas *cp = netdev_priv(dev);
2555 unsigned long flags;
2556 u32 status = readl(cp->regs + REG_INTR_STATUS);
2558 if (status == 0)
2559 return IRQ_NONE;
2561 spin_lock_irqsave(&cp->lock, flags);
2562 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563 cas_tx(dev, cp, status);
2564 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567 if (status & INTR_RX_DONE) {
2568 #ifdef USE_NAPI
2569 cas_mask_intr(cp);
2570 netif_rx_schedule(dev, &cp->napi);
2571 #else
2572 cas_rx_ringN(cp, 0, 0);
2573 #endif
2574 status &= ~INTR_RX_DONE;
2577 if (status)
2578 cas_handle_irq(dev, cp, status);
2579 spin_unlock_irqrestore(&cp->lock, flags);
2580 return IRQ_HANDLED;
2584 #ifdef USE_NAPI
2585 static int cas_poll(struct napi_struct *napi, int budget)
2587 struct cas *cp = container_of(napi, struct cas, napi);
2588 struct net_device *dev = cp->dev;
2589 int i, enable_intr, credits;
2590 u32 status = readl(cp->regs + REG_INTR_STATUS);
2591 unsigned long flags;
2593 spin_lock_irqsave(&cp->lock, flags);
2594 cas_tx(dev, cp, status);
2595 spin_unlock_irqrestore(&cp->lock, flags);
2597 /* NAPI rx packets. we spread the credits across all of the
2598 * rxc rings
2600 * to make sure we're fair with the work we loop through each
2601 * ring N_RX_COMP_RING times with a request of
2602 * budget / N_RX_COMP_RINGS
2604 enable_intr = 1;
2605 credits = 0;
2606 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607 int j;
2608 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610 if (credits >= budget) {
2611 enable_intr = 0;
2612 goto rx_comp;
2617 rx_comp:
2618 /* final rx completion */
2619 spin_lock_irqsave(&cp->lock, flags);
2620 if (status)
2621 cas_handle_irq(dev, cp, status);
2623 #ifdef USE_PCI_INTB
2624 if (N_RX_COMP_RINGS > 1) {
2625 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626 if (status)
2627 cas_handle_irq1(dev, cp, status);
2629 #endif
2631 #ifdef USE_PCI_INTC
2632 if (N_RX_COMP_RINGS > 2) {
2633 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634 if (status)
2635 cas_handle_irqN(dev, cp, status, 2);
2637 #endif
2639 #ifdef USE_PCI_INTD
2640 if (N_RX_COMP_RINGS > 3) {
2641 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642 if (status)
2643 cas_handle_irqN(dev, cp, status, 3);
2645 #endif
2646 spin_unlock_irqrestore(&cp->lock, flags);
2647 if (enable_intr) {
2648 netif_rx_complete(dev, napi);
2649 cas_unmask_intr(cp);
2651 return credits;
2653 #endif
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2658 struct cas *cp = netdev_priv(dev);
2660 cas_disable_irq(cp, 0);
2661 cas_interrupt(cp->pdev->irq, dev);
2662 cas_enable_irq(cp, 0);
2664 #ifdef USE_PCI_INTB
2665 if (N_RX_COMP_RINGS > 1) {
2666 /* cas_interrupt1(); */
2668 #endif
2669 #ifdef USE_PCI_INTC
2670 if (N_RX_COMP_RINGS > 2) {
2671 /* cas_interruptN(); */
2673 #endif
2674 #ifdef USE_PCI_INTD
2675 if (N_RX_COMP_RINGS > 3) {
2676 /* cas_interruptN(); */
2678 #endif
2680 #endif
2682 static void cas_tx_timeout(struct net_device *dev)
2684 struct cas *cp = netdev_priv(dev);
2686 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2687 if (!cp->hw_running) {
2688 printk("%s: hrm.. hw not running!\n", dev->name);
2689 return;
2692 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2693 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2695 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2696 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2698 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2699 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700 dev->name,
2701 readl(cp->regs + REG_TX_CFG),
2702 readl(cp->regs + REG_MAC_TX_STATUS),
2703 readl(cp->regs + REG_MAC_TX_CFG),
2704 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707 readl(cp->regs + REG_TX_SM_1),
2708 readl(cp->regs + REG_TX_SM_2));
2710 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2711 dev->name,
2712 readl(cp->regs + REG_RX_CFG),
2713 readl(cp->regs + REG_MAC_RX_STATUS),
2714 readl(cp->regs + REG_MAC_RX_CFG));
2716 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2717 dev->name,
2718 readl(cp->regs + REG_HP_STATE_MACHINE),
2719 readl(cp->regs + REG_HP_STATUS0),
2720 readl(cp->regs + REG_HP_STATUS1),
2721 readl(cp->regs + REG_HP_STATUS2));
2723 #if 1
2724 atomic_inc(&cp->reset_task_pending);
2725 atomic_inc(&cp->reset_task_pending_all);
2726 schedule_work(&cp->reset_task);
2727 #else
2728 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2729 schedule_work(&cp->reset_task);
2730 #endif
2733 static inline int cas_intme(int ring, int entry)
2735 /* Algorithm: IRQ every 1/2 of descriptors. */
2736 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2737 return 1;
2738 return 0;
2742 static void cas_write_txd(struct cas *cp, int ring, int entry,
2743 dma_addr_t mapping, int len, u64 ctrl, int last)
2745 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2747 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2748 if (cas_intme(ring, entry))
2749 ctrl |= TX_DESC_INTME;
2750 if (last)
2751 ctrl |= TX_DESC_EOF;
2752 txd->control = cpu_to_le64(ctrl);
2753 txd->buffer = cpu_to_le64(mapping);
2756 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2757 const int entry)
2759 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2762 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2763 const int entry, const int tentry)
2765 cp->tx_tiny_use[ring][tentry].nbufs++;
2766 cp->tx_tiny_use[ring][entry].used = 1;
2767 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2770 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2771 struct sk_buff *skb)
2773 struct net_device *dev = cp->dev;
2774 int entry, nr_frags, frag, tabort, tentry;
2775 dma_addr_t mapping;
2776 unsigned long flags;
2777 u64 ctrl;
2778 u32 len;
2780 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2782 /* This is a hard error, log it. */
2783 if (TX_BUFFS_AVAIL(cp, ring) <=
2784 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2785 netif_stop_queue(dev);
2786 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2787 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2788 "queue awake!\n", dev->name);
2789 return 1;
2792 ctrl = 0;
2793 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2794 const u64 csum_start_off = skb_transport_offset(skb);
2795 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2797 ctrl = TX_DESC_CSUM_EN |
2798 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2799 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2802 entry = cp->tx_new[ring];
2803 cp->tx_skbs[ring][entry] = skb;
2805 nr_frags = skb_shinfo(skb)->nr_frags;
2806 len = skb_headlen(skb);
2807 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2808 offset_in_page(skb->data), len,
2809 PCI_DMA_TODEVICE);
2811 tentry = entry;
2812 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2813 if (unlikely(tabort)) {
2814 /* NOTE: len is always > tabort */
2815 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2816 ctrl | TX_DESC_SOF, 0);
2817 entry = TX_DESC_NEXT(ring, entry);
2819 skb_copy_from_linear_data_offset(skb, len - tabort,
2820 tx_tiny_buf(cp, ring, entry), tabort);
2821 mapping = tx_tiny_map(cp, ring, entry, tentry);
2822 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2823 (nr_frags == 0));
2824 } else {
2825 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2826 TX_DESC_SOF, (nr_frags == 0));
2828 entry = TX_DESC_NEXT(ring, entry);
2830 for (frag = 0; frag < nr_frags; frag++) {
2831 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2833 len = fragp->size;
2834 mapping = pci_map_page(cp->pdev, fragp->page,
2835 fragp->page_offset, len,
2836 PCI_DMA_TODEVICE);
2838 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2839 if (unlikely(tabort)) {
2840 void *addr;
2842 /* NOTE: len is always > tabort */
2843 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2844 ctrl, 0);
2845 entry = TX_DESC_NEXT(ring, entry);
2847 addr = cas_page_map(fragp->page);
2848 memcpy(tx_tiny_buf(cp, ring, entry),
2849 addr + fragp->page_offset + len - tabort,
2850 tabort);
2851 cas_page_unmap(addr);
2852 mapping = tx_tiny_map(cp, ring, entry, tentry);
2853 len = tabort;
2856 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2857 (frag + 1 == nr_frags));
2858 entry = TX_DESC_NEXT(ring, entry);
2861 cp->tx_new[ring] = entry;
2862 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2863 netif_stop_queue(dev);
2865 if (netif_msg_tx_queued(cp))
2866 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2867 "avail %d\n",
2868 dev->name, ring, entry, skb->len,
2869 TX_BUFFS_AVAIL(cp, ring));
2870 writel(entry, cp->regs + REG_TX_KICKN(ring));
2871 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2872 return 0;
2875 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2877 struct cas *cp = netdev_priv(dev);
2879 /* this is only used as a load-balancing hint, so it doesn't
2880 * need to be SMP safe
2882 static int ring;
2884 if (skb_padto(skb, cp->min_frame_size))
2885 return 0;
2887 /* XXX: we need some higher-level QoS hooks to steer packets to
2888 * individual queues.
2890 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2891 return 1;
2892 dev->trans_start = jiffies;
2893 return 0;
2896 static void cas_init_tx_dma(struct cas *cp)
2898 u64 desc_dma = cp->block_dvma;
2899 unsigned long off;
2900 u32 val;
2901 int i;
2903 /* set up tx completion writeback registers. must be 8-byte aligned */
2904 #ifdef USE_TX_COMPWB
2905 off = offsetof(struct cas_init_block, tx_compwb);
2906 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2907 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2908 #endif
2910 /* enable completion writebacks, enable paced mode,
2911 * disable read pipe, and disable pre-interrupt compwbs
2913 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2914 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2915 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2916 TX_CFG_INTR_COMPWB_DIS;
2918 /* write out tx ring info and tx desc bases */
2919 for (i = 0; i < MAX_TX_RINGS; i++) {
2920 off = (unsigned long) cp->init_txds[i] -
2921 (unsigned long) cp->init_block;
2923 val |= CAS_TX_RINGN_BASE(i);
2924 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2925 writel((desc_dma + off) & 0xffffffff, cp->regs +
2926 REG_TX_DBN_LOW(i));
2927 /* don't zero out the kick register here as the system
2928 * will wedge
2931 writel(val, cp->regs + REG_TX_CFG);
2933 /* program max burst sizes. these numbers should be different
2934 * if doing QoS.
2936 #ifdef USE_QOS
2937 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2938 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2939 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2940 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2941 #else
2942 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2943 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2944 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2945 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2946 #endif
2949 /* Must be invoked under cp->lock. */
2950 static inline void cas_init_dma(struct cas *cp)
2952 cas_init_tx_dma(cp);
2953 cas_init_rx_dma(cp);
2956 /* Must be invoked under cp->lock. */
2957 static u32 cas_setup_multicast(struct cas *cp)
2959 u32 rxcfg = 0;
2960 int i;
2962 if (cp->dev->flags & IFF_PROMISC) {
2963 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2965 } else if (cp->dev->flags & IFF_ALLMULTI) {
2966 for (i=0; i < 16; i++)
2967 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2968 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2970 } else {
2971 u16 hash_table[16];
2972 u32 crc;
2973 struct dev_mc_list *dmi = cp->dev->mc_list;
2974 int i;
2976 /* use the alternate mac address registers for the
2977 * first 15 multicast addresses
2979 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2980 if (!dmi) {
2981 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2982 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2983 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2984 continue;
2986 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2987 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2988 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2989 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2990 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2991 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2992 dmi = dmi->next;
2995 /* use hw hash table for the next series of
2996 * multicast addresses
2998 memset(hash_table, 0, sizeof(hash_table));
2999 while (dmi) {
3000 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3001 crc >>= 24;
3002 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3003 dmi = dmi->next;
3005 for (i=0; i < 16; i++)
3006 writel(hash_table[i], cp->regs +
3007 REG_MAC_HASH_TABLEN(i));
3008 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3011 return rxcfg;
3014 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3015 static void cas_clear_mac_err(struct cas *cp)
3017 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3018 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3019 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3020 writel(0, cp->regs + REG_MAC_COLL_LATE);
3021 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3022 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3023 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3024 writel(0, cp->regs + REG_MAC_LEN_ERR);
3025 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3026 writel(0, cp->regs + REG_MAC_FCS_ERR);
3027 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3031 static void cas_mac_reset(struct cas *cp)
3033 int i;
3035 /* do both TX and RX reset */
3036 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3037 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3039 /* wait for TX */
3040 i = STOP_TRIES;
3041 while (i-- > 0) {
3042 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3043 break;
3044 udelay(10);
3047 /* wait for RX */
3048 i = STOP_TRIES;
3049 while (i-- > 0) {
3050 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3051 break;
3052 udelay(10);
3055 if (readl(cp->regs + REG_MAC_TX_RESET) |
3056 readl(cp->regs + REG_MAC_RX_RESET))
3057 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3058 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3059 readl(cp->regs + REG_MAC_RX_RESET),
3060 readl(cp->regs + REG_MAC_STATE_MACHINE));
3064 /* Must be invoked under cp->lock. */
3065 static void cas_init_mac(struct cas *cp)
3067 unsigned char *e = &cp->dev->dev_addr[0];
3068 int i;
3069 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3070 u32 rxcfg;
3071 #endif
3072 cas_mac_reset(cp);
3074 /* setup core arbitration weight register */
3075 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3077 /* XXX Use pci_dma_burst_advice() */
3078 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3079 /* set the infinite burst register for chips that don't have
3080 * pci issues.
3082 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3083 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3084 #endif
3086 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3088 writel(0x00, cp->regs + REG_MAC_IPG0);
3089 writel(0x08, cp->regs + REG_MAC_IPG1);
3090 writel(0x04, cp->regs + REG_MAC_IPG2);
3092 /* change later for 802.3z */
3093 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3095 /* min frame + FCS */
3096 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3098 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3099 * specify the maximum frame size to prevent RX tag errors on
3100 * oversized frames.
3102 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3103 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3104 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3105 cp->regs + REG_MAC_FRAMESIZE_MAX);
3107 /* NOTE: crc_size is used as a surrogate for half-duplex.
3108 * workaround saturn half-duplex issue by increasing preamble
3109 * size to 65 bytes.
3111 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3112 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3113 else
3114 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3115 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3116 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3117 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3119 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3121 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3122 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3123 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3124 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3125 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3127 /* setup mac address in perfect filter array */
3128 for (i = 0; i < 45; i++)
3129 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3131 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3132 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3133 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3135 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3136 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3137 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3139 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3140 cp->mac_rx_cfg = cas_setup_multicast(cp);
3141 #else
3142 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3143 * a writel does not seem to be necessary because Cassini
3144 * seems to preserve the configuration when we do the reset.
3145 * If the chip is in trouble, though, it is not clear if we
3146 * can really count on this behavior. cas_set_multicast uses
3147 * spin_lock_irqsave, but we are called only in cas_init_hw and
3148 * cas_init_hw is protected by cas_lock_all, which calls
3149 * spin_lock_irq (so it doesn't need to save the flags, and
3150 * we should be OK for the writel, as that is the only
3151 * difference).
3153 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3154 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3155 #endif
3156 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3157 cas_clear_mac_err(cp);
3158 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3160 /* Setup MAC interrupts. We want to get all of the interesting
3161 * counter expiration events, but we do not want to hear about
3162 * normal rx/tx as the DMA engine tells us that.
3164 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3165 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3167 /* Don't enable even the PAUSE interrupts for now, we
3168 * make no use of those events other than to record them.
3170 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3173 /* Must be invoked under cp->lock. */
3174 static void cas_init_pause_thresholds(struct cas *cp)
3176 /* Calculate pause thresholds. Setting the OFF threshold to the
3177 * full RX fifo size effectively disables PAUSE generation
3179 if (cp->rx_fifo_size <= (2 * 1024)) {
3180 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3181 } else {
3182 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3183 if (max_frame * 3 > cp->rx_fifo_size) {
3184 cp->rx_pause_off = 7104;
3185 cp->rx_pause_on = 960;
3186 } else {
3187 int off = (cp->rx_fifo_size - (max_frame * 2));
3188 int on = off - max_frame;
3189 cp->rx_pause_off = off;
3190 cp->rx_pause_on = on;
3195 static int cas_vpd_match(const void __iomem *p, const char *str)
3197 int len = strlen(str) + 1;
3198 int i;
3200 for (i = 0; i < len; i++) {
3201 if (readb(p + i) != str[i])
3202 return 0;
3204 return 1;
3208 /* get the mac address by reading the vpd information in the rom.
3209 * also get the phy type and determine if there's an entropy generator.
3210 * NOTE: this is a bit convoluted for the following reasons:
3211 * 1) vpd info has order-dependent mac addresses for multinic cards
3212 * 2) the only way to determine the nic order is to use the slot
3213 * number.
3214 * 3) fiber cards don't have bridges, so their slot numbers don't
3215 * mean anything.
3216 * 4) we don't actually know we have a fiber card until after
3217 * the mac addresses are parsed.
3219 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3220 const int offset)
3222 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3223 void __iomem *base, *kstart;
3224 int i, len;
3225 int found = 0;
3226 #define VPD_FOUND_MAC 0x01
3227 #define VPD_FOUND_PHY 0x02
3229 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3230 int mac_off = 0;
3232 /* give us access to the PROM */
3233 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3234 cp->regs + REG_BIM_LOCAL_DEV_EN);
3236 /* check for an expansion rom */
3237 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3238 goto use_random_mac_addr;
3240 /* search for beginning of vpd */
3241 base = NULL;
3242 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3243 /* check for PCIR */
3244 if ((readb(p + i + 0) == 0x50) &&
3245 (readb(p + i + 1) == 0x43) &&
3246 (readb(p + i + 2) == 0x49) &&
3247 (readb(p + i + 3) == 0x52)) {
3248 base = p + (readb(p + i + 8) |
3249 (readb(p + i + 9) << 8));
3250 break;
3254 if (!base || (readb(base) != 0x82))
3255 goto use_random_mac_addr;
3257 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3258 while (i < EXPANSION_ROM_SIZE) {
3259 if (readb(base + i) != 0x90) /* no vpd found */
3260 goto use_random_mac_addr;
3262 /* found a vpd field */
3263 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3265 /* extract keywords */
3266 kstart = base + i + 3;
3267 p = kstart;
3268 while ((p - kstart) < len) {
3269 int klen = readb(p + 2);
3270 int j;
3271 char type;
3273 p += 3;
3275 /* look for the following things:
3276 * -- correct length == 29
3277 * 3 (type) + 2 (size) +
3278 * 18 (strlen("local-mac-address") + 1) +
3279 * 6 (mac addr)
3280 * -- VPD Instance 'I'
3281 * -- VPD Type Bytes 'B'
3282 * -- VPD data length == 6
3283 * -- property string == local-mac-address
3285 * -- correct length == 24
3286 * 3 (type) + 2 (size) +
3287 * 12 (strlen("entropy-dev") + 1) +
3288 * 7 (strlen("vms110") + 1)
3289 * -- VPD Instance 'I'
3290 * -- VPD Type String 'B'
3291 * -- VPD data length == 7
3292 * -- property string == entropy-dev
3294 * -- correct length == 18
3295 * 3 (type) + 2 (size) +
3296 * 9 (strlen("phy-type") + 1) +
3297 * 4 (strlen("pcs") + 1)
3298 * -- VPD Instance 'I'
3299 * -- VPD Type String 'S'
3300 * -- VPD data length == 4
3301 * -- property string == phy-type
3303 * -- correct length == 23
3304 * 3 (type) + 2 (size) +
3305 * 14 (strlen("phy-interface") + 1) +
3306 * 4 (strlen("pcs") + 1)
3307 * -- VPD Instance 'I'
3308 * -- VPD Type String 'S'
3309 * -- VPD data length == 4
3310 * -- property string == phy-interface
3312 if (readb(p) != 'I')
3313 goto next;
3315 /* finally, check string and length */
3316 type = readb(p + 3);
3317 if (type == 'B') {
3318 if ((klen == 29) && readb(p + 4) == 6 &&
3319 cas_vpd_match(p + 5,
3320 "local-mac-address")) {
3321 if (mac_off++ > offset)
3322 goto next;
3324 /* set mac address */
3325 for (j = 0; j < 6; j++)
3326 dev_addr[j] =
3327 readb(p + 23 + j);
3328 goto found_mac;
3332 if (type != 'S')
3333 goto next;
3335 #ifdef USE_ENTROPY_DEV
3336 if ((klen == 24) &&
3337 cas_vpd_match(p + 5, "entropy-dev") &&
3338 cas_vpd_match(p + 17, "vms110")) {
3339 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3340 goto next;
3342 #endif
3344 if (found & VPD_FOUND_PHY)
3345 goto next;
3347 if ((klen == 18) && readb(p + 4) == 4 &&
3348 cas_vpd_match(p + 5, "phy-type")) {
3349 if (cas_vpd_match(p + 14, "pcs")) {
3350 phy_type = CAS_PHY_SERDES;
3351 goto found_phy;
3355 if ((klen == 23) && readb(p + 4) == 4 &&
3356 cas_vpd_match(p + 5, "phy-interface")) {
3357 if (cas_vpd_match(p + 19, "pcs")) {
3358 phy_type = CAS_PHY_SERDES;
3359 goto found_phy;
3362 found_mac:
3363 found |= VPD_FOUND_MAC;
3364 goto next;
3366 found_phy:
3367 found |= VPD_FOUND_PHY;
3369 next:
3370 p += klen;
3372 i += len + 3;
3375 use_random_mac_addr:
3376 if (found & VPD_FOUND_MAC)
3377 goto done;
3379 /* Sun MAC prefix then 3 random bytes. */
3380 printk(PFX "MAC address not found in ROM VPD\n");
3381 dev_addr[0] = 0x08;
3382 dev_addr[1] = 0x00;
3383 dev_addr[2] = 0x20;
3384 get_random_bytes(dev_addr + 3, 3);
3386 done:
3387 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3388 return phy_type;
3391 /* check pci invariants */
3392 static void cas_check_pci_invariants(struct cas *cp)
3394 struct pci_dev *pdev = cp->pdev;
3396 cp->cas_flags = 0;
3397 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3398 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3399 if (pdev->revision >= CAS_ID_REVPLUS)
3400 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3401 if (pdev->revision < CAS_ID_REVPLUS02u)
3402 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3404 /* Original Cassini supports HW CSUM, but it's not
3405 * enabled by default as it can trigger TX hangs.
3407 if (pdev->revision < CAS_ID_REV2)
3408 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3409 } else {
3410 /* Only sun has original cassini chips. */
3411 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3413 /* We use a flag because the same phy might be externally
3414 * connected.
3416 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3417 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3418 cp->cas_flags |= CAS_FLAG_SATURN;
3423 static int cas_check_invariants(struct cas *cp)
3425 struct pci_dev *pdev = cp->pdev;
3426 u32 cfg;
3427 int i;
3429 /* get page size for rx buffers. */
3430 cp->page_order = 0;
3431 #ifdef USE_PAGE_ORDER
3432 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3433 /* see if we can allocate larger pages */
3434 struct page *page = alloc_pages(GFP_ATOMIC,
3435 CAS_JUMBO_PAGE_SHIFT -
3436 PAGE_SHIFT);
3437 if (page) {
3438 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3439 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3440 } else {
3441 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3444 #endif
3445 cp->page_size = (PAGE_SIZE << cp->page_order);
3447 /* Fetch the FIFO configurations. */
3448 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3449 cp->rx_fifo_size = RX_FIFO_SIZE;
3451 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3452 * they're both connected.
3454 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3455 PCI_SLOT(pdev->devfn));
3456 if (cp->phy_type & CAS_PHY_SERDES) {
3457 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3458 return 0; /* no more checking needed */
3461 /* MII */
3462 cfg = readl(cp->regs + REG_MIF_CFG);
3463 if (cfg & MIF_CFG_MDIO_1) {
3464 cp->phy_type = CAS_PHY_MII_MDIO1;
3465 } else if (cfg & MIF_CFG_MDIO_0) {
3466 cp->phy_type = CAS_PHY_MII_MDIO0;
3469 cas_mif_poll(cp, 0);
3470 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3472 for (i = 0; i < 32; i++) {
3473 u32 phy_id;
3474 int j;
3476 for (j = 0; j < 3; j++) {
3477 cp->phy_addr = i;
3478 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3479 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3480 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3481 cp->phy_id = phy_id;
3482 goto done;
3486 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3487 readl(cp->regs + REG_MIF_STATE_MACHINE));
3488 return -1;
3490 done:
3491 /* see if we can do gigabit */
3492 cfg = cas_phy_read(cp, MII_BMSR);
3493 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3494 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3495 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3496 return 0;
3499 /* Must be invoked under cp->lock. */
3500 static inline void cas_start_dma(struct cas *cp)
3502 int i;
3503 u32 val;
3504 int txfailed = 0;
3506 /* enable dma */
3507 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3508 writel(val, cp->regs + REG_TX_CFG);
3509 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3510 writel(val, cp->regs + REG_RX_CFG);
3512 /* enable the mac */
3513 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3514 writel(val, cp->regs + REG_MAC_TX_CFG);
3515 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3516 writel(val, cp->regs + REG_MAC_RX_CFG);
3518 i = STOP_TRIES;
3519 while (i-- > 0) {
3520 val = readl(cp->regs + REG_MAC_TX_CFG);
3521 if ((val & MAC_TX_CFG_EN))
3522 break;
3523 udelay(10);
3525 if (i < 0) txfailed = 1;
3526 i = STOP_TRIES;
3527 while (i-- > 0) {
3528 val = readl(cp->regs + REG_MAC_RX_CFG);
3529 if ((val & MAC_RX_CFG_EN)) {
3530 if (txfailed) {
3531 printk(KERN_ERR
3532 "%s: enabling mac failed [tx:%08x:%08x].\n",
3533 cp->dev->name,
3534 readl(cp->regs + REG_MIF_STATE_MACHINE),
3535 readl(cp->regs + REG_MAC_STATE_MACHINE));
3537 goto enable_rx_done;
3539 udelay(10);
3541 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3542 cp->dev->name,
3543 (txfailed? "tx,rx":"rx"),
3544 readl(cp->regs + REG_MIF_STATE_MACHINE),
3545 readl(cp->regs + REG_MAC_STATE_MACHINE));
3547 enable_rx_done:
3548 cas_unmask_intr(cp); /* enable interrupts */
3549 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3550 writel(0, cp->regs + REG_RX_COMP_TAIL);
3552 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3553 if (N_RX_DESC_RINGS > 1)
3554 writel(RX_DESC_RINGN_SIZE(1) - 4,
3555 cp->regs + REG_PLUS_RX_KICK1);
3557 for (i = 1; i < N_RX_COMP_RINGS; i++)
3558 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3562 /* Must be invoked under cp->lock. */
3563 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3564 int *pause)
3566 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3567 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3568 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3569 if (val & PCS_MII_LPA_ASYM_PAUSE)
3570 *pause |= 0x10;
3571 *spd = 1000;
3574 /* Must be invoked under cp->lock. */
3575 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3576 int *pause)
3578 u32 val;
3580 *fd = 0;
3581 *spd = 10;
3582 *pause = 0;
3584 /* use GMII registers */
3585 val = cas_phy_read(cp, MII_LPA);
3586 if (val & CAS_LPA_PAUSE)
3587 *pause = 0x01;
3589 if (val & CAS_LPA_ASYM_PAUSE)
3590 *pause |= 0x10;
3592 if (val & LPA_DUPLEX)
3593 *fd = 1;
3594 if (val & LPA_100)
3595 *spd = 100;
3597 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3598 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3599 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3600 *spd = 1000;
3601 if (val & CAS_LPA_1000FULL)
3602 *fd = 1;
3606 /* A link-up condition has occurred, initialize and enable the
3607 * rest of the chip.
3609 * Must be invoked under cp->lock.
3611 static void cas_set_link_modes(struct cas *cp)
3613 u32 val;
3614 int full_duplex, speed, pause;
3616 full_duplex = 0;
3617 speed = 10;
3618 pause = 0;
3620 if (CAS_PHY_MII(cp->phy_type)) {
3621 cas_mif_poll(cp, 0);
3622 val = cas_phy_read(cp, MII_BMCR);
3623 if (val & BMCR_ANENABLE) {
3624 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3625 &pause);
3626 } else {
3627 if (val & BMCR_FULLDPLX)
3628 full_duplex = 1;
3630 if (val & BMCR_SPEED100)
3631 speed = 100;
3632 else if (val & CAS_BMCR_SPEED1000)
3633 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3634 1000 : 100;
3636 cas_mif_poll(cp, 1);
3638 } else {
3639 val = readl(cp->regs + REG_PCS_MII_CTRL);
3640 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3641 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3642 if (val & PCS_MII_CTRL_DUPLEX)
3643 full_duplex = 1;
3647 if (netif_msg_link(cp))
3648 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3649 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3651 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3652 if (CAS_PHY_MII(cp->phy_type)) {
3653 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3654 if (!full_duplex)
3655 val |= MAC_XIF_DISABLE_ECHO;
3657 if (full_duplex)
3658 val |= MAC_XIF_FDPLX_LED;
3659 if (speed == 1000)
3660 val |= MAC_XIF_GMII_MODE;
3661 writel(val, cp->regs + REG_MAC_XIF_CFG);
3663 /* deal with carrier and collision detect. */
3664 val = MAC_TX_CFG_IPG_EN;
3665 if (full_duplex) {
3666 val |= MAC_TX_CFG_IGNORE_CARRIER;
3667 val |= MAC_TX_CFG_IGNORE_COLL;
3668 } else {
3669 #ifndef USE_CSMA_CD_PROTO
3670 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3671 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3672 #endif
3674 /* val now set up for REG_MAC_TX_CFG */
3676 /* If gigabit and half-duplex, enable carrier extension
3677 * mode. increase slot time to 512 bytes as well.
3678 * else, disable it and make sure slot time is 64 bytes.
3679 * also activate checksum bug workaround
3681 if ((speed == 1000) && !full_duplex) {
3682 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3683 cp->regs + REG_MAC_TX_CFG);
3685 val = readl(cp->regs + REG_MAC_RX_CFG);
3686 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3687 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3688 cp->regs + REG_MAC_RX_CFG);
3690 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3692 cp->crc_size = 4;
3693 /* minimum size gigabit frame at half duplex */
3694 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3696 } else {
3697 writel(val, cp->regs + REG_MAC_TX_CFG);
3699 /* checksum bug workaround. don't strip FCS when in
3700 * half-duplex mode
3702 val = readl(cp->regs + REG_MAC_RX_CFG);
3703 if (full_duplex) {
3704 val |= MAC_RX_CFG_STRIP_FCS;
3705 cp->crc_size = 0;
3706 cp->min_frame_size = CAS_MIN_MTU;
3707 } else {
3708 val &= ~MAC_RX_CFG_STRIP_FCS;
3709 cp->crc_size = 4;
3710 cp->min_frame_size = CAS_MIN_FRAME;
3712 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3713 cp->regs + REG_MAC_RX_CFG);
3714 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3717 if (netif_msg_link(cp)) {
3718 if (pause & 0x01) {
3719 printk(KERN_INFO "%s: Pause is enabled "
3720 "(rxfifo: %d off: %d on: %d)\n",
3721 cp->dev->name,
3722 cp->rx_fifo_size,
3723 cp->rx_pause_off,
3724 cp->rx_pause_on);
3725 } else if (pause & 0x10) {
3726 printk(KERN_INFO "%s: TX pause enabled\n",
3727 cp->dev->name);
3728 } else {
3729 printk(KERN_INFO "%s: Pause is disabled\n",
3730 cp->dev->name);
3734 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3735 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3736 if (pause) { /* symmetric or asymmetric pause */
3737 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3738 if (pause & 0x01) { /* symmetric pause */
3739 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3742 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3743 cas_start_dma(cp);
3746 /* Must be invoked under cp->lock. */
3747 static void cas_init_hw(struct cas *cp, int restart_link)
3749 if (restart_link)
3750 cas_phy_init(cp);
3752 cas_init_pause_thresholds(cp);
3753 cas_init_mac(cp);
3754 cas_init_dma(cp);
3756 if (restart_link) {
3757 /* Default aneg parameters */
3758 cp->timer_ticks = 0;
3759 cas_begin_auto_negotiation(cp, NULL);
3760 } else if (cp->lstate == link_up) {
3761 cas_set_link_modes(cp);
3762 netif_carrier_on(cp->dev);
3766 /* Must be invoked under cp->lock. on earlier cassini boards,
3767 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3768 * let it settle out, and then restore pci state.
3770 static void cas_hard_reset(struct cas *cp)
3772 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3773 udelay(20);
3774 pci_restore_state(cp->pdev);
3778 static void cas_global_reset(struct cas *cp, int blkflag)
3780 int limit;
3782 /* issue a global reset. don't use RSTOUT. */
3783 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3784 /* For PCS, when the blkflag is set, we should set the
3785 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3786 * the last autonegotiation from being cleared. We'll
3787 * need some special handling if the chip is set into a
3788 * loopback mode.
3790 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3791 cp->regs + REG_SW_RESET);
3792 } else {
3793 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3796 /* need to wait at least 3ms before polling register */
3797 mdelay(3);
3799 limit = STOP_TRIES;
3800 while (limit-- > 0) {
3801 u32 val = readl(cp->regs + REG_SW_RESET);
3802 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3803 goto done;
3804 udelay(10);
3806 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3808 done:
3809 /* enable various BIM interrupts */
3810 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3811 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3813 /* clear out pci error status mask for handled errors.
3814 * we don't deal with DMA counter overflows as they happen
3815 * all the time.
3817 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3818 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3819 PCI_ERR_BIM_DMA_READ), cp->regs +
3820 REG_PCI_ERR_STATUS_MASK);
3822 /* set up for MII by default to address mac rx reset timeout
3823 * issue
3825 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3828 static void cas_reset(struct cas *cp, int blkflag)
3830 u32 val;
3832 cas_mask_intr(cp);
3833 cas_global_reset(cp, blkflag);
3834 cas_mac_reset(cp);
3835 cas_entropy_reset(cp);
3837 /* disable dma engines. */
3838 val = readl(cp->regs + REG_TX_CFG);
3839 val &= ~TX_CFG_DMA_EN;
3840 writel(val, cp->regs + REG_TX_CFG);
3842 val = readl(cp->regs + REG_RX_CFG);
3843 val &= ~RX_CFG_DMA_EN;
3844 writel(val, cp->regs + REG_RX_CFG);
3846 /* program header parser */
3847 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3848 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3849 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3850 } else {
3851 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3854 /* clear out error registers */
3855 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3856 cas_clear_mac_err(cp);
3857 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3860 /* Shut down the chip, must be called with pm_mutex held. */
3861 static void cas_shutdown(struct cas *cp)
3863 unsigned long flags;
3865 /* Make us not-running to avoid timers respawning */
3866 cp->hw_running = 0;
3868 del_timer_sync(&cp->link_timer);
3870 /* Stop the reset task */
3871 #if 0
3872 while (atomic_read(&cp->reset_task_pending_mtu) ||
3873 atomic_read(&cp->reset_task_pending_spare) ||
3874 atomic_read(&cp->reset_task_pending_all))
3875 schedule();
3877 #else
3878 while (atomic_read(&cp->reset_task_pending))
3879 schedule();
3880 #endif
3881 /* Actually stop the chip */
3882 cas_lock_all_save(cp, flags);
3883 cas_reset(cp, 0);
3884 if (cp->cas_flags & CAS_FLAG_SATURN)
3885 cas_phy_powerdown(cp);
3886 cas_unlock_all_restore(cp, flags);
3889 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3891 struct cas *cp = netdev_priv(dev);
3893 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3894 return -EINVAL;
3896 dev->mtu = new_mtu;
3897 if (!netif_running(dev) || !netif_device_present(dev))
3898 return 0;
3900 /* let the reset task handle it */
3901 #if 1
3902 atomic_inc(&cp->reset_task_pending);
3903 if ((cp->phy_type & CAS_PHY_SERDES)) {
3904 atomic_inc(&cp->reset_task_pending_all);
3905 } else {
3906 atomic_inc(&cp->reset_task_pending_mtu);
3908 schedule_work(&cp->reset_task);
3909 #else
3910 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3911 CAS_RESET_ALL : CAS_RESET_MTU);
3912 printk(KERN_ERR "reset called in cas_change_mtu\n");
3913 schedule_work(&cp->reset_task);
3914 #endif
3916 flush_scheduled_work();
3917 return 0;
3920 static void cas_clean_txd(struct cas *cp, int ring)
3922 struct cas_tx_desc *txd = cp->init_txds[ring];
3923 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3924 u64 daddr, dlen;
3925 int i, size;
3927 size = TX_DESC_RINGN_SIZE(ring);
3928 for (i = 0; i < size; i++) {
3929 int frag;
3931 if (skbs[i] == NULL)
3932 continue;
3934 skb = skbs[i];
3935 skbs[i] = NULL;
3937 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3938 int ent = i & (size - 1);
3940 /* first buffer is never a tiny buffer and so
3941 * needs to be unmapped.
3943 daddr = le64_to_cpu(txd[ent].buffer);
3944 dlen = CAS_VAL(TX_DESC_BUFLEN,
3945 le64_to_cpu(txd[ent].control));
3946 pci_unmap_page(cp->pdev, daddr, dlen,
3947 PCI_DMA_TODEVICE);
3949 if (frag != skb_shinfo(skb)->nr_frags) {
3950 i++;
3952 /* next buffer might by a tiny buffer.
3953 * skip past it.
3955 ent = i & (size - 1);
3956 if (cp->tx_tiny_use[ring][ent].used)
3957 i++;
3960 dev_kfree_skb_any(skb);
3963 /* zero out tiny buf usage */
3964 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3967 /* freed on close */
3968 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3970 cas_page_t **page = cp->rx_pages[ring];
3971 int i, size;
3973 size = RX_DESC_RINGN_SIZE(ring);
3974 for (i = 0; i < size; i++) {
3975 if (page[i]) {
3976 cas_page_free(cp, page[i]);
3977 page[i] = NULL;
3982 static void cas_free_rxds(struct cas *cp)
3984 int i;
3986 for (i = 0; i < N_RX_DESC_RINGS; i++)
3987 cas_free_rx_desc(cp, i);
3990 /* Must be invoked under cp->lock. */
3991 static void cas_clean_rings(struct cas *cp)
3993 int i;
3995 /* need to clean all tx rings */
3996 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3997 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3998 for (i = 0; i < N_TX_RINGS; i++)
3999 cas_clean_txd(cp, i);
4001 /* zero out init block */
4002 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4003 cas_clean_rxds(cp);
4004 cas_clean_rxcs(cp);
4007 /* allocated on open */
4008 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4010 cas_page_t **page = cp->rx_pages[ring];
4011 int size, i = 0;
4013 size = RX_DESC_RINGN_SIZE(ring);
4014 for (i = 0; i < size; i++) {
4015 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4016 return -1;
4018 return 0;
4021 static int cas_alloc_rxds(struct cas *cp)
4023 int i;
4025 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4026 if (cas_alloc_rx_desc(cp, i) < 0) {
4027 cas_free_rxds(cp);
4028 return -1;
4031 return 0;
4034 static void cas_reset_task(struct work_struct *work)
4036 struct cas *cp = container_of(work, struct cas, reset_task);
4037 #if 0
4038 int pending = atomic_read(&cp->reset_task_pending);
4039 #else
4040 int pending_all = atomic_read(&cp->reset_task_pending_all);
4041 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4042 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4044 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4045 /* We can have more tasks scheduled than actually
4046 * needed.
4048 atomic_dec(&cp->reset_task_pending);
4049 return;
4051 #endif
4052 /* The link went down, we reset the ring, but keep
4053 * DMA stopped. Use this function for reset
4054 * on error as well.
4056 if (cp->hw_running) {
4057 unsigned long flags;
4059 /* Make sure we don't get interrupts or tx packets */
4060 netif_device_detach(cp->dev);
4061 cas_lock_all_save(cp, flags);
4063 if (cp->opened) {
4064 /* We call cas_spare_recover when we call cas_open.
4065 * but we do not initialize the lists cas_spare_recover
4066 * uses until cas_open is called.
4068 cas_spare_recover(cp, GFP_ATOMIC);
4070 #if 1
4071 /* test => only pending_spare set */
4072 if (!pending_all && !pending_mtu)
4073 goto done;
4074 #else
4075 if (pending == CAS_RESET_SPARE)
4076 goto done;
4077 #endif
4078 /* when pending == CAS_RESET_ALL, the following
4079 * call to cas_init_hw will restart auto negotiation.
4080 * Setting the second argument of cas_reset to
4081 * !(pending == CAS_RESET_ALL) will set this argument
4082 * to 1 (avoiding reinitializing the PHY for the normal
4083 * PCS case) when auto negotiation is not restarted.
4085 #if 1
4086 cas_reset(cp, !(pending_all > 0));
4087 if (cp->opened)
4088 cas_clean_rings(cp);
4089 cas_init_hw(cp, (pending_all > 0));
4090 #else
4091 cas_reset(cp, !(pending == CAS_RESET_ALL));
4092 if (cp->opened)
4093 cas_clean_rings(cp);
4094 cas_init_hw(cp, pending == CAS_RESET_ALL);
4095 #endif
4097 done:
4098 cas_unlock_all_restore(cp, flags);
4099 netif_device_attach(cp->dev);
4101 #if 1
4102 atomic_sub(pending_all, &cp->reset_task_pending_all);
4103 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4104 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4105 atomic_dec(&cp->reset_task_pending);
4106 #else
4107 atomic_set(&cp->reset_task_pending, 0);
4108 #endif
4111 static void cas_link_timer(unsigned long data)
4113 struct cas *cp = (struct cas *) data;
4114 int mask, pending = 0, reset = 0;
4115 unsigned long flags;
4117 if (link_transition_timeout != 0 &&
4118 cp->link_transition_jiffies_valid &&
4119 ((jiffies - cp->link_transition_jiffies) >
4120 (link_transition_timeout))) {
4121 /* One-second counter so link-down workaround doesn't
4122 * cause resets to occur so fast as to fool the switch
4123 * into thinking the link is down.
4125 cp->link_transition_jiffies_valid = 0;
4128 if (!cp->hw_running)
4129 return;
4131 spin_lock_irqsave(&cp->lock, flags);
4132 cas_lock_tx(cp);
4133 cas_entropy_gather(cp);
4135 /* If the link task is still pending, we just
4136 * reschedule the link timer
4138 #if 1
4139 if (atomic_read(&cp->reset_task_pending_all) ||
4140 atomic_read(&cp->reset_task_pending_spare) ||
4141 atomic_read(&cp->reset_task_pending_mtu))
4142 goto done;
4143 #else
4144 if (atomic_read(&cp->reset_task_pending))
4145 goto done;
4146 #endif
4148 /* check for rx cleaning */
4149 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4150 int i, rmask;
4152 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4153 rmask = CAS_FLAG_RXD_POST(i);
4154 if ((mask & rmask) == 0)
4155 continue;
4157 /* post_rxds will do a mod_timer */
4158 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4159 pending = 1;
4160 continue;
4162 cp->cas_flags &= ~rmask;
4166 if (CAS_PHY_MII(cp->phy_type)) {
4167 u16 bmsr;
4168 cas_mif_poll(cp, 0);
4169 bmsr = cas_phy_read(cp, MII_BMSR);
4170 /* WTZ: Solaris driver reads this twice, but that
4171 * may be due to the PCS case and the use of a
4172 * common implementation. Read it twice here to be
4173 * safe.
4175 bmsr = cas_phy_read(cp, MII_BMSR);
4176 cas_mif_poll(cp, 1);
4177 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4178 reset = cas_mii_link_check(cp, bmsr);
4179 } else {
4180 reset = cas_pcs_link_check(cp);
4183 if (reset)
4184 goto done;
4186 /* check for tx state machine confusion */
4187 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4188 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4189 u32 wptr, rptr;
4190 int tlm = CAS_VAL(MAC_SM_TLM, val);
4192 if (((tlm == 0x5) || (tlm == 0x3)) &&
4193 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4194 if (netif_msg_tx_err(cp))
4195 printk(KERN_DEBUG "%s: tx err: "
4196 "MAC_STATE[%08x]\n",
4197 cp->dev->name, val);
4198 reset = 1;
4199 goto done;
4202 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4203 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4204 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4205 if ((val == 0) && (wptr != rptr)) {
4206 if (netif_msg_tx_err(cp))
4207 printk(KERN_DEBUG "%s: tx err: "
4208 "TX_FIFO[%08x:%08x:%08x]\n",
4209 cp->dev->name, val, wptr, rptr);
4210 reset = 1;
4213 if (reset)
4214 cas_hard_reset(cp);
4217 done:
4218 if (reset) {
4219 #if 1
4220 atomic_inc(&cp->reset_task_pending);
4221 atomic_inc(&cp->reset_task_pending_all);
4222 schedule_work(&cp->reset_task);
4223 #else
4224 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4225 printk(KERN_ERR "reset called in cas_link_timer\n");
4226 schedule_work(&cp->reset_task);
4227 #endif
4230 if (!pending)
4231 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4232 cas_unlock_tx(cp);
4233 spin_unlock_irqrestore(&cp->lock, flags);
4236 /* tiny buffers are used to avoid target abort issues with
4237 * older cassini's
4239 static void cas_tx_tiny_free(struct cas *cp)
4241 struct pci_dev *pdev = cp->pdev;
4242 int i;
4244 for (i = 0; i < N_TX_RINGS; i++) {
4245 if (!cp->tx_tiny_bufs[i])
4246 continue;
4248 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4249 cp->tx_tiny_bufs[i],
4250 cp->tx_tiny_dvma[i]);
4251 cp->tx_tiny_bufs[i] = NULL;
4255 static int cas_tx_tiny_alloc(struct cas *cp)
4257 struct pci_dev *pdev = cp->pdev;
4258 int i;
4260 for (i = 0; i < N_TX_RINGS; i++) {
4261 cp->tx_tiny_bufs[i] =
4262 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4263 &cp->tx_tiny_dvma[i]);
4264 if (!cp->tx_tiny_bufs[i]) {
4265 cas_tx_tiny_free(cp);
4266 return -1;
4269 return 0;
4273 static int cas_open(struct net_device *dev)
4275 struct cas *cp = netdev_priv(dev);
4276 int hw_was_up, err;
4277 unsigned long flags;
4279 mutex_lock(&cp->pm_mutex);
4281 hw_was_up = cp->hw_running;
4283 /* The power-management mutex protects the hw_running
4284 * etc. state so it is safe to do this bit without cp->lock
4286 if (!cp->hw_running) {
4287 /* Reset the chip */
4288 cas_lock_all_save(cp, flags);
4289 /* We set the second arg to cas_reset to zero
4290 * because cas_init_hw below will have its second
4291 * argument set to non-zero, which will force
4292 * autonegotiation to start.
4294 cas_reset(cp, 0);
4295 cp->hw_running = 1;
4296 cas_unlock_all_restore(cp, flags);
4299 if (cas_tx_tiny_alloc(cp) < 0)
4300 return -ENOMEM;
4302 /* alloc rx descriptors */
4303 err = -ENOMEM;
4304 if (cas_alloc_rxds(cp) < 0)
4305 goto err_tx_tiny;
4307 /* allocate spares */
4308 cas_spare_init(cp);
4309 cas_spare_recover(cp, GFP_KERNEL);
4311 /* We can now request the interrupt as we know it's masked
4312 * on the controller. cassini+ has up to 4 interrupts
4313 * that can be used, but you need to do explicit pci interrupt
4314 * mapping to expose them
4316 if (request_irq(cp->pdev->irq, cas_interrupt,
4317 IRQF_SHARED, dev->name, (void *) dev)) {
4318 printk(KERN_ERR "%s: failed to request irq !\n",
4319 cp->dev->name);
4320 err = -EAGAIN;
4321 goto err_spare;
4324 #ifdef USE_NAPI
4325 napi_enable(&cp->napi);
4326 #endif
4327 /* init hw */
4328 cas_lock_all_save(cp, flags);
4329 cas_clean_rings(cp);
4330 cas_init_hw(cp, !hw_was_up);
4331 cp->opened = 1;
4332 cas_unlock_all_restore(cp, flags);
4334 netif_start_queue(dev);
4335 mutex_unlock(&cp->pm_mutex);
4336 return 0;
4338 err_spare:
4339 cas_spare_free(cp);
4340 cas_free_rxds(cp);
4341 err_tx_tiny:
4342 cas_tx_tiny_free(cp);
4343 mutex_unlock(&cp->pm_mutex);
4344 return err;
4347 static int cas_close(struct net_device *dev)
4349 unsigned long flags;
4350 struct cas *cp = netdev_priv(dev);
4352 #ifdef USE_NAPI
4353 napi_disable(&cp->napi);
4354 #endif
4355 /* Make sure we don't get distracted by suspend/resume */
4356 mutex_lock(&cp->pm_mutex);
4358 netif_stop_queue(dev);
4360 /* Stop traffic, mark us closed */
4361 cas_lock_all_save(cp, flags);
4362 cp->opened = 0;
4363 cas_reset(cp, 0);
4364 cas_phy_init(cp);
4365 cas_begin_auto_negotiation(cp, NULL);
4366 cas_clean_rings(cp);
4367 cas_unlock_all_restore(cp, flags);
4369 free_irq(cp->pdev->irq, (void *) dev);
4370 cas_spare_free(cp);
4371 cas_free_rxds(cp);
4372 cas_tx_tiny_free(cp);
4373 mutex_unlock(&cp->pm_mutex);
4374 return 0;
4377 static struct {
4378 const char name[ETH_GSTRING_LEN];
4379 } ethtool_cassini_statnames[] = {
4380 {"collisions"},
4381 {"rx_bytes"},
4382 {"rx_crc_errors"},
4383 {"rx_dropped"},
4384 {"rx_errors"},
4385 {"rx_fifo_errors"},
4386 {"rx_frame_errors"},
4387 {"rx_length_errors"},
4388 {"rx_over_errors"},
4389 {"rx_packets"},
4390 {"tx_aborted_errors"},
4391 {"tx_bytes"},
4392 {"tx_dropped"},
4393 {"tx_errors"},
4394 {"tx_fifo_errors"},
4395 {"tx_packets"}
4397 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4399 static struct {
4400 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4401 } ethtool_register_table[] = {
4402 {-MII_BMSR},
4403 {-MII_BMCR},
4404 {REG_CAWR},
4405 {REG_INF_BURST},
4406 {REG_BIM_CFG},
4407 {REG_RX_CFG},
4408 {REG_HP_CFG},
4409 {REG_MAC_TX_CFG},
4410 {REG_MAC_RX_CFG},
4411 {REG_MAC_CTRL_CFG},
4412 {REG_MAC_XIF_CFG},
4413 {REG_MIF_CFG},
4414 {REG_PCS_CFG},
4415 {REG_SATURN_PCFG},
4416 {REG_PCS_MII_STATUS},
4417 {REG_PCS_STATE_MACHINE},
4418 {REG_MAC_COLL_EXCESS},
4419 {REG_MAC_COLL_LATE}
4421 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4422 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4424 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4426 u8 *p;
4427 int i;
4428 unsigned long flags;
4430 spin_lock_irqsave(&cp->lock, flags);
4431 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4432 u16 hval;
4433 u32 val;
4434 if (ethtool_register_table[i].offsets < 0) {
4435 hval = cas_phy_read(cp,
4436 -ethtool_register_table[i].offsets);
4437 val = hval;
4438 } else {
4439 val= readl(cp->regs+ethtool_register_table[i].offsets);
4441 memcpy(p, (u8 *)&val, sizeof(u32));
4443 spin_unlock_irqrestore(&cp->lock, flags);
4446 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4448 struct cas *cp = netdev_priv(dev);
4449 struct net_device_stats *stats = cp->net_stats;
4450 unsigned long flags;
4451 int i;
4452 unsigned long tmp;
4454 /* we collate all of the stats into net_stats[N_TX_RING] */
4455 if (!cp->hw_running)
4456 return stats + N_TX_RINGS;
4458 /* collect outstanding stats */
4459 /* WTZ: the Cassini spec gives these as 16 bit counters but
4460 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4461 * in case the chip somehow puts any garbage in the other bits.
4462 * Also, counter usage didn't seem to mach what Adrian did
4463 * in the parts of the code that set these quantities. Made
4464 * that consistent.
4466 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4467 stats[N_TX_RINGS].rx_crc_errors +=
4468 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4469 stats[N_TX_RINGS].rx_frame_errors +=
4470 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4471 stats[N_TX_RINGS].rx_length_errors +=
4472 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4473 #if 1
4474 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4475 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4476 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4477 stats[N_TX_RINGS].collisions +=
4478 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4479 #else
4480 stats[N_TX_RINGS].tx_aborted_errors +=
4481 readl(cp->regs + REG_MAC_COLL_EXCESS);
4482 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4483 readl(cp->regs + REG_MAC_COLL_LATE);
4484 #endif
4485 cas_clear_mac_err(cp);
4487 /* saved bits that are unique to ring 0 */
4488 spin_lock(&cp->stat_lock[0]);
4489 stats[N_TX_RINGS].collisions += stats[0].collisions;
4490 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4491 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4492 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4493 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4494 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4495 spin_unlock(&cp->stat_lock[0]);
4497 for (i = 0; i < N_TX_RINGS; i++) {
4498 spin_lock(&cp->stat_lock[i]);
4499 stats[N_TX_RINGS].rx_length_errors +=
4500 stats[i].rx_length_errors;
4501 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4502 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4503 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4504 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4505 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4506 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4507 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4508 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4509 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4510 memset(stats + i, 0, sizeof(struct net_device_stats));
4511 spin_unlock(&cp->stat_lock[i]);
4513 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4514 return stats + N_TX_RINGS;
4518 static void cas_set_multicast(struct net_device *dev)
4520 struct cas *cp = netdev_priv(dev);
4521 u32 rxcfg, rxcfg_new;
4522 unsigned long flags;
4523 int limit = STOP_TRIES;
4525 if (!cp->hw_running)
4526 return;
4528 spin_lock_irqsave(&cp->lock, flags);
4529 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4531 /* disable RX MAC and wait for completion */
4532 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4533 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4534 if (!limit--)
4535 break;
4536 udelay(10);
4539 /* disable hash filter and wait for completion */
4540 limit = STOP_TRIES;
4541 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4542 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4543 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4544 if (!limit--)
4545 break;
4546 udelay(10);
4549 /* program hash filters */
4550 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4551 rxcfg |= rxcfg_new;
4552 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4553 spin_unlock_irqrestore(&cp->lock, flags);
4556 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4558 struct cas *cp = netdev_priv(dev);
4559 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4560 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4561 info->fw_version[0] = '\0';
4562 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4563 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4564 cp->casreg_len : CAS_MAX_REGS;
4565 info->n_stats = CAS_NUM_STAT_KEYS;
4568 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4570 struct cas *cp = netdev_priv(dev);
4571 u16 bmcr;
4572 int full_duplex, speed, pause;
4573 unsigned long flags;
4574 enum link_state linkstate = link_up;
4576 cmd->advertising = 0;
4577 cmd->supported = SUPPORTED_Autoneg;
4578 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4579 cmd->supported |= SUPPORTED_1000baseT_Full;
4580 cmd->advertising |= ADVERTISED_1000baseT_Full;
4583 /* Record PHY settings if HW is on. */
4584 spin_lock_irqsave(&cp->lock, flags);
4585 bmcr = 0;
4586 linkstate = cp->lstate;
4587 if (CAS_PHY_MII(cp->phy_type)) {
4588 cmd->port = PORT_MII;
4589 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4590 XCVR_INTERNAL : XCVR_EXTERNAL;
4591 cmd->phy_address = cp->phy_addr;
4592 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4593 ADVERTISED_10baseT_Half |
4594 ADVERTISED_10baseT_Full |
4595 ADVERTISED_100baseT_Half |
4596 ADVERTISED_100baseT_Full;
4598 cmd->supported |=
4599 (SUPPORTED_10baseT_Half |
4600 SUPPORTED_10baseT_Full |
4601 SUPPORTED_100baseT_Half |
4602 SUPPORTED_100baseT_Full |
4603 SUPPORTED_TP | SUPPORTED_MII);
4605 if (cp->hw_running) {
4606 cas_mif_poll(cp, 0);
4607 bmcr = cas_phy_read(cp, MII_BMCR);
4608 cas_read_mii_link_mode(cp, &full_duplex,
4609 &speed, &pause);
4610 cas_mif_poll(cp, 1);
4613 } else {
4614 cmd->port = PORT_FIBRE;
4615 cmd->transceiver = XCVR_INTERNAL;
4616 cmd->phy_address = 0;
4617 cmd->supported |= SUPPORTED_FIBRE;
4618 cmd->advertising |= ADVERTISED_FIBRE;
4620 if (cp->hw_running) {
4621 /* pcs uses the same bits as mii */
4622 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4623 cas_read_pcs_link_mode(cp, &full_duplex,
4624 &speed, &pause);
4627 spin_unlock_irqrestore(&cp->lock, flags);
4629 if (bmcr & BMCR_ANENABLE) {
4630 cmd->advertising |= ADVERTISED_Autoneg;
4631 cmd->autoneg = AUTONEG_ENABLE;
4632 cmd->speed = ((speed == 10) ?
4633 SPEED_10 :
4634 ((speed == 1000) ?
4635 SPEED_1000 : SPEED_100));
4636 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4637 } else {
4638 cmd->autoneg = AUTONEG_DISABLE;
4639 cmd->speed =
4640 (bmcr & CAS_BMCR_SPEED1000) ?
4641 SPEED_1000 :
4642 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4643 SPEED_10);
4644 cmd->duplex =
4645 (bmcr & BMCR_FULLDPLX) ?
4646 DUPLEX_FULL : DUPLEX_HALF;
4648 if (linkstate != link_up) {
4649 /* Force these to "unknown" if the link is not up and
4650 * autonogotiation in enabled. We can set the link
4651 * speed to 0, but not cmd->duplex,
4652 * because its legal values are 0 and 1. Ethtool will
4653 * print the value reported in parentheses after the
4654 * word "Unknown" for unrecognized values.
4656 * If in forced mode, we report the speed and duplex
4657 * settings that we configured.
4659 if (cp->link_cntl & BMCR_ANENABLE) {
4660 cmd->speed = 0;
4661 cmd->duplex = 0xff;
4662 } else {
4663 cmd->speed = SPEED_10;
4664 if (cp->link_cntl & BMCR_SPEED100) {
4665 cmd->speed = SPEED_100;
4666 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4667 cmd->speed = SPEED_1000;
4669 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4670 DUPLEX_FULL : DUPLEX_HALF;
4673 return 0;
4676 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4678 struct cas *cp = netdev_priv(dev);
4679 unsigned long flags;
4681 /* Verify the settings we care about. */
4682 if (cmd->autoneg != AUTONEG_ENABLE &&
4683 cmd->autoneg != AUTONEG_DISABLE)
4684 return -EINVAL;
4686 if (cmd->autoneg == AUTONEG_DISABLE &&
4687 ((cmd->speed != SPEED_1000 &&
4688 cmd->speed != SPEED_100 &&
4689 cmd->speed != SPEED_10) ||
4690 (cmd->duplex != DUPLEX_HALF &&
4691 cmd->duplex != DUPLEX_FULL)))
4692 return -EINVAL;
4694 /* Apply settings and restart link process. */
4695 spin_lock_irqsave(&cp->lock, flags);
4696 cas_begin_auto_negotiation(cp, cmd);
4697 spin_unlock_irqrestore(&cp->lock, flags);
4698 return 0;
4701 static int cas_nway_reset(struct net_device *dev)
4703 struct cas *cp = netdev_priv(dev);
4704 unsigned long flags;
4706 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4707 return -EINVAL;
4709 /* Restart link process. */
4710 spin_lock_irqsave(&cp->lock, flags);
4711 cas_begin_auto_negotiation(cp, NULL);
4712 spin_unlock_irqrestore(&cp->lock, flags);
4714 return 0;
4717 static u32 cas_get_link(struct net_device *dev)
4719 struct cas *cp = netdev_priv(dev);
4720 return cp->lstate == link_up;
4723 static u32 cas_get_msglevel(struct net_device *dev)
4725 struct cas *cp = netdev_priv(dev);
4726 return cp->msg_enable;
4729 static void cas_set_msglevel(struct net_device *dev, u32 value)
4731 struct cas *cp = netdev_priv(dev);
4732 cp->msg_enable = value;
4735 static int cas_get_regs_len(struct net_device *dev)
4737 struct cas *cp = netdev_priv(dev);
4738 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4741 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4742 void *p)
4744 struct cas *cp = netdev_priv(dev);
4745 regs->version = 0;
4746 /* cas_read_regs handles locks (cp->lock). */
4747 cas_read_regs(cp, p, regs->len / sizeof(u32));
4750 static int cas_get_sset_count(struct net_device *dev, int sset)
4752 switch (sset) {
4753 case ETH_SS_STATS:
4754 return CAS_NUM_STAT_KEYS;
4755 default:
4756 return -EOPNOTSUPP;
4760 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4762 memcpy(data, &ethtool_cassini_statnames,
4763 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4766 static void cas_get_ethtool_stats(struct net_device *dev,
4767 struct ethtool_stats *estats, u64 *data)
4769 struct cas *cp = netdev_priv(dev);
4770 struct net_device_stats *stats = cas_get_stats(cp->dev);
4771 int i = 0;
4772 data[i++] = stats->collisions;
4773 data[i++] = stats->rx_bytes;
4774 data[i++] = stats->rx_crc_errors;
4775 data[i++] = stats->rx_dropped;
4776 data[i++] = stats->rx_errors;
4777 data[i++] = stats->rx_fifo_errors;
4778 data[i++] = stats->rx_frame_errors;
4779 data[i++] = stats->rx_length_errors;
4780 data[i++] = stats->rx_over_errors;
4781 data[i++] = stats->rx_packets;
4782 data[i++] = stats->tx_aborted_errors;
4783 data[i++] = stats->tx_bytes;
4784 data[i++] = stats->tx_dropped;
4785 data[i++] = stats->tx_errors;
4786 data[i++] = stats->tx_fifo_errors;
4787 data[i++] = stats->tx_packets;
4788 BUG_ON(i != CAS_NUM_STAT_KEYS);
4791 static const struct ethtool_ops cas_ethtool_ops = {
4792 .get_drvinfo = cas_get_drvinfo,
4793 .get_settings = cas_get_settings,
4794 .set_settings = cas_set_settings,
4795 .nway_reset = cas_nway_reset,
4796 .get_link = cas_get_link,
4797 .get_msglevel = cas_get_msglevel,
4798 .set_msglevel = cas_set_msglevel,
4799 .get_regs_len = cas_get_regs_len,
4800 .get_regs = cas_get_regs,
4801 .get_sset_count = cas_get_sset_count,
4802 .get_strings = cas_get_strings,
4803 .get_ethtool_stats = cas_get_ethtool_stats,
4806 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4808 struct cas *cp = netdev_priv(dev);
4809 struct mii_ioctl_data *data = if_mii(ifr);
4810 unsigned long flags;
4811 int rc = -EOPNOTSUPP;
4813 /* Hold the PM mutex while doing ioctl's or we may collide
4814 * with open/close and power management and oops.
4816 mutex_lock(&cp->pm_mutex);
4817 switch (cmd) {
4818 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4819 data->phy_id = cp->phy_addr;
4820 /* Fallthrough... */
4822 case SIOCGMIIREG: /* Read MII PHY register. */
4823 spin_lock_irqsave(&cp->lock, flags);
4824 cas_mif_poll(cp, 0);
4825 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4826 cas_mif_poll(cp, 1);
4827 spin_unlock_irqrestore(&cp->lock, flags);
4828 rc = 0;
4829 break;
4831 case SIOCSMIIREG: /* Write MII PHY register. */
4832 if (!capable(CAP_NET_ADMIN)) {
4833 rc = -EPERM;
4834 break;
4836 spin_lock_irqsave(&cp->lock, flags);
4837 cas_mif_poll(cp, 0);
4838 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4839 cas_mif_poll(cp, 1);
4840 spin_unlock_irqrestore(&cp->lock, flags);
4841 break;
4842 default:
4843 break;
4846 mutex_unlock(&cp->pm_mutex);
4847 return rc;
4850 /* When this chip sits underneath an Intel 31154 bridge, it is the
4851 * only subordinate device and we can tweak the bridge settings to
4852 * reflect that fact.
4854 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4856 struct pci_dev *pdev = cas_pdev->bus->self;
4857 u32 val;
4859 if (!pdev)
4860 return;
4862 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4863 return;
4865 /* Clear bit 10 (Bus Parking Control) in the Secondary
4866 * Arbiter Control/Status Register which lives at offset
4867 * 0x41. Using a 32-bit word read/modify/write at 0x40
4868 * is much simpler so that's how we do this.
4870 pci_read_config_dword(pdev, 0x40, &val);
4871 val &= ~0x00040000;
4872 pci_write_config_dword(pdev, 0x40, val);
4874 /* Max out the Multi-Transaction Timer settings since
4875 * Cassini is the only device present.
4877 * The register is 16-bit and lives at 0x50. When the
4878 * settings are enabled, it extends the GRANT# signal
4879 * for a requestor after a transaction is complete. This
4880 * allows the next request to run without first needing
4881 * to negotiate the GRANT# signal back.
4883 * Bits 12:10 define the grant duration:
4885 * 1 -- 16 clocks
4886 * 2 -- 32 clocks
4887 * 3 -- 64 clocks
4888 * 4 -- 128 clocks
4889 * 5 -- 256 clocks
4891 * All other values are illegal.
4893 * Bits 09:00 define which REQ/GNT signal pairs get the
4894 * GRANT# signal treatment. We set them all.
4896 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4898 /* The Read Prefecth Policy register is 16-bit and sits at
4899 * offset 0x52. It enables a "smart" pre-fetch policy. We
4900 * enable it and max out all of the settings since only one
4901 * device is sitting underneath and thus bandwidth sharing is
4902 * not an issue.
4904 * The register has several 3 bit fields, which indicates a
4905 * multiplier applied to the base amount of prefetching the
4906 * chip would do. These fields are at:
4908 * 15:13 --- ReRead Primary Bus
4909 * 12:10 --- FirstRead Primary Bus
4910 * 09:07 --- ReRead Secondary Bus
4911 * 06:04 --- FirstRead Secondary Bus
4913 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4914 * get enabled on. Bit 3 is a grouped enabler which controls
4915 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4916 * the individual REQ/GNT pairs [2:0].
4918 pci_write_config_word(pdev, 0x52,
4919 (0x7 << 13) |
4920 (0x7 << 10) |
4921 (0x7 << 7) |
4922 (0x7 << 4) |
4923 (0xf << 0));
4925 /* Force cacheline size to 0x8 */
4926 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4928 /* Force latency timer to maximum setting so Cassini can
4929 * sit on the bus as long as it likes.
4931 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4934 static int __devinit cas_init_one(struct pci_dev *pdev,
4935 const struct pci_device_id *ent)
4937 static int cas_version_printed = 0;
4938 unsigned long casreg_len;
4939 struct net_device *dev;
4940 struct cas *cp;
4941 int i, err, pci_using_dac;
4942 u16 pci_cmd;
4943 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4944 DECLARE_MAC_BUF(mac);
4946 if (cas_version_printed++ == 0)
4947 printk(KERN_INFO "%s", version);
4949 err = pci_enable_device(pdev);
4950 if (err) {
4951 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4952 return err;
4955 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4956 dev_err(&pdev->dev, "Cannot find proper PCI device "
4957 "base address, aborting.\n");
4958 err = -ENODEV;
4959 goto err_out_disable_pdev;
4962 dev = alloc_etherdev(sizeof(*cp));
4963 if (!dev) {
4964 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4965 err = -ENOMEM;
4966 goto err_out_disable_pdev;
4968 SET_NETDEV_DEV(dev, &pdev->dev);
4970 err = pci_request_regions(pdev, dev->name);
4971 if (err) {
4972 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4973 goto err_out_free_netdev;
4975 pci_set_master(pdev);
4977 /* we must always turn on parity response or else parity
4978 * doesn't get generated properly. disable SERR/PERR as well.
4979 * in addition, we want to turn MWI on.
4981 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4982 pci_cmd &= ~PCI_COMMAND_SERR;
4983 pci_cmd |= PCI_COMMAND_PARITY;
4984 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4985 if (pci_try_set_mwi(pdev))
4986 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
4987 pci_name(pdev));
4989 cas_program_bridge(pdev);
4992 * On some architectures, the default cache line size set
4993 * by pci_try_set_mwi reduces perforamnce. We have to increase
4994 * it for this case. To start, we'll print some configuration
4995 * data.
4997 #if 1
4998 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4999 &orig_cacheline_size);
5000 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5001 cas_cacheline_size =
5002 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5003 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5004 if (pci_write_config_byte(pdev,
5005 PCI_CACHE_LINE_SIZE,
5006 cas_cacheline_size)) {
5007 dev_err(&pdev->dev, "Could not set PCI cache "
5008 "line size\n");
5009 goto err_write_cacheline;
5012 #endif
5015 /* Configure DMA attributes. */
5016 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5017 pci_using_dac = 1;
5018 err = pci_set_consistent_dma_mask(pdev,
5019 DMA_64BIT_MASK);
5020 if (err < 0) {
5021 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5022 "for consistent allocations\n");
5023 goto err_out_free_res;
5026 } else {
5027 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5028 if (err) {
5029 dev_err(&pdev->dev, "No usable DMA configuration, "
5030 "aborting.\n");
5031 goto err_out_free_res;
5033 pci_using_dac = 0;
5036 casreg_len = pci_resource_len(pdev, 0);
5038 cp = netdev_priv(dev);
5039 cp->pdev = pdev;
5040 #if 1
5041 /* A value of 0 indicates we never explicitly set it */
5042 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5043 #endif
5044 cp->dev = dev;
5045 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5046 cassini_debug;
5048 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5049 cp->link_transition_jiffies_valid = 0;
5051 spin_lock_init(&cp->lock);
5052 spin_lock_init(&cp->rx_inuse_lock);
5053 spin_lock_init(&cp->rx_spare_lock);
5054 for (i = 0; i < N_TX_RINGS; i++) {
5055 spin_lock_init(&cp->stat_lock[i]);
5056 spin_lock_init(&cp->tx_lock[i]);
5058 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5059 mutex_init(&cp->pm_mutex);
5061 init_timer(&cp->link_timer);
5062 cp->link_timer.function = cas_link_timer;
5063 cp->link_timer.data = (unsigned long) cp;
5065 #if 1
5066 /* Just in case the implementation of atomic operations
5067 * change so that an explicit initialization is necessary.
5069 atomic_set(&cp->reset_task_pending, 0);
5070 atomic_set(&cp->reset_task_pending_all, 0);
5071 atomic_set(&cp->reset_task_pending_spare, 0);
5072 atomic_set(&cp->reset_task_pending_mtu, 0);
5073 #endif
5074 INIT_WORK(&cp->reset_task, cas_reset_task);
5076 /* Default link parameters */
5077 if (link_mode >= 0 && link_mode <= 6)
5078 cp->link_cntl = link_modes[link_mode];
5079 else
5080 cp->link_cntl = BMCR_ANENABLE;
5081 cp->lstate = link_down;
5082 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5083 netif_carrier_off(cp->dev);
5084 cp->timer_ticks = 0;
5086 /* give us access to cassini registers */
5087 cp->regs = pci_iomap(pdev, 0, casreg_len);
5088 if (!cp->regs) {
5089 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5090 goto err_out_free_res;
5092 cp->casreg_len = casreg_len;
5094 pci_save_state(pdev);
5095 cas_check_pci_invariants(cp);
5096 cas_hard_reset(cp);
5097 cas_reset(cp, 0);
5098 if (cas_check_invariants(cp))
5099 goto err_out_iounmap;
5101 cp->init_block = (struct cas_init_block *)
5102 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5103 &cp->block_dvma);
5104 if (!cp->init_block) {
5105 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5106 goto err_out_iounmap;
5109 for (i = 0; i < N_TX_RINGS; i++)
5110 cp->init_txds[i] = cp->init_block->txds[i];
5112 for (i = 0; i < N_RX_DESC_RINGS; i++)
5113 cp->init_rxds[i] = cp->init_block->rxds[i];
5115 for (i = 0; i < N_RX_COMP_RINGS; i++)
5116 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5118 for (i = 0; i < N_RX_FLOWS; i++)
5119 skb_queue_head_init(&cp->rx_flows[i]);
5121 dev->open = cas_open;
5122 dev->stop = cas_close;
5123 dev->hard_start_xmit = cas_start_xmit;
5124 dev->get_stats = cas_get_stats;
5125 dev->set_multicast_list = cas_set_multicast;
5126 dev->do_ioctl = cas_ioctl;
5127 dev->ethtool_ops = &cas_ethtool_ops;
5128 dev->tx_timeout = cas_tx_timeout;
5129 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5130 dev->change_mtu = cas_change_mtu;
5131 #ifdef USE_NAPI
5132 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5133 #endif
5134 #ifdef CONFIG_NET_POLL_CONTROLLER
5135 dev->poll_controller = cas_netpoll;
5136 #endif
5137 dev->irq = pdev->irq;
5138 dev->dma = 0;
5140 /* Cassini features. */
5141 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5142 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5144 if (pci_using_dac)
5145 dev->features |= NETIF_F_HIGHDMA;
5147 if (register_netdev(dev)) {
5148 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5149 goto err_out_free_consistent;
5152 i = readl(cp->regs + REG_BIM_CFG);
5153 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5154 "Ethernet[%d] %s\n", dev->name,
5155 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5156 (i & BIM_CFG_32BIT) ? "32" : "64",
5157 (i & BIM_CFG_66MHZ) ? "66" : "33",
5158 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5159 print_mac(mac, dev->dev_addr));
5161 pci_set_drvdata(pdev, dev);
5162 cp->hw_running = 1;
5163 cas_entropy_reset(cp);
5164 cas_phy_init(cp);
5165 cas_begin_auto_negotiation(cp, NULL);
5166 return 0;
5168 err_out_free_consistent:
5169 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5170 cp->init_block, cp->block_dvma);
5172 err_out_iounmap:
5173 mutex_lock(&cp->pm_mutex);
5174 if (cp->hw_running)
5175 cas_shutdown(cp);
5176 mutex_unlock(&cp->pm_mutex);
5178 pci_iounmap(pdev, cp->regs);
5181 err_out_free_res:
5182 pci_release_regions(pdev);
5184 err_write_cacheline:
5185 /* Try to restore it in case the error occured after we
5186 * set it.
5188 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5190 err_out_free_netdev:
5191 free_netdev(dev);
5193 err_out_disable_pdev:
5194 pci_disable_device(pdev);
5195 pci_set_drvdata(pdev, NULL);
5196 return -ENODEV;
5199 static void __devexit cas_remove_one(struct pci_dev *pdev)
5201 struct net_device *dev = pci_get_drvdata(pdev);
5202 struct cas *cp;
5203 if (!dev)
5204 return;
5206 cp = netdev_priv(dev);
5207 unregister_netdev(dev);
5209 mutex_lock(&cp->pm_mutex);
5210 flush_scheduled_work();
5211 if (cp->hw_running)
5212 cas_shutdown(cp);
5213 mutex_unlock(&cp->pm_mutex);
5215 #if 1
5216 if (cp->orig_cacheline_size) {
5217 /* Restore the cache line size if we had modified
5218 * it.
5220 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5221 cp->orig_cacheline_size);
5223 #endif
5224 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5225 cp->init_block, cp->block_dvma);
5226 pci_iounmap(pdev, cp->regs);
5227 free_netdev(dev);
5228 pci_release_regions(pdev);
5229 pci_disable_device(pdev);
5230 pci_set_drvdata(pdev, NULL);
5233 #ifdef CONFIG_PM
5234 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5236 struct net_device *dev = pci_get_drvdata(pdev);
5237 struct cas *cp = netdev_priv(dev);
5238 unsigned long flags;
5240 mutex_lock(&cp->pm_mutex);
5242 /* If the driver is opened, we stop the DMA */
5243 if (cp->opened) {
5244 netif_device_detach(dev);
5246 cas_lock_all_save(cp, flags);
5248 /* We can set the second arg of cas_reset to 0
5249 * because on resume, we'll call cas_init_hw with
5250 * its second arg set so that autonegotiation is
5251 * restarted.
5253 cas_reset(cp, 0);
5254 cas_clean_rings(cp);
5255 cas_unlock_all_restore(cp, flags);
5258 if (cp->hw_running)
5259 cas_shutdown(cp);
5260 mutex_unlock(&cp->pm_mutex);
5262 return 0;
5265 static int cas_resume(struct pci_dev *pdev)
5267 struct net_device *dev = pci_get_drvdata(pdev);
5268 struct cas *cp = netdev_priv(dev);
5270 printk(KERN_INFO "%s: resuming\n", dev->name);
5272 mutex_lock(&cp->pm_mutex);
5273 cas_hard_reset(cp);
5274 if (cp->opened) {
5275 unsigned long flags;
5276 cas_lock_all_save(cp, flags);
5277 cas_reset(cp, 0);
5278 cp->hw_running = 1;
5279 cas_clean_rings(cp);
5280 cas_init_hw(cp, 1);
5281 cas_unlock_all_restore(cp, flags);
5283 netif_device_attach(dev);
5285 mutex_unlock(&cp->pm_mutex);
5286 return 0;
5288 #endif /* CONFIG_PM */
5290 static struct pci_driver cas_driver = {
5291 .name = DRV_MODULE_NAME,
5292 .id_table = cas_pci_tbl,
5293 .probe = cas_init_one,
5294 .remove = __devexit_p(cas_remove_one),
5295 #ifdef CONFIG_PM
5296 .suspend = cas_suspend,
5297 .resume = cas_resume
5298 #endif
5301 static int __init cas_init(void)
5303 if (linkdown_timeout > 0)
5304 link_transition_timeout = linkdown_timeout * HZ;
5305 else
5306 link_transition_timeout = 0;
5308 return pci_register_driver(&cas_driver);
5311 static void __exit cas_cleanup(void)
5313 pci_unregister_driver(&cas_driver);
5316 module_init(cas_init);
5317 module_exit(cas_cleanup);