Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / net / 3c59x.c
blob6f8e7d4cf74dbdd224fdbd4d7d1b5924c206ade0
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For NR_IRQS only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static char version[] __devinitdata =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_1,
240 CH_3C905B_2,
241 CH_3C905B_FX,
242 CH_3C905C,
243 CH_3C9202,
244 CH_3C980,
245 CH_3C9805,
247 CH_3CSOHO100_TX,
248 CH_3C555,
249 CH_3C556,
250 CH_3C556B,
251 CH_3C575,
253 CH_3C575_1,
254 CH_3CCFE575,
255 CH_3CCFE575CT,
256 CH_3CCFE656,
257 CH_3CCFEM656,
259 CH_3CCFEM656_1,
260 CH_3C450,
261 CH_3C920,
262 CH_3C982A,
263 CH_3C982B,
265 CH_905BT4,
266 CH_920B_EMB_WNM,
270 /* note: this array directly indexed by above enums, and MUST
271 * be kept in sync with both the enums above, and the PCI device
272 * table below
274 static struct vortex_chip_info {
275 const char *name;
276 int flags;
277 int drv_flags;
278 int io_size;
279 } vortex_info_tbl[] __devinitdata = {
280 {"3c590 Vortex 10Mbps",
281 PCI_USES_MASTER, IS_VORTEX, 32, },
282 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
283 PCI_USES_MASTER, IS_VORTEX, 32, },
284 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
285 PCI_USES_MASTER, IS_VORTEX, 32, },
286 {"3c595 Vortex 100baseTx",
287 PCI_USES_MASTER, IS_VORTEX, 32, },
288 {"3c595 Vortex 100baseT4",
289 PCI_USES_MASTER, IS_VORTEX, 32, },
291 {"3c595 Vortex 100base-MII",
292 PCI_USES_MASTER, IS_VORTEX, 32, },
293 {"3c900 Boomerang 10baseT",
294 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 {"3c900 Boomerang 10Mbps Combo",
296 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
298 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 {"3c900 Cyclone 10Mbps Combo",
300 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
303 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 {"3c900B-FL Cyclone 10base-FL",
305 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 {"3c905 Boomerang 100baseTx",
307 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 {"3c905 Boomerang 100baseT4",
309 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 {"3c905B Cyclone 100baseTx",
311 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 10/100/BNC",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 {"3c905B-FX Cyclone 100baseFx",
316 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
317 {"3c905C Tornado",
318 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
321 {"3c980 Cyclone",
322 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
324 {"3c980C Python-T",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 {"3cSOHO100-TX Hurricane",
327 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
328 {"3c555 Laptop Hurricane",
329 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 {"3c556 Laptop Tornado",
331 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
332 HAS_HWCKSM, 128, },
333 {"3c556B Laptop Hurricane",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
337 {"3c575 [Megahertz] 10/100 LAN CardBus",
338 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 {"3c575 Boomerang CardBus",
340 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 {"3CCFE575BT Cyclone CardBus",
342 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 {"3CCFE575CT Tornado CardBus",
345 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 {"3CCFE656 Cyclone CardBus",
348 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 INVERT_LED_PWR|HAS_HWCKSM, 128, },
351 {"3CCFEM656B Cyclone+Winmodem CardBus",
352 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
355 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
359 {"3c920 Tornado",
360 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 {"3c982 Hydra Dual Port A",
362 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
364 {"3c982 Hydra Dual Port B",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 {"3c905B-T4",
367 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 {"3c920B-EMB-WNM Tornado",
369 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
371 {NULL,}, /* NULL terminated list. */
375 static struct pci_device_id vortex_pci_tbl[] = {
376 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
382 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
388 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
394 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
401 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
407 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
413 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
419 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
422 {0,} /* 0 terminated list. */
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
427 /* Operational definitions.
428 These are not used by other compilation units and thus are not
429 exported in a ".h" file.
431 First the windows. There are eight register windows, with the command
432 and status registers available in each.
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
435 #define EL3_CMD 0x0e
436 #define EL3_STATUS 0x0e
438 /* The top five bits written to EL3_CMD are a command, the lower
439 11 bits are the parameter, if applicable.
440 Note that 11 parameters bits was fine for ethernet, but the new chip
441 can handle FDDI length frames (~4500 octets) and now parameters count
442 32-bit 'Dwords' rather than octets. */
444 enum vortex_cmd {
445 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
456 /* The SetRxFilter command accepts the following classes: */
457 enum RxFilter {
458 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
460 /* Bits in the general status register. */
461 enum vortex_status {
462 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 IntReq = 0x0040, StatsFull = 0x0080,
465 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
467 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
470 /* Register window 1 offsets, the window used in normal operation.
471 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
472 enum Window1 {
473 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
474 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
475 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
477 enum Window0 {
478 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
479 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
480 IntrStatus=0x0E, /* Valid in all windows. */
482 enum Win0_EEPROM_bits {
483 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
485 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
487 /* EEPROM locations. */
488 enum eeprom_offset {
489 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 DriverTune=13, Checksum=15};
494 enum Window2 { /* Window 2. */
495 Wn2_ResetOptions=12,
497 enum Window3 { /* Window 3: MAC/config bits. */
498 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
501 #define BFEXT(value, offset, bitcount) \
502 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
504 #define BFINS(lhs, rhs, offset, bitcount) \
505 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
506 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
508 #define RAM_SIZE(v) BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
510 #define RAM_SPEED(v) BFEXT(v, 4, 2)
511 #define ROM_SIZE(v) BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
513 #define XCVR(v) BFEXT(v, 20, 4)
514 #define AUTOSELECT(v) BFEXT(v, 24, 1)
516 enum Window4 { /* Window 4: Xcvr/media bits. */
517 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
519 enum Win4_Media_bits {
520 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
521 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
522 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
523 Media_LnkBeat = 0x0800,
525 enum Window7 { /* Window 7: Bus Master control. */
526 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 Wn7_MasterStatus = 12,
529 /* Boomerang bus master control registers. */
530 enum MasterCtrl {
531 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
535 /* The Rx and Tx descriptor lists.
536 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
537 alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
540 struct boom_rx_desc {
541 __le32 next; /* Last entry points to 0. */
542 __le32 status;
543 __le32 addr; /* Up to 63 addr/len pairs possible. */
544 __le32 length; /* Set LAST_FRAG to indicate last pair. */
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 RxDComplete=0x00008000, RxDError=0x4000,
549 /* See boomerang_rx() for actual error bits */
550 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
554 #ifdef MAX_SKB_FRAGS
555 #define DO_ZEROCOPY 1
556 #else
557 #define DO_ZEROCOPY 0
558 #endif
560 struct boom_tx_desc {
561 __le32 next; /* Last entry points to 0. */
562 __le32 status; /* bits 0:12 length, others see below. */
563 #if DO_ZEROCOPY
564 struct {
565 __le32 addr;
566 __le32 length;
567 } frag[1+MAX_SKB_FRAGS];
568 #else
569 __le32 addr;
570 __le32 length;
571 #endif
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 CRCDisable=0x2000, TxDComplete=0x8000,
577 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
584 struct vortex_extra_stats {
585 unsigned long tx_deferred;
586 unsigned long tx_max_collisions;
587 unsigned long tx_multiple_collisions;
588 unsigned long tx_single_collisions;
589 unsigned long rx_bad_ssd;
592 struct vortex_private {
593 /* The Rx and Tx rings should be quad-word-aligned. */
594 struct boom_rx_desc* rx_ring;
595 struct boom_tx_desc* tx_ring;
596 dma_addr_t rx_ring_dma;
597 dma_addr_t tx_ring_dma;
598 /* The addresses of transmit- and receive-in-place skbuffs. */
599 struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 unsigned int cur_rx, cur_tx; /* The next free ring entry */
602 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
603 struct net_device_stats stats; /* Generic stats */
604 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
605 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
606 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
608 /* PCI configuration space information. */
609 struct device *gendev;
610 void __iomem *ioaddr; /* IO address space */
611 void __iomem *cb_fn_base; /* CardBus function status addr space. */
613 /* Some values here only for performance evaluation and path-coverage */
614 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
615 int card_idx;
617 /* The remainder are related to chip state, mostly media selection. */
618 struct timer_list timer; /* Media selection timer. */
619 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
620 int options; /* User-settable misc. driver options. */
621 unsigned int media_override:4, /* Passed-in media type. */
622 default_media:4, /* Read from the EEPROM/Wn3_Config. */
623 full_duplex:1, autoselect:1,
624 bus_master:1, /* Vortex can only do a fragment bus-m. */
625 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
626 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
627 partner_flow_ctrl:1, /* Partner supports flow control */
628 has_nway:1,
629 enable_wol:1, /* Wake-on-LAN is enabled */
630 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
631 open:1,
632 medialock:1,
633 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
634 large_frames:1; /* accept large frames */
635 int drv_flags;
636 u16 status_enable;
637 u16 intr_enable;
638 u16 available_media; /* From Wn3_Options. */
639 u16 capabilities, info1, info2; /* Various, from EEPROM. */
640 u16 advertising; /* NWay media advertisement */
641 unsigned char phys[2]; /* MII device addresses. */
642 u16 deferred; /* Resend these interrupts when we
643 * bale from the ISR */
644 u16 io_size; /* Size of PCI region (for release_region) */
645 spinlock_t lock; /* Serialise access to device & its vortex_private */
646 struct mii_if_info mii; /* MII lib hooks/info */
649 #ifdef CONFIG_PCI
650 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
651 #else
652 #define DEVICE_PCI(dev) NULL
653 #endif
655 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
657 #ifdef CONFIG_EISA
658 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
659 #else
660 #define DEVICE_EISA(dev) NULL
661 #endif
663 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
665 /* The action to take with a media selection timer tick.
666 Note that we deviate from the 3Com order by checking 10base2 before AUI.
668 enum xcvr_types {
669 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
670 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
673 static const struct media_table {
674 char *name;
675 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
676 mask:8, /* The transceiver-present bit in Wn3_Config.*/
677 next:8; /* The media type to try next. */
678 int wait; /* Time before we check media status. */
679 } media_tbl[] = {
680 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
681 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
682 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
683 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
684 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
685 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
686 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
687 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
688 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
689 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
693 static struct {
694 const char str[ETH_GSTRING_LEN];
695 } ethtool_stats_keys[] = {
696 { "tx_deferred" },
697 { "tx_max_collisions" },
698 { "tx_multiple_collisions" },
699 { "tx_single_collisions" },
700 { "rx_bad_ssd" },
703 /* number of ETHTOOL_GSTATS u64's */
704 #define VORTEX_NUM_STATS 5
706 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
707 int chip_idx, int card_idx);
708 static int vortex_up(struct net_device *dev);
709 static void vortex_down(struct net_device *dev, int final);
710 static int vortex_open(struct net_device *dev);
711 static void mdio_sync(void __iomem *ioaddr, int bits);
712 static int mdio_read(struct net_device *dev, int phy_id, int location);
713 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
714 static void vortex_timer(unsigned long arg);
715 static void rx_oom_timer(unsigned long arg);
716 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
718 static int vortex_rx(struct net_device *dev);
719 static int boomerang_rx(struct net_device *dev);
720 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
721 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
722 static int vortex_close(struct net_device *dev);
723 static void dump_tx_ring(struct net_device *dev);
724 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
725 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
726 static void set_rx_mode(struct net_device *dev);
727 #ifdef CONFIG_PCI
728 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
729 #endif
730 static void vortex_tx_timeout(struct net_device *dev);
731 static void acpi_set_WOL(struct net_device *dev);
732 static const struct ethtool_ops vortex_ethtool_ops;
733 static void set_8021q_mode(struct net_device *dev, int enable);
735 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
736 /* Option count limit only -- unlimited interfaces are supported. */
737 #define MAX_UNITS 8
738 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
739 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
744 static int global_options = -1;
745 static int global_full_duplex = -1;
746 static int global_enable_wol = -1;
747 static int global_use_mmio = -1;
749 /* Variables to work-around the Compaq PCI BIOS32 problem. */
750 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
751 static struct net_device *compaq_net_device;
753 static int vortex_cards_found;
755 module_param(debug, int, 0);
756 module_param(global_options, int, 0);
757 module_param_array(options, int, NULL, 0);
758 module_param(global_full_duplex, int, 0);
759 module_param_array(full_duplex, int, NULL, 0);
760 module_param_array(hw_checksums, int, NULL, 0);
761 module_param_array(flow_ctrl, int, NULL, 0);
762 module_param(global_enable_wol, int, 0);
763 module_param_array(enable_wol, int, NULL, 0);
764 module_param(rx_copybreak, int, 0);
765 module_param(max_interrupt_work, int, 0);
766 module_param(compaq_ioaddr, int, 0);
767 module_param(compaq_irq, int, 0);
768 module_param(compaq_device_id, int, 0);
769 module_param(watchdog, int, 0);
770 module_param(global_use_mmio, int, 0);
771 module_param_array(use_mmio, int, NULL, 0);
772 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
773 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
774 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
775 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
776 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
777 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
778 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
779 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
780 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
781 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
782 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
783 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
786 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
787 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
788 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
790 #ifdef CONFIG_NET_POLL_CONTROLLER
791 static void poll_vortex(struct net_device *dev)
793 struct vortex_private *vp = netdev_priv(dev);
794 unsigned long flags;
795 local_irq_save(flags);
796 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
797 local_irq_restore(flags);
799 #endif
801 #ifdef CONFIG_PM
803 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
805 struct net_device *dev = pci_get_drvdata(pdev);
807 if (dev && dev->priv) {
808 if (netif_running(dev)) {
809 netif_device_detach(dev);
810 vortex_down(dev, 1);
812 pci_save_state(pdev);
813 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
814 free_irq(dev->irq, dev);
815 pci_disable_device(pdev);
816 pci_set_power_state(pdev, pci_choose_state(pdev, state));
818 return 0;
821 static int vortex_resume(struct pci_dev *pdev)
823 struct net_device *dev = pci_get_drvdata(pdev);
824 struct vortex_private *vp = netdev_priv(dev);
825 int err;
827 if (dev && vp) {
828 pci_set_power_state(pdev, PCI_D0);
829 pci_restore_state(pdev);
830 err = pci_enable_device(pdev);
831 if (err) {
832 printk(KERN_WARNING "%s: Could not enable device \n",
833 dev->name);
834 return err;
836 pci_set_master(pdev);
837 if (request_irq(dev->irq, vp->full_bus_master_rx ?
838 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
839 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
840 pci_disable_device(pdev);
841 return -EBUSY;
843 if (netif_running(dev)) {
844 err = vortex_up(dev);
845 if (err)
846 return err;
847 else
848 netif_device_attach(dev);
851 return 0;
854 #endif /* CONFIG_PM */
856 #ifdef CONFIG_EISA
857 static struct eisa_device_id vortex_eisa_ids[] = {
858 { "TCM5920", CH_3C592 },
859 { "TCM5970", CH_3C597 },
860 { "" }
862 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
864 static int __init vortex_eisa_probe(struct device *device)
866 void __iomem *ioaddr;
867 struct eisa_device *edev;
869 edev = to_eisa_device(device);
871 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
872 return -EBUSY;
874 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
876 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
877 edev->id.driver_data, vortex_cards_found)) {
878 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
879 return -ENODEV;
882 vortex_cards_found++;
884 return 0;
887 static int __devexit vortex_eisa_remove(struct device *device)
889 struct eisa_device *edev;
890 struct net_device *dev;
891 struct vortex_private *vp;
892 void __iomem *ioaddr;
894 edev = to_eisa_device(device);
895 dev = eisa_get_drvdata(edev);
897 if (!dev) {
898 printk("vortex_eisa_remove called for Compaq device!\n");
899 BUG();
902 vp = netdev_priv(dev);
903 ioaddr = vp->ioaddr;
905 unregister_netdev(dev);
906 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
907 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
909 free_netdev(dev);
910 return 0;
913 static struct eisa_driver vortex_eisa_driver = {
914 .id_table = vortex_eisa_ids,
915 .driver = {
916 .name = "3c59x",
917 .probe = vortex_eisa_probe,
918 .remove = __devexit_p(vortex_eisa_remove)
922 #endif /* CONFIG_EISA */
924 /* returns count found (>= 0), or negative on error */
925 static int __init vortex_eisa_init(void)
927 int eisa_found = 0;
928 int orig_cards_found = vortex_cards_found;
930 #ifdef CONFIG_EISA
931 int err;
933 err = eisa_driver_register (&vortex_eisa_driver);
934 if (!err) {
936 * Because of the way EISA bus is probed, we cannot assume
937 * any device have been found when we exit from
938 * eisa_driver_register (the bus root driver may not be
939 * initialized yet). So we blindly assume something was
940 * found, and let the sysfs magic happend...
942 eisa_found = 1;
944 #endif
946 /* Special code to work-around the Compaq PCI BIOS32 problem. */
947 if (compaq_ioaddr) {
948 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
949 compaq_irq, compaq_device_id, vortex_cards_found++);
952 return vortex_cards_found - orig_cards_found + eisa_found;
955 /* returns count (>= 0), or negative on error */
956 static int __devinit vortex_init_one(struct pci_dev *pdev,
957 const struct pci_device_id *ent)
959 int rc, unit, pci_bar;
960 struct vortex_chip_info *vci;
961 void __iomem *ioaddr;
963 /* wake up and enable device */
964 rc = pci_enable_device(pdev);
965 if (rc < 0)
966 goto out;
968 unit = vortex_cards_found;
970 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
971 /* Determine the default if the user didn't override us */
972 vci = &vortex_info_tbl[ent->driver_data];
973 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
974 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
975 pci_bar = use_mmio[unit] ? 1 : 0;
976 else
977 pci_bar = global_use_mmio ? 1 : 0;
979 ioaddr = pci_iomap(pdev, pci_bar, 0);
980 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
981 ioaddr = pci_iomap(pdev, 0, 0);
983 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
984 ent->driver_data, unit);
985 if (rc < 0) {
986 pci_disable_device(pdev);
987 goto out;
990 vortex_cards_found++;
992 out:
993 return rc;
997 * Start up the PCI/EISA device which is described by *gendev.
998 * Return 0 on success.
1000 * NOTE: pdev can be NULL, for the case of a Compaq device
1002 static int __devinit vortex_probe1(struct device *gendev,
1003 void __iomem *ioaddr, int irq,
1004 int chip_idx, int card_idx)
1006 struct vortex_private *vp;
1007 int option;
1008 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1009 int i, step;
1010 struct net_device *dev;
1011 static int printed_version;
1012 int retval, print_info;
1013 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1014 char *print_name = "3c59x";
1015 struct pci_dev *pdev = NULL;
1016 struct eisa_device *edev = NULL;
1017 DECLARE_MAC_BUF(mac);
1019 if (!printed_version) {
1020 printk (version);
1021 printed_version = 1;
1024 if (gendev) {
1025 if ((pdev = DEVICE_PCI(gendev))) {
1026 print_name = pci_name(pdev);
1029 if ((edev = DEVICE_EISA(gendev))) {
1030 print_name = edev->dev.bus_id;
1034 dev = alloc_etherdev(sizeof(*vp));
1035 retval = -ENOMEM;
1036 if (!dev) {
1037 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1038 goto out;
1040 SET_NETDEV_DEV(dev, gendev);
1041 vp = netdev_priv(dev);
1043 option = global_options;
1045 /* The lower four bits are the media type. */
1046 if (dev->mem_start) {
1048 * The 'options' param is passed in as the third arg to the
1049 * LILO 'ether=' argument for non-modular use
1051 option = dev->mem_start;
1053 else if (card_idx < MAX_UNITS) {
1054 if (options[card_idx] >= 0)
1055 option = options[card_idx];
1058 if (option > 0) {
1059 if (option & 0x8000)
1060 vortex_debug = 7;
1061 if (option & 0x4000)
1062 vortex_debug = 2;
1063 if (option & 0x0400)
1064 vp->enable_wol = 1;
1067 print_info = (vortex_debug > 1);
1068 if (print_info)
1069 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1071 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1072 print_name,
1073 pdev ? "PCI" : "EISA",
1074 vci->name,
1075 ioaddr);
1077 dev->base_addr = (unsigned long)ioaddr;
1078 dev->irq = irq;
1079 dev->mtu = mtu;
1080 vp->ioaddr = ioaddr;
1081 vp->large_frames = mtu > 1500;
1082 vp->drv_flags = vci->drv_flags;
1083 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1084 vp->io_size = vci->io_size;
1085 vp->card_idx = card_idx;
1087 /* module list only for Compaq device */
1088 if (gendev == NULL) {
1089 compaq_net_device = dev;
1092 /* PCI-only startup logic */
1093 if (pdev) {
1094 /* EISA resources already marked, so only PCI needs to do this here */
1095 /* Ignore return value, because Cardbus drivers already allocate for us */
1096 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1097 vp->must_free_region = 1;
1099 /* enable bus-mastering if necessary */
1100 if (vci->flags & PCI_USES_MASTER)
1101 pci_set_master(pdev);
1103 if (vci->drv_flags & IS_VORTEX) {
1104 u8 pci_latency;
1105 u8 new_latency = 248;
1107 /* Check the PCI latency value. On the 3c590 series the latency timer
1108 must be set to the maximum value to avoid data corruption that occurs
1109 when the timer expires during a transfer. This bug exists the Vortex
1110 chip only. */
1111 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1112 if (pci_latency < new_latency) {
1113 printk(KERN_INFO "%s: Overriding PCI latency"
1114 " timer (CFLT) setting of %d, new value is %d.\n",
1115 print_name, pci_latency, new_latency);
1116 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1121 spin_lock_init(&vp->lock);
1122 vp->gendev = gendev;
1123 vp->mii.dev = dev;
1124 vp->mii.mdio_read = mdio_read;
1125 vp->mii.mdio_write = mdio_write;
1126 vp->mii.phy_id_mask = 0x1f;
1127 vp->mii.reg_num_mask = 0x1f;
1129 /* Makes sure rings are at least 16 byte aligned. */
1130 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1131 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1132 &vp->rx_ring_dma);
1133 retval = -ENOMEM;
1134 if (!vp->rx_ring)
1135 goto free_region;
1137 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1138 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1140 /* if we are a PCI driver, we store info in pdev->driver_data
1141 * instead of a module list */
1142 if (pdev)
1143 pci_set_drvdata(pdev, dev);
1144 if (edev)
1145 eisa_set_drvdata(edev, dev);
1147 vp->media_override = 7;
1148 if (option >= 0) {
1149 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1150 if (vp->media_override != 7)
1151 vp->medialock = 1;
1152 vp->full_duplex = (option & 0x200) ? 1 : 0;
1153 vp->bus_master = (option & 16) ? 1 : 0;
1156 if (global_full_duplex > 0)
1157 vp->full_duplex = 1;
1158 if (global_enable_wol > 0)
1159 vp->enable_wol = 1;
1161 if (card_idx < MAX_UNITS) {
1162 if (full_duplex[card_idx] > 0)
1163 vp->full_duplex = 1;
1164 if (flow_ctrl[card_idx] > 0)
1165 vp->flow_ctrl = 1;
1166 if (enable_wol[card_idx] > 0)
1167 vp->enable_wol = 1;
1170 vp->mii.force_media = vp->full_duplex;
1171 vp->options = option;
1172 /* Read the station address from the EEPROM. */
1173 EL3WINDOW(0);
1175 int base;
1177 if (vci->drv_flags & EEPROM_8BIT)
1178 base = 0x230;
1179 else if (vci->drv_flags & EEPROM_OFFSET)
1180 base = EEPROM_Read + 0x30;
1181 else
1182 base = EEPROM_Read;
1184 for (i = 0; i < 0x40; i++) {
1185 int timer;
1186 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1187 /* Pause for at least 162 us. for the read to take place. */
1188 for (timer = 10; timer >= 0; timer--) {
1189 udelay(162);
1190 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1191 break;
1193 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1196 for (i = 0; i < 0x18; i++)
1197 checksum ^= eeprom[i];
1198 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1199 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1200 while (i < 0x21)
1201 checksum ^= eeprom[i++];
1202 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1204 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1205 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1206 for (i = 0; i < 3; i++)
1207 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1208 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1209 if (print_info)
1210 printk(" %s", print_mac(mac, dev->dev_addr));
1211 /* Unfortunately an all zero eeprom passes the checksum and this
1212 gets found in the wild in failure cases. Crypto is hard 8) */
1213 if (!is_valid_ether_addr(dev->dev_addr)) {
1214 retval = -EINVAL;
1215 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1216 goto free_ring; /* With every pack */
1218 EL3WINDOW(2);
1219 for (i = 0; i < 6; i++)
1220 iowrite8(dev->dev_addr[i], ioaddr + i);
1222 if (print_info)
1223 printk(", IRQ %d\n", dev->irq);
1224 /* Tell them about an invalid IRQ. */
1225 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1226 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1227 dev->irq);
1229 EL3WINDOW(4);
1230 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1231 if (print_info) {
1232 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1233 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1234 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1238 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1239 unsigned short n;
1241 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1242 if (!vp->cb_fn_base) {
1243 retval = -ENOMEM;
1244 goto free_ring;
1247 if (print_info) {
1248 printk(KERN_INFO "%s: CardBus functions mapped "
1249 "%16.16llx->%p\n",
1250 print_name,
1251 (unsigned long long)pci_resource_start(pdev, 2),
1252 vp->cb_fn_base);
1254 EL3WINDOW(2);
1256 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1257 if (vp->drv_flags & INVERT_LED_PWR)
1258 n |= 0x10;
1259 if (vp->drv_flags & INVERT_MII_PWR)
1260 n |= 0x4000;
1261 iowrite16(n, ioaddr + Wn2_ResetOptions);
1262 if (vp->drv_flags & WNO_XCVR_PWR) {
1263 EL3WINDOW(0);
1264 iowrite16(0x0800, ioaddr);
1268 /* Extract our information from the EEPROM data. */
1269 vp->info1 = eeprom[13];
1270 vp->info2 = eeprom[15];
1271 vp->capabilities = eeprom[16];
1273 if (vp->info1 & 0x8000) {
1274 vp->full_duplex = 1;
1275 if (print_info)
1276 printk(KERN_INFO "Full duplex capable\n");
1280 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1281 unsigned int config;
1282 EL3WINDOW(3);
1283 vp->available_media = ioread16(ioaddr + Wn3_Options);
1284 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1285 vp->available_media = 0x40;
1286 config = ioread32(ioaddr + Wn3_Config);
1287 if (print_info) {
1288 printk(KERN_DEBUG " Internal config register is %4.4x, "
1289 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1290 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1291 8 << RAM_SIZE(config),
1292 RAM_WIDTH(config) ? "word" : "byte",
1293 ram_split[RAM_SPLIT(config)],
1294 AUTOSELECT(config) ? "autoselect/" : "",
1295 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1296 media_tbl[XCVR(config)].name);
1298 vp->default_media = XCVR(config);
1299 if (vp->default_media == XCVR_NWAY)
1300 vp->has_nway = 1;
1301 vp->autoselect = AUTOSELECT(config);
1304 if (vp->media_override != 7) {
1305 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1306 print_name, vp->media_override,
1307 media_tbl[vp->media_override].name);
1308 dev->if_port = vp->media_override;
1309 } else
1310 dev->if_port = vp->default_media;
1312 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1313 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1314 int phy, phy_idx = 0;
1315 EL3WINDOW(4);
1316 mii_preamble_required++;
1317 if (vp->drv_flags & EXTRA_PREAMBLE)
1318 mii_preamble_required++;
1319 mdio_sync(ioaddr, 32);
1320 mdio_read(dev, 24, MII_BMSR);
1321 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1322 int mii_status, phyx;
1325 * For the 3c905CX we look at index 24 first, because it bogusly
1326 * reports an external PHY at all indices
1328 if (phy == 0)
1329 phyx = 24;
1330 else if (phy <= 24)
1331 phyx = phy - 1;
1332 else
1333 phyx = phy;
1334 mii_status = mdio_read(dev, phyx, MII_BMSR);
1335 if (mii_status && mii_status != 0xffff) {
1336 vp->phys[phy_idx++] = phyx;
1337 if (print_info) {
1338 printk(KERN_INFO " MII transceiver found at address %d,"
1339 " status %4x.\n", phyx, mii_status);
1341 if ((mii_status & 0x0040) == 0)
1342 mii_preamble_required++;
1345 mii_preamble_required--;
1346 if (phy_idx == 0) {
1347 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1348 vp->phys[0] = 24;
1349 } else {
1350 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1351 if (vp->full_duplex) {
1352 /* Only advertise the FD media types. */
1353 vp->advertising &= ~0x02A0;
1354 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1357 vp->mii.phy_id = vp->phys[0];
1360 if (vp->capabilities & CapBusMaster) {
1361 vp->full_bus_master_tx = 1;
1362 if (print_info) {
1363 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1364 (vp->info2 & 1) ? "early" : "whole-frame" );
1366 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1367 vp->bus_master = 0; /* AKPM: vortex only */
1370 /* The 3c59x-specific entries in the device structure. */
1371 dev->open = vortex_open;
1372 if (vp->full_bus_master_tx) {
1373 dev->hard_start_xmit = boomerang_start_xmit;
1374 /* Actually, it still should work with iommu. */
1375 if (card_idx < MAX_UNITS &&
1376 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1377 hw_checksums[card_idx] == 1)) {
1378 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1380 } else {
1381 dev->hard_start_xmit = vortex_start_xmit;
1384 if (print_info) {
1385 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1386 print_name,
1387 (dev->features & NETIF_F_SG) ? "en":"dis",
1388 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1391 dev->stop = vortex_close;
1392 dev->get_stats = vortex_get_stats;
1393 #ifdef CONFIG_PCI
1394 dev->do_ioctl = vortex_ioctl;
1395 #endif
1396 dev->ethtool_ops = &vortex_ethtool_ops;
1397 dev->set_multicast_list = set_rx_mode;
1398 dev->tx_timeout = vortex_tx_timeout;
1399 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1400 #ifdef CONFIG_NET_POLL_CONTROLLER
1401 dev->poll_controller = poll_vortex;
1402 #endif
1403 if (pdev) {
1404 vp->pm_state_valid = 1;
1405 pci_save_state(VORTEX_PCI(vp));
1406 acpi_set_WOL(dev);
1408 retval = register_netdev(dev);
1409 if (retval == 0)
1410 return 0;
1412 free_ring:
1413 pci_free_consistent(pdev,
1414 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1415 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1416 vp->rx_ring,
1417 vp->rx_ring_dma);
1418 free_region:
1419 if (vp->must_free_region)
1420 release_region(dev->base_addr, vci->io_size);
1421 free_netdev(dev);
1422 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1423 out:
1424 return retval;
1427 static void
1428 issue_and_wait(struct net_device *dev, int cmd)
1430 struct vortex_private *vp = netdev_priv(dev);
1431 void __iomem *ioaddr = vp->ioaddr;
1432 int i;
1434 iowrite16(cmd, ioaddr + EL3_CMD);
1435 for (i = 0; i < 2000; i++) {
1436 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1437 return;
1440 /* OK, that didn't work. Do it the slow way. One second */
1441 for (i = 0; i < 100000; i++) {
1442 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1443 if (vortex_debug > 1)
1444 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1445 dev->name, cmd, i * 10);
1446 return;
1448 udelay(10);
1450 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1451 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1454 static void
1455 vortex_set_duplex(struct net_device *dev)
1457 struct vortex_private *vp = netdev_priv(dev);
1458 void __iomem *ioaddr = vp->ioaddr;
1460 printk(KERN_INFO "%s: setting %s-duplex.\n",
1461 dev->name, (vp->full_duplex) ? "full" : "half");
1463 EL3WINDOW(3);
1464 /* Set the full-duplex bit. */
1465 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1466 (vp->large_frames ? 0x40 : 0) |
1467 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1468 0x100 : 0),
1469 ioaddr + Wn3_MAC_Ctrl);
1472 static void vortex_check_media(struct net_device *dev, unsigned int init)
1474 struct vortex_private *vp = netdev_priv(dev);
1475 unsigned int ok_to_print = 0;
1477 if (vortex_debug > 3)
1478 ok_to_print = 1;
1480 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1481 vp->full_duplex = vp->mii.full_duplex;
1482 vortex_set_duplex(dev);
1483 } else if (init) {
1484 vortex_set_duplex(dev);
1488 static int
1489 vortex_up(struct net_device *dev)
1491 struct vortex_private *vp = netdev_priv(dev);
1492 void __iomem *ioaddr = vp->ioaddr;
1493 unsigned int config;
1494 int i, mii_reg1, mii_reg5, err = 0;
1496 if (VORTEX_PCI(vp)) {
1497 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1498 if (vp->pm_state_valid)
1499 pci_restore_state(VORTEX_PCI(vp));
1500 err = pci_enable_device(VORTEX_PCI(vp));
1501 if (err) {
1502 printk(KERN_WARNING "%s: Could not enable device \n",
1503 dev->name);
1504 goto err_out;
1508 /* Before initializing select the active media port. */
1509 EL3WINDOW(3);
1510 config = ioread32(ioaddr + Wn3_Config);
1512 if (vp->media_override != 7) {
1513 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1514 dev->name, vp->media_override,
1515 media_tbl[vp->media_override].name);
1516 dev->if_port = vp->media_override;
1517 } else if (vp->autoselect) {
1518 if (vp->has_nway) {
1519 if (vortex_debug > 1)
1520 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1521 dev->name, dev->if_port);
1522 dev->if_port = XCVR_NWAY;
1523 } else {
1524 /* Find first available media type, starting with 100baseTx. */
1525 dev->if_port = XCVR_100baseTx;
1526 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1527 dev->if_port = media_tbl[dev->if_port].next;
1528 if (vortex_debug > 1)
1529 printk(KERN_INFO "%s: first available media type: %s\n",
1530 dev->name, media_tbl[dev->if_port].name);
1532 } else {
1533 dev->if_port = vp->default_media;
1534 if (vortex_debug > 1)
1535 printk(KERN_INFO "%s: using default media %s\n",
1536 dev->name, media_tbl[dev->if_port].name);
1539 init_timer(&vp->timer);
1540 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1541 vp->timer.data = (unsigned long)dev;
1542 vp->timer.function = vortex_timer; /* timer handler */
1543 add_timer(&vp->timer);
1545 init_timer(&vp->rx_oom_timer);
1546 vp->rx_oom_timer.data = (unsigned long)dev;
1547 vp->rx_oom_timer.function = rx_oom_timer;
1549 if (vortex_debug > 1)
1550 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1551 dev->name, media_tbl[dev->if_port].name);
1553 vp->full_duplex = vp->mii.force_media;
1554 config = BFINS(config, dev->if_port, 20, 4);
1555 if (vortex_debug > 6)
1556 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1557 iowrite32(config, ioaddr + Wn3_Config);
1559 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1560 EL3WINDOW(4);
1561 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1562 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1563 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1564 vp->mii.full_duplex = vp->full_duplex;
1566 vortex_check_media(dev, 1);
1568 else
1569 vortex_set_duplex(dev);
1571 issue_and_wait(dev, TxReset);
1573 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1575 issue_and_wait(dev, RxReset|0x04);
1578 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1580 if (vortex_debug > 1) {
1581 EL3WINDOW(4);
1582 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1583 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1586 /* Set the station address and mask in window 2 each time opened. */
1587 EL3WINDOW(2);
1588 for (i = 0; i < 6; i++)
1589 iowrite8(dev->dev_addr[i], ioaddr + i);
1590 for (; i < 12; i+=2)
1591 iowrite16(0, ioaddr + i);
1593 if (vp->cb_fn_base) {
1594 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1595 if (vp->drv_flags & INVERT_LED_PWR)
1596 n |= 0x10;
1597 if (vp->drv_flags & INVERT_MII_PWR)
1598 n |= 0x4000;
1599 iowrite16(n, ioaddr + Wn2_ResetOptions);
1602 if (dev->if_port == XCVR_10base2)
1603 /* Start the thinnet transceiver. We should really wait 50ms...*/
1604 iowrite16(StartCoax, ioaddr + EL3_CMD);
1605 if (dev->if_port != XCVR_NWAY) {
1606 EL3WINDOW(4);
1607 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1608 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1611 /* Switch to the stats window, and clear all stats by reading. */
1612 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1613 EL3WINDOW(6);
1614 for (i = 0; i < 10; i++)
1615 ioread8(ioaddr + i);
1616 ioread16(ioaddr + 10);
1617 ioread16(ioaddr + 12);
1618 /* New: On the Vortex we must also clear the BadSSD counter. */
1619 EL3WINDOW(4);
1620 ioread8(ioaddr + 12);
1621 /* ..and on the Boomerang we enable the extra statistics bits. */
1622 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1624 /* Switch to register set 7 for normal use. */
1625 EL3WINDOW(7);
1627 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1628 vp->cur_rx = vp->dirty_rx = 0;
1629 /* Initialize the RxEarly register as recommended. */
1630 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1631 iowrite32(0x0020, ioaddr + PktStatus);
1632 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1634 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1635 vp->cur_tx = vp->dirty_tx = 0;
1636 if (vp->drv_flags & IS_BOOMERANG)
1637 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1638 /* Clear the Rx, Tx rings. */
1639 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1640 vp->rx_ring[i].status = 0;
1641 for (i = 0; i < TX_RING_SIZE; i++)
1642 vp->tx_skbuff[i] = NULL;
1643 iowrite32(0, ioaddr + DownListPtr);
1645 /* Set receiver mode: presumably accept b-case and phys addr only. */
1646 set_rx_mode(dev);
1647 /* enable 802.1q tagged frames */
1648 set_8021q_mode(dev, 1);
1649 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1651 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1652 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1653 /* Allow status bits to be seen. */
1654 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1655 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1656 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1657 (vp->bus_master ? DMADone : 0);
1658 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1659 (vp->full_bus_master_rx ? 0 : RxComplete) |
1660 StatsFull | HostError | TxComplete | IntReq
1661 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1662 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1663 /* Ack all pending events, and set active indicator mask. */
1664 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1665 ioaddr + EL3_CMD);
1666 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1667 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1668 iowrite32(0x8000, vp->cb_fn_base + 4);
1669 netif_start_queue (dev);
1670 err_out:
1671 return err;
1674 static int
1675 vortex_open(struct net_device *dev)
1677 struct vortex_private *vp = netdev_priv(dev);
1678 int i;
1679 int retval;
1681 /* Use the now-standard shared IRQ implementation. */
1682 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1683 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1684 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1685 goto err;
1688 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1689 if (vortex_debug > 2)
1690 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1691 for (i = 0; i < RX_RING_SIZE; i++) {
1692 struct sk_buff *skb;
1693 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1694 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1695 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1696 skb = dev_alloc_skb(PKT_BUF_SZ);
1697 vp->rx_skbuff[i] = skb;
1698 if (skb == NULL)
1699 break; /* Bad news! */
1700 skb->dev = dev; /* Mark as being used by this device. */
1701 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1702 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1704 if (i != RX_RING_SIZE) {
1705 int j;
1706 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1707 for (j = 0; j < i; j++) {
1708 if (vp->rx_skbuff[j]) {
1709 dev_kfree_skb(vp->rx_skbuff[j]);
1710 vp->rx_skbuff[j] = NULL;
1713 retval = -ENOMEM;
1714 goto err_free_irq;
1716 /* Wrap the ring. */
1717 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1720 retval = vortex_up(dev);
1721 if (!retval)
1722 goto out;
1724 err_free_irq:
1725 free_irq(dev->irq, dev);
1726 err:
1727 if (vortex_debug > 1)
1728 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1729 out:
1730 return retval;
1733 static void
1734 vortex_timer(unsigned long data)
1736 struct net_device *dev = (struct net_device *)data;
1737 struct vortex_private *vp = netdev_priv(dev);
1738 void __iomem *ioaddr = vp->ioaddr;
1739 int next_tick = 60*HZ;
1740 int ok = 0;
1741 int media_status, old_window;
1743 if (vortex_debug > 2) {
1744 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1745 dev->name, media_tbl[dev->if_port].name);
1746 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1749 disable_irq_lockdep(dev->irq);
1750 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1751 EL3WINDOW(4);
1752 media_status = ioread16(ioaddr + Wn4_Media);
1753 switch (dev->if_port) {
1754 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1755 if (media_status & Media_LnkBeat) {
1756 netif_carrier_on(dev);
1757 ok = 1;
1758 if (vortex_debug > 1)
1759 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1760 dev->name, media_tbl[dev->if_port].name, media_status);
1761 } else {
1762 netif_carrier_off(dev);
1763 if (vortex_debug > 1) {
1764 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1765 dev->name, media_tbl[dev->if_port].name, media_status);
1768 break;
1769 case XCVR_MII: case XCVR_NWAY:
1771 ok = 1;
1772 spin_lock_bh(&vp->lock);
1773 vortex_check_media(dev, 0);
1774 spin_unlock_bh(&vp->lock);
1776 break;
1777 default: /* Other media types handled by Tx timeouts. */
1778 if (vortex_debug > 1)
1779 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1780 dev->name, media_tbl[dev->if_port].name, media_status);
1781 ok = 1;
1784 if (!netif_carrier_ok(dev))
1785 next_tick = 5*HZ;
1787 if (vp->medialock)
1788 goto leave_media_alone;
1790 if (!ok) {
1791 unsigned int config;
1793 do {
1794 dev->if_port = media_tbl[dev->if_port].next;
1795 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1796 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1797 dev->if_port = vp->default_media;
1798 if (vortex_debug > 1)
1799 printk(KERN_DEBUG "%s: Media selection failing, using default "
1800 "%s port.\n",
1801 dev->name, media_tbl[dev->if_port].name);
1802 } else {
1803 if (vortex_debug > 1)
1804 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1805 "%s port.\n",
1806 dev->name, media_tbl[dev->if_port].name);
1807 next_tick = media_tbl[dev->if_port].wait;
1809 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1810 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1812 EL3WINDOW(3);
1813 config = ioread32(ioaddr + Wn3_Config);
1814 config = BFINS(config, dev->if_port, 20, 4);
1815 iowrite32(config, ioaddr + Wn3_Config);
1817 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1818 ioaddr + EL3_CMD);
1819 if (vortex_debug > 1)
1820 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1821 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1824 leave_media_alone:
1825 if (vortex_debug > 2)
1826 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1827 dev->name, media_tbl[dev->if_port].name);
1829 EL3WINDOW(old_window);
1830 enable_irq_lockdep(dev->irq);
1831 mod_timer(&vp->timer, RUN_AT(next_tick));
1832 if (vp->deferred)
1833 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1834 return;
1837 static void vortex_tx_timeout(struct net_device *dev)
1839 struct vortex_private *vp = netdev_priv(dev);
1840 void __iomem *ioaddr = vp->ioaddr;
1842 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1843 dev->name, ioread8(ioaddr + TxStatus),
1844 ioread16(ioaddr + EL3_STATUS));
1845 EL3WINDOW(4);
1846 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1847 ioread16(ioaddr + Wn4_NetDiag),
1848 ioread16(ioaddr + Wn4_Media),
1849 ioread32(ioaddr + PktStatus),
1850 ioread16(ioaddr + Wn4_FIFODiag));
1851 /* Slight code bloat to be user friendly. */
1852 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1853 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1854 " network cable problem?\n", dev->name);
1855 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1856 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1857 " IRQ blocked by another device?\n", dev->name);
1858 /* Bad idea here.. but we might as well handle a few events. */
1861 * Block interrupts because vortex_interrupt does a bare spin_lock()
1863 unsigned long flags;
1864 local_irq_save(flags);
1865 if (vp->full_bus_master_tx)
1866 boomerang_interrupt(dev->irq, dev);
1867 else
1868 vortex_interrupt(dev->irq, dev);
1869 local_irq_restore(flags);
1873 if (vortex_debug > 0)
1874 dump_tx_ring(dev);
1876 issue_and_wait(dev, TxReset);
1878 vp->stats.tx_errors++;
1879 if (vp->full_bus_master_tx) {
1880 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
1881 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1882 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1883 ioaddr + DownListPtr);
1884 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1885 netif_wake_queue (dev);
1886 if (vp->drv_flags & IS_BOOMERANG)
1887 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1888 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1889 } else {
1890 vp->stats.tx_dropped++;
1891 netif_wake_queue(dev);
1894 /* Issue Tx Enable */
1895 iowrite16(TxEnable, ioaddr + EL3_CMD);
1896 dev->trans_start = jiffies;
1898 /* Switch to register set 7 for normal use. */
1899 EL3WINDOW(7);
1903 * Handle uncommon interrupt sources. This is a separate routine to minimize
1904 * the cache impact.
1906 static void
1907 vortex_error(struct net_device *dev, int status)
1909 struct vortex_private *vp = netdev_priv(dev);
1910 void __iomem *ioaddr = vp->ioaddr;
1911 int do_tx_reset = 0, reset_mask = 0;
1912 unsigned char tx_status = 0;
1914 if (vortex_debug > 2) {
1915 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
1918 if (status & TxComplete) { /* Really "TxError" for us. */
1919 tx_status = ioread8(ioaddr + TxStatus);
1920 /* Presumably a tx-timeout. We must merely re-enable. */
1921 if (vortex_debug > 2
1922 || (tx_status != 0x88 && vortex_debug > 0)) {
1923 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
1924 dev->name, tx_status);
1925 if (tx_status == 0x82) {
1926 printk(KERN_ERR "Probably a duplex mismatch. See "
1927 "Documentation/networking/vortex.txt\n");
1929 dump_tx_ring(dev);
1931 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
1932 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
1933 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1934 iowrite8(0, ioaddr + TxStatus);
1935 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1936 do_tx_reset = 1;
1937 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1938 do_tx_reset = 1;
1939 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1940 } else { /* Merely re-enable the transmitter. */
1941 iowrite16(TxEnable, ioaddr + EL3_CMD);
1945 if (status & RxEarly) { /* Rx early is unused. */
1946 vortex_rx(dev);
1947 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1949 if (status & StatsFull) { /* Empty statistics. */
1950 static int DoneDidThat;
1951 if (vortex_debug > 4)
1952 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
1953 update_stats(ioaddr, dev);
1954 /* HACK: Disable statistics as an interrupt source. */
1955 /* This occurs when we have the wrong media type! */
1956 if (DoneDidThat == 0 &&
1957 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1958 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
1959 "stats as an interrupt source.\n", dev->name);
1960 EL3WINDOW(5);
1961 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1962 vp->intr_enable &= ~StatsFull;
1963 EL3WINDOW(7);
1964 DoneDidThat++;
1967 if (status & IntReq) { /* Restore all interrupt sources. */
1968 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1969 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1971 if (status & HostError) {
1972 u16 fifo_diag;
1973 EL3WINDOW(4);
1974 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1975 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
1976 dev->name, fifo_diag);
1977 /* Adapter failure requires Tx/Rx reset and reinit. */
1978 if (vp->full_bus_master_tx) {
1979 int bus_status = ioread32(ioaddr + PktStatus);
1980 /* 0x80000000 PCI master abort. */
1981 /* 0x40000000 PCI target abort. */
1982 if (vortex_debug)
1983 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
1985 /* In this case, blow the card away */
1986 /* Must not enter D3 or we can't legally issue the reset! */
1987 vortex_down(dev, 0);
1988 issue_and_wait(dev, TotalReset | 0xff);
1989 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
1990 } else if (fifo_diag & 0x0400)
1991 do_tx_reset = 1;
1992 if (fifo_diag & 0x3000) {
1993 /* Reset Rx fifo and upload logic */
1994 issue_and_wait(dev, RxReset|0x07);
1995 /* Set the Rx filter to the current state. */
1996 set_rx_mode(dev);
1997 /* enable 802.1q VLAN tagged frames */
1998 set_8021q_mode(dev, 1);
1999 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2000 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2004 if (do_tx_reset) {
2005 issue_and_wait(dev, TxReset|reset_mask);
2006 iowrite16(TxEnable, ioaddr + EL3_CMD);
2007 if (!vp->full_bus_master_tx)
2008 netif_wake_queue(dev);
2012 static int
2013 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2015 struct vortex_private *vp = netdev_priv(dev);
2016 void __iomem *ioaddr = vp->ioaddr;
2018 /* Put out the doubleword header... */
2019 iowrite32(skb->len, ioaddr + TX_FIFO);
2020 if (vp->bus_master) {
2021 /* Set the bus-master controller to transfer the packet. */
2022 int len = (skb->len + 3) & ~3;
2023 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2024 ioaddr + Wn7_MasterAddr);
2025 iowrite16(len, ioaddr + Wn7_MasterLen);
2026 vp->tx_skb = skb;
2027 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2028 /* netif_wake_queue() will be called at the DMADone interrupt. */
2029 } else {
2030 /* ... and the packet rounded to a doubleword. */
2031 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2032 dev_kfree_skb (skb);
2033 if (ioread16(ioaddr + TxFree) > 1536) {
2034 netif_start_queue (dev); /* AKPM: redundant? */
2035 } else {
2036 /* Interrupt us when the FIFO has room for max-sized packet. */
2037 netif_stop_queue(dev);
2038 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2042 dev->trans_start = jiffies;
2044 /* Clear the Tx status stack. */
2046 int tx_status;
2047 int i = 32;
2049 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2050 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2051 if (vortex_debug > 2)
2052 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2053 dev->name, tx_status);
2054 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2055 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2056 if (tx_status & 0x30) {
2057 issue_and_wait(dev, TxReset);
2059 iowrite16(TxEnable, ioaddr + EL3_CMD);
2061 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2064 return 0;
2067 static int
2068 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2070 struct vortex_private *vp = netdev_priv(dev);
2071 void __iomem *ioaddr = vp->ioaddr;
2072 /* Calculate the next Tx descriptor entry. */
2073 int entry = vp->cur_tx % TX_RING_SIZE;
2074 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2075 unsigned long flags;
2077 if (vortex_debug > 6) {
2078 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2079 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2080 dev->name, vp->cur_tx);
2083 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2084 if (vortex_debug > 0)
2085 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2086 dev->name);
2087 netif_stop_queue(dev);
2088 return 1;
2091 vp->tx_skbuff[entry] = skb;
2093 vp->tx_ring[entry].next = 0;
2094 #if DO_ZEROCOPY
2095 if (skb->ip_summed != CHECKSUM_PARTIAL)
2096 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2097 else
2098 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2100 if (!skb_shinfo(skb)->nr_frags) {
2101 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2102 skb->len, PCI_DMA_TODEVICE));
2103 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2104 } else {
2105 int i;
2107 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2108 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2109 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2114 vp->tx_ring[entry].frag[i+1].addr =
2115 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2116 (void*)page_address(frag->page) + frag->page_offset,
2117 frag->size, PCI_DMA_TODEVICE));
2119 if (i == skb_shinfo(skb)->nr_frags-1)
2120 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2121 else
2122 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2125 #else
2126 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2127 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2128 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2129 #endif
2131 spin_lock_irqsave(&vp->lock, flags);
2132 /* Wait for the stall to complete. */
2133 issue_and_wait(dev, DownStall);
2134 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2135 if (ioread32(ioaddr + DownListPtr) == 0) {
2136 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2137 vp->queued_packet++;
2140 vp->cur_tx++;
2141 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2142 netif_stop_queue (dev);
2143 } else { /* Clear previous interrupt enable. */
2144 #if defined(tx_interrupt_mitigation)
2145 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2146 * were selected, this would corrupt DN_COMPLETE. No?
2148 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2149 #endif
2151 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2152 spin_unlock_irqrestore(&vp->lock, flags);
2153 dev->trans_start = jiffies;
2154 return 0;
2157 /* The interrupt handler does all of the Rx thread work and cleans up
2158 after the Tx thread. */
2161 * This is the ISR for the vortex series chips.
2162 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2165 static irqreturn_t
2166 vortex_interrupt(int irq, void *dev_id)
2168 struct net_device *dev = dev_id;
2169 struct vortex_private *vp = netdev_priv(dev);
2170 void __iomem *ioaddr;
2171 int status;
2172 int work_done = max_interrupt_work;
2173 int handled = 0;
2175 ioaddr = vp->ioaddr;
2176 spin_lock(&vp->lock);
2178 status = ioread16(ioaddr + EL3_STATUS);
2180 if (vortex_debug > 6)
2181 printk("vortex_interrupt(). status=0x%4x\n", status);
2183 if ((status & IntLatch) == 0)
2184 goto handler_exit; /* No interrupt: shared IRQs cause this */
2185 handled = 1;
2187 if (status & IntReq) {
2188 status |= vp->deferred;
2189 vp->deferred = 0;
2192 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2193 goto handler_exit;
2195 if (vortex_debug > 4)
2196 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2197 dev->name, status, ioread8(ioaddr + Timer));
2199 do {
2200 if (vortex_debug > 5)
2201 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2202 dev->name, status);
2203 if (status & RxComplete)
2204 vortex_rx(dev);
2206 if (status & TxAvailable) {
2207 if (vortex_debug > 5)
2208 printk(KERN_DEBUG " TX room bit was handled.\n");
2209 /* There's room in the FIFO for a full-sized packet. */
2210 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2211 netif_wake_queue (dev);
2214 if (status & DMADone) {
2215 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2216 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2217 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2218 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2219 if (ioread16(ioaddr + TxFree) > 1536) {
2221 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2222 * insufficient FIFO room, the TxAvailable test will succeed and call
2223 * netif_wake_queue()
2225 netif_wake_queue(dev);
2226 } else { /* Interrupt when FIFO has room for max-sized packet. */
2227 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2228 netif_stop_queue(dev);
2232 /* Check for all uncommon interrupts at once. */
2233 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2234 if (status == 0xffff)
2235 break;
2236 vortex_error(dev, status);
2239 if (--work_done < 0) {
2240 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2241 "%4.4x.\n", dev->name, status);
2242 /* Disable all pending interrupts. */
2243 do {
2244 vp->deferred |= status;
2245 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2246 ioaddr + EL3_CMD);
2247 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2248 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2249 /* The timer will reenable interrupts. */
2250 mod_timer(&vp->timer, jiffies + 1*HZ);
2251 break;
2253 /* Acknowledge the IRQ. */
2254 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2255 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2257 if (vortex_debug > 4)
2258 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2259 dev->name, status);
2260 handler_exit:
2261 spin_unlock(&vp->lock);
2262 return IRQ_RETVAL(handled);
2266 * This is the ISR for the boomerang series chips.
2267 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2270 static irqreturn_t
2271 boomerang_interrupt(int irq, void *dev_id)
2273 struct net_device *dev = dev_id;
2274 struct vortex_private *vp = netdev_priv(dev);
2275 void __iomem *ioaddr;
2276 int status;
2277 int work_done = max_interrupt_work;
2279 ioaddr = vp->ioaddr;
2282 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2283 * and boomerang_start_xmit
2285 spin_lock(&vp->lock);
2287 status = ioread16(ioaddr + EL3_STATUS);
2289 if (vortex_debug > 6)
2290 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2292 if ((status & IntLatch) == 0)
2293 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2295 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2296 if (vortex_debug > 1)
2297 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2298 goto handler_exit;
2301 if (status & IntReq) {
2302 status |= vp->deferred;
2303 vp->deferred = 0;
2306 if (vortex_debug > 4)
2307 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2308 dev->name, status, ioread8(ioaddr + Timer));
2309 do {
2310 if (vortex_debug > 5)
2311 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2312 dev->name, status);
2313 if (status & UpComplete) {
2314 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2315 if (vortex_debug > 5)
2316 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2317 boomerang_rx(dev);
2320 if (status & DownComplete) {
2321 unsigned int dirty_tx = vp->dirty_tx;
2323 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2324 while (vp->cur_tx - dirty_tx > 0) {
2325 int entry = dirty_tx % TX_RING_SIZE;
2326 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2327 if (ioread32(ioaddr + DownListPtr) ==
2328 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2329 break; /* It still hasn't been processed. */
2330 #else
2331 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2332 break; /* It still hasn't been processed. */
2333 #endif
2335 if (vp->tx_skbuff[entry]) {
2336 struct sk_buff *skb = vp->tx_skbuff[entry];
2337 #if DO_ZEROCOPY
2338 int i;
2339 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2340 pci_unmap_single(VORTEX_PCI(vp),
2341 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2342 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2343 PCI_DMA_TODEVICE);
2344 #else
2345 pci_unmap_single(VORTEX_PCI(vp),
2346 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2347 #endif
2348 dev_kfree_skb_irq(skb);
2349 vp->tx_skbuff[entry] = NULL;
2350 } else {
2351 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2353 /* vp->stats.tx_packets++; Counted below. */
2354 dirty_tx++;
2356 vp->dirty_tx = dirty_tx;
2357 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2358 if (vortex_debug > 6)
2359 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2360 netif_wake_queue (dev);
2364 /* Check for all uncommon interrupts at once. */
2365 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2366 vortex_error(dev, status);
2368 if (--work_done < 0) {
2369 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2370 "%4.4x.\n", dev->name, status);
2371 /* Disable all pending interrupts. */
2372 do {
2373 vp->deferred |= status;
2374 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2375 ioaddr + EL3_CMD);
2376 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2377 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2378 /* The timer will reenable interrupts. */
2379 mod_timer(&vp->timer, jiffies + 1*HZ);
2380 break;
2382 /* Acknowledge the IRQ. */
2383 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2384 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2385 iowrite32(0x8000, vp->cb_fn_base + 4);
2387 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2389 if (vortex_debug > 4)
2390 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2391 dev->name, status);
2392 handler_exit:
2393 spin_unlock(&vp->lock);
2394 return IRQ_HANDLED;
2397 static int vortex_rx(struct net_device *dev)
2399 struct vortex_private *vp = netdev_priv(dev);
2400 void __iomem *ioaddr = vp->ioaddr;
2401 int i;
2402 short rx_status;
2404 if (vortex_debug > 5)
2405 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2406 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2407 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2408 if (rx_status & 0x4000) { /* Error, update stats. */
2409 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2410 if (vortex_debug > 2)
2411 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2412 vp->stats.rx_errors++;
2413 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2414 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2415 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2416 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2417 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2418 } else {
2419 /* The packet length: up to 4.5K!. */
2420 int pkt_len = rx_status & 0x1fff;
2421 struct sk_buff *skb;
2423 skb = dev_alloc_skb(pkt_len + 5);
2424 if (vortex_debug > 4)
2425 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2426 pkt_len, rx_status);
2427 if (skb != NULL) {
2428 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2429 /* 'skb_put()' points to the start of sk_buff data area. */
2430 if (vp->bus_master &&
2431 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2432 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2433 pkt_len, PCI_DMA_FROMDEVICE);
2434 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2435 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2436 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2437 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2439 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2440 } else {
2441 ioread32_rep(ioaddr + RX_FIFO,
2442 skb_put(skb, pkt_len),
2443 (pkt_len + 3) >> 2);
2445 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2446 skb->protocol = eth_type_trans(skb, dev);
2447 netif_rx(skb);
2448 dev->last_rx = jiffies;
2449 vp->stats.rx_packets++;
2450 /* Wait a limited time to go to next packet. */
2451 for (i = 200; i >= 0; i--)
2452 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2453 break;
2454 continue;
2455 } else if (vortex_debug > 0)
2456 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2457 "size %d.\n", dev->name, pkt_len);
2458 vp->stats.rx_dropped++;
2460 issue_and_wait(dev, RxDiscard);
2463 return 0;
2466 static int
2467 boomerang_rx(struct net_device *dev)
2469 struct vortex_private *vp = netdev_priv(dev);
2470 int entry = vp->cur_rx % RX_RING_SIZE;
2471 void __iomem *ioaddr = vp->ioaddr;
2472 int rx_status;
2473 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2475 if (vortex_debug > 5)
2476 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2478 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2479 if (--rx_work_limit < 0)
2480 break;
2481 if (rx_status & RxDError) { /* Error, update stats. */
2482 unsigned char rx_error = rx_status >> 16;
2483 if (vortex_debug > 2)
2484 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2485 vp->stats.rx_errors++;
2486 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2487 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2488 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2489 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2490 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2491 } else {
2492 /* The packet length: up to 4.5K!. */
2493 int pkt_len = rx_status & 0x1fff;
2494 struct sk_buff *skb;
2495 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2497 if (vortex_debug > 4)
2498 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2499 pkt_len, rx_status);
2501 /* Check if the packet is long enough to just accept without
2502 copying to a properly sized skbuff. */
2503 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2504 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2505 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2506 /* 'skb_put()' points to the start of sk_buff data area. */
2507 memcpy(skb_put(skb, pkt_len),
2508 vp->rx_skbuff[entry]->data,
2509 pkt_len);
2510 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2511 vp->rx_copy++;
2512 } else {
2513 /* Pass up the skbuff already on the Rx ring. */
2514 skb = vp->rx_skbuff[entry];
2515 vp->rx_skbuff[entry] = NULL;
2516 skb_put(skb, pkt_len);
2517 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2518 vp->rx_nocopy++;
2520 skb->protocol = eth_type_trans(skb, dev);
2521 { /* Use hardware checksum info. */
2522 int csum_bits = rx_status & 0xee000000;
2523 if (csum_bits &&
2524 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2525 csum_bits == (IPChksumValid | UDPChksumValid))) {
2526 skb->ip_summed = CHECKSUM_UNNECESSARY;
2527 vp->rx_csumhits++;
2530 netif_rx(skb);
2531 dev->last_rx = jiffies;
2532 vp->stats.rx_packets++;
2534 entry = (++vp->cur_rx) % RX_RING_SIZE;
2536 /* Refill the Rx ring buffers. */
2537 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2538 struct sk_buff *skb;
2539 entry = vp->dirty_rx % RX_RING_SIZE;
2540 if (vp->rx_skbuff[entry] == NULL) {
2541 skb = dev_alloc_skb(PKT_BUF_SZ);
2542 if (skb == NULL) {
2543 static unsigned long last_jif;
2544 if (time_after(jiffies, last_jif + 10 * HZ)) {
2545 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2546 last_jif = jiffies;
2548 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2549 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2550 break; /* Bad news! */
2552 skb->dev = dev; /* Mark as being used by this device. */
2553 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2554 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2555 vp->rx_skbuff[entry] = skb;
2557 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2558 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2560 return 0;
2564 * If we've hit a total OOM refilling the Rx ring we poll once a second
2565 * for some memory. Otherwise there is no way to restart the rx process.
2567 static void
2568 rx_oom_timer(unsigned long arg)
2570 struct net_device *dev = (struct net_device *)arg;
2571 struct vortex_private *vp = netdev_priv(dev);
2573 spin_lock_irq(&vp->lock);
2574 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2575 boomerang_rx(dev);
2576 if (vortex_debug > 1) {
2577 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2578 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2580 spin_unlock_irq(&vp->lock);
2583 static void
2584 vortex_down(struct net_device *dev, int final_down)
2586 struct vortex_private *vp = netdev_priv(dev);
2587 void __iomem *ioaddr = vp->ioaddr;
2589 netif_stop_queue (dev);
2591 del_timer_sync(&vp->rx_oom_timer);
2592 del_timer_sync(&vp->timer);
2594 /* Turn off statistics ASAP. We update vp->stats below. */
2595 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2597 /* Disable the receiver and transmitter. */
2598 iowrite16(RxDisable, ioaddr + EL3_CMD);
2599 iowrite16(TxDisable, ioaddr + EL3_CMD);
2601 /* Disable receiving 802.1q tagged frames */
2602 set_8021q_mode(dev, 0);
2604 if (dev->if_port == XCVR_10base2)
2605 /* Turn off thinnet power. Green! */
2606 iowrite16(StopCoax, ioaddr + EL3_CMD);
2608 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2610 update_stats(ioaddr, dev);
2611 if (vp->full_bus_master_rx)
2612 iowrite32(0, ioaddr + UpListPtr);
2613 if (vp->full_bus_master_tx)
2614 iowrite32(0, ioaddr + DownListPtr);
2616 if (final_down && VORTEX_PCI(vp)) {
2617 vp->pm_state_valid = 1;
2618 pci_save_state(VORTEX_PCI(vp));
2619 acpi_set_WOL(dev);
2623 static int
2624 vortex_close(struct net_device *dev)
2626 struct vortex_private *vp = netdev_priv(dev);
2627 void __iomem *ioaddr = vp->ioaddr;
2628 int i;
2630 if (netif_device_present(dev))
2631 vortex_down(dev, 1);
2633 if (vortex_debug > 1) {
2634 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2635 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2636 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2637 " tx_queued %d Rx pre-checksummed %d.\n",
2638 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2641 #if DO_ZEROCOPY
2642 if (vp->rx_csumhits &&
2643 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2644 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2645 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2646 "not using them!\n", dev->name);
2648 #endif
2650 free_irq(dev->irq, dev);
2652 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2653 for (i = 0; i < RX_RING_SIZE; i++)
2654 if (vp->rx_skbuff[i]) {
2655 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2656 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2657 dev_kfree_skb(vp->rx_skbuff[i]);
2658 vp->rx_skbuff[i] = NULL;
2661 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2662 for (i = 0; i < TX_RING_SIZE; i++) {
2663 if (vp->tx_skbuff[i]) {
2664 struct sk_buff *skb = vp->tx_skbuff[i];
2665 #if DO_ZEROCOPY
2666 int k;
2668 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2669 pci_unmap_single(VORTEX_PCI(vp),
2670 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2671 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2672 PCI_DMA_TODEVICE);
2673 #else
2674 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2675 #endif
2676 dev_kfree_skb(skb);
2677 vp->tx_skbuff[i] = NULL;
2682 return 0;
2685 static void
2686 dump_tx_ring(struct net_device *dev)
2688 if (vortex_debug > 0) {
2689 struct vortex_private *vp = netdev_priv(dev);
2690 void __iomem *ioaddr = vp->ioaddr;
2692 if (vp->full_bus_master_tx) {
2693 int i;
2694 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2696 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2697 vp->full_bus_master_tx,
2698 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2699 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2700 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2701 ioread32(ioaddr + DownListPtr),
2702 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2703 issue_and_wait(dev, DownStall);
2704 for (i = 0; i < TX_RING_SIZE; i++) {
2705 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2706 &vp->tx_ring[i],
2707 #if DO_ZEROCOPY
2708 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2709 #else
2710 le32_to_cpu(vp->tx_ring[i].length),
2711 #endif
2712 le32_to_cpu(vp->tx_ring[i].status));
2714 if (!stalled)
2715 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2720 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2722 struct vortex_private *vp = netdev_priv(dev);
2723 void __iomem *ioaddr = vp->ioaddr;
2724 unsigned long flags;
2726 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2727 spin_lock_irqsave (&vp->lock, flags);
2728 update_stats(ioaddr, dev);
2729 spin_unlock_irqrestore (&vp->lock, flags);
2731 return &vp->stats;
2734 /* Update statistics.
2735 Unlike with the EL3 we need not worry about interrupts changing
2736 the window setting from underneath us, but we must still guard
2737 against a race condition with a StatsUpdate interrupt updating the
2738 table. This is done by checking that the ASM (!) code generated uses
2739 atomic updates with '+='.
2741 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2743 struct vortex_private *vp = netdev_priv(dev);
2744 int old_window = ioread16(ioaddr + EL3_CMD);
2746 if (old_window == 0xffff) /* Chip suspended or ejected. */
2747 return;
2748 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2749 /* Switch to the stats window, and read everything. */
2750 EL3WINDOW(6);
2751 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2752 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2753 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2754 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2755 vp->stats.tx_packets += ioread8(ioaddr + 6);
2756 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2757 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2758 /* Don't bother with register 9, an extension of registers 6&7.
2759 If we do use the 6&7 values the atomic update assumption above
2760 is invalid. */
2761 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2762 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2763 /* Extra stats for get_ethtool_stats() */
2764 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2765 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2766 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2767 EL3WINDOW(4);
2768 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2770 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2771 + vp->xstats.tx_single_collisions
2772 + vp->xstats.tx_max_collisions;
2775 u8 up = ioread8(ioaddr + 13);
2776 vp->stats.rx_bytes += (up & 0x0f) << 16;
2777 vp->stats.tx_bytes += (up & 0xf0) << 12;
2780 EL3WINDOW(old_window >> 13);
2781 return;
2784 static int vortex_nway_reset(struct net_device *dev)
2786 struct vortex_private *vp = netdev_priv(dev);
2787 void __iomem *ioaddr = vp->ioaddr;
2788 unsigned long flags;
2789 int rc;
2791 spin_lock_irqsave(&vp->lock, flags);
2792 EL3WINDOW(4);
2793 rc = mii_nway_restart(&vp->mii);
2794 spin_unlock_irqrestore(&vp->lock, flags);
2795 return rc;
2798 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2800 struct vortex_private *vp = netdev_priv(dev);
2801 void __iomem *ioaddr = vp->ioaddr;
2802 unsigned long flags;
2803 int rc;
2805 spin_lock_irqsave(&vp->lock, flags);
2806 EL3WINDOW(4);
2807 rc = mii_ethtool_gset(&vp->mii, cmd);
2808 spin_unlock_irqrestore(&vp->lock, flags);
2809 return rc;
2812 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2814 struct vortex_private *vp = netdev_priv(dev);
2815 void __iomem *ioaddr = vp->ioaddr;
2816 unsigned long flags;
2817 int rc;
2819 spin_lock_irqsave(&vp->lock, flags);
2820 EL3WINDOW(4);
2821 rc = mii_ethtool_sset(&vp->mii, cmd);
2822 spin_unlock_irqrestore(&vp->lock, flags);
2823 return rc;
2826 static u32 vortex_get_msglevel(struct net_device *dev)
2828 return vortex_debug;
2831 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2833 vortex_debug = dbg;
2836 static int vortex_get_sset_count(struct net_device *dev, int sset)
2838 switch (sset) {
2839 case ETH_SS_STATS:
2840 return VORTEX_NUM_STATS;
2841 default:
2842 return -EOPNOTSUPP;
2846 static void vortex_get_ethtool_stats(struct net_device *dev,
2847 struct ethtool_stats *stats, u64 *data)
2849 struct vortex_private *vp = netdev_priv(dev);
2850 void __iomem *ioaddr = vp->ioaddr;
2851 unsigned long flags;
2853 spin_lock_irqsave(&vp->lock, flags);
2854 update_stats(ioaddr, dev);
2855 spin_unlock_irqrestore(&vp->lock, flags);
2857 data[0] = vp->xstats.tx_deferred;
2858 data[1] = vp->xstats.tx_max_collisions;
2859 data[2] = vp->xstats.tx_multiple_collisions;
2860 data[3] = vp->xstats.tx_single_collisions;
2861 data[4] = vp->xstats.rx_bad_ssd;
2865 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2867 switch (stringset) {
2868 case ETH_SS_STATS:
2869 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2870 break;
2871 default:
2872 WARN_ON(1);
2873 break;
2877 static void vortex_get_drvinfo(struct net_device *dev,
2878 struct ethtool_drvinfo *info)
2880 struct vortex_private *vp = netdev_priv(dev);
2882 strcpy(info->driver, DRV_NAME);
2883 if (VORTEX_PCI(vp)) {
2884 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2885 } else {
2886 if (VORTEX_EISA(vp))
2887 sprintf(info->bus_info, vp->gendev->bus_id);
2888 else
2889 sprintf(info->bus_info, "EISA 0x%lx %d",
2890 dev->base_addr, dev->irq);
2894 static const struct ethtool_ops vortex_ethtool_ops = {
2895 .get_drvinfo = vortex_get_drvinfo,
2896 .get_strings = vortex_get_strings,
2897 .get_msglevel = vortex_get_msglevel,
2898 .set_msglevel = vortex_set_msglevel,
2899 .get_ethtool_stats = vortex_get_ethtool_stats,
2900 .get_sset_count = vortex_get_sset_count,
2901 .get_settings = vortex_get_settings,
2902 .set_settings = vortex_set_settings,
2903 .get_link = ethtool_op_get_link,
2904 .nway_reset = vortex_nway_reset,
2907 #ifdef CONFIG_PCI
2909 * Must power the device up to do MDIO operations
2911 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2913 int err;
2914 struct vortex_private *vp = netdev_priv(dev);
2915 void __iomem *ioaddr = vp->ioaddr;
2916 unsigned long flags;
2917 pci_power_t state = 0;
2919 if(VORTEX_PCI(vp))
2920 state = VORTEX_PCI(vp)->current_state;
2922 /* The kernel core really should have pci_get_power_state() */
2924 if(state != 0)
2925 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2926 spin_lock_irqsave(&vp->lock, flags);
2927 EL3WINDOW(4);
2928 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2929 spin_unlock_irqrestore(&vp->lock, flags);
2930 if(state != 0)
2931 pci_set_power_state(VORTEX_PCI(vp), state);
2933 return err;
2935 #endif
2938 /* Pre-Cyclone chips have no documented multicast filter, so the only
2939 multicast setting is to receive all multicast frames. At least
2940 the chip has a very clean way to set the mode, unlike many others. */
2941 static void set_rx_mode(struct net_device *dev)
2943 struct vortex_private *vp = netdev_priv(dev);
2944 void __iomem *ioaddr = vp->ioaddr;
2945 int new_mode;
2947 if (dev->flags & IFF_PROMISC) {
2948 if (vortex_debug > 3)
2949 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
2950 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2951 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2952 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2953 } else
2954 new_mode = SetRxFilter | RxStation | RxBroadcast;
2956 iowrite16(new_mode, ioaddr + EL3_CMD);
2959 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2960 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2961 Note that this must be done after each RxReset due to some backwards
2962 compatibility logic in the Cyclone and Tornado ASICs */
2964 /* The Ethernet Type used for 802.1q tagged frames */
2965 #define VLAN_ETHER_TYPE 0x8100
2967 static void set_8021q_mode(struct net_device *dev, int enable)
2969 struct vortex_private *vp = netdev_priv(dev);
2970 void __iomem *ioaddr = vp->ioaddr;
2971 int old_window = ioread16(ioaddr + EL3_CMD);
2972 int mac_ctrl;
2974 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2975 /* cyclone and tornado chipsets can recognize 802.1q
2976 * tagged frames and treat them correctly */
2978 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2979 if (enable)
2980 max_pkt_size += 4; /* 802.1Q VLAN tag */
2982 EL3WINDOW(3);
2983 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
2985 /* set VlanEtherType to let the hardware checksumming
2986 treat tagged frames correctly */
2987 EL3WINDOW(7);
2988 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
2989 } else {
2990 /* on older cards we have to enable large frames */
2992 vp->large_frames = dev->mtu > 1500 || enable;
2994 EL3WINDOW(3);
2995 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
2996 if (vp->large_frames)
2997 mac_ctrl |= 0x40;
2998 else
2999 mac_ctrl &= ~0x40;
3000 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3003 EL3WINDOW(old_window);
3005 #else
3007 static void set_8021q_mode(struct net_device *dev, int enable)
3012 #endif
3014 /* MII transceiver control section.
3015 Read and write the MII registers using software-generated serial
3016 MDIO protocol. See the MII specifications or DP83840A data sheet
3017 for details. */
3019 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3020 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3021 "overclocking" issues. */
3022 #define mdio_delay() ioread32(mdio_addr)
3024 #define MDIO_SHIFT_CLK 0x01
3025 #define MDIO_DIR_WRITE 0x04
3026 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3027 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3028 #define MDIO_DATA_READ 0x02
3029 #define MDIO_ENB_IN 0x00
3031 /* Generate the preamble required for initial synchronization and
3032 a few older transceivers. */
3033 static void mdio_sync(void __iomem *ioaddr, int bits)
3035 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3037 /* Establish sync by sending at least 32 logic ones. */
3038 while (-- bits >= 0) {
3039 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3040 mdio_delay();
3041 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3042 mdio_delay();
3046 static int mdio_read(struct net_device *dev, int phy_id, int location)
3048 int i;
3049 struct vortex_private *vp = netdev_priv(dev);
3050 void __iomem *ioaddr = vp->ioaddr;
3051 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3052 unsigned int retval = 0;
3053 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3055 if (mii_preamble_required)
3056 mdio_sync(ioaddr, 32);
3058 /* Shift the read command bits out. */
3059 for (i = 14; i >= 0; i--) {
3060 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3061 iowrite16(dataval, mdio_addr);
3062 mdio_delay();
3063 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3064 mdio_delay();
3066 /* Read the two transition, 16 data, and wire-idle bits. */
3067 for (i = 19; i > 0; i--) {
3068 iowrite16(MDIO_ENB_IN, mdio_addr);
3069 mdio_delay();
3070 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3071 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3072 mdio_delay();
3074 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3077 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3079 struct vortex_private *vp = netdev_priv(dev);
3080 void __iomem *ioaddr = vp->ioaddr;
3081 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3082 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3083 int i;
3085 if (mii_preamble_required)
3086 mdio_sync(ioaddr, 32);
3088 /* Shift the command bits out. */
3089 for (i = 31; i >= 0; i--) {
3090 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3091 iowrite16(dataval, mdio_addr);
3092 mdio_delay();
3093 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3094 mdio_delay();
3096 /* Leave the interface idle. */
3097 for (i = 1; i >= 0; i--) {
3098 iowrite16(MDIO_ENB_IN, mdio_addr);
3099 mdio_delay();
3100 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3101 mdio_delay();
3103 return;
3106 /* ACPI: Advanced Configuration and Power Interface. */
3107 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3108 static void acpi_set_WOL(struct net_device *dev)
3110 struct vortex_private *vp = netdev_priv(dev);
3111 void __iomem *ioaddr = vp->ioaddr;
3113 if (vp->enable_wol) {
3114 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3115 EL3WINDOW(7);
3116 iowrite16(2, ioaddr + 0x0c);
3117 /* The RxFilter must accept the WOL frames. */
3118 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3119 iowrite16(RxEnable, ioaddr + EL3_CMD);
3121 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3122 printk(KERN_INFO "%s: WOL not supported.\n",
3123 pci_name(VORTEX_PCI(vp)));
3125 vp->enable_wol = 0;
3126 return;
3129 /* Change the power state to D3; RxEnable doesn't take effect. */
3130 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3135 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3137 struct net_device *dev = pci_get_drvdata(pdev);
3138 struct vortex_private *vp;
3140 if (!dev) {
3141 printk("vortex_remove_one called for Compaq device!\n");
3142 BUG();
3145 vp = netdev_priv(dev);
3147 if (vp->cb_fn_base)
3148 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3150 unregister_netdev(dev);
3152 if (VORTEX_PCI(vp)) {
3153 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3154 if (vp->pm_state_valid)
3155 pci_restore_state(VORTEX_PCI(vp));
3156 pci_disable_device(VORTEX_PCI(vp));
3158 /* Should really use issue_and_wait() here */
3159 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3160 vp->ioaddr + EL3_CMD);
3162 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3164 pci_free_consistent(pdev,
3165 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3166 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3167 vp->rx_ring,
3168 vp->rx_ring_dma);
3169 if (vp->must_free_region)
3170 release_region(dev->base_addr, vp->io_size);
3171 free_netdev(dev);
3175 static struct pci_driver vortex_driver = {
3176 .name = "3c59x",
3177 .probe = vortex_init_one,
3178 .remove = __devexit_p(vortex_remove_one),
3179 .id_table = vortex_pci_tbl,
3180 #ifdef CONFIG_PM
3181 .suspend = vortex_suspend,
3182 .resume = vortex_resume,
3183 #endif
3187 static int vortex_have_pci;
3188 static int vortex_have_eisa;
3191 static int __init vortex_init(void)
3193 int pci_rc, eisa_rc;
3195 pci_rc = pci_register_driver(&vortex_driver);
3196 eisa_rc = vortex_eisa_init();
3198 if (pci_rc == 0)
3199 vortex_have_pci = 1;
3200 if (eisa_rc > 0)
3201 vortex_have_eisa = 1;
3203 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3207 static void __exit vortex_eisa_cleanup(void)
3209 struct vortex_private *vp;
3210 void __iomem *ioaddr;
3212 #ifdef CONFIG_EISA
3213 /* Take care of the EISA devices */
3214 eisa_driver_unregister(&vortex_eisa_driver);
3215 #endif
3217 if (compaq_net_device) {
3218 vp = compaq_net_device->priv;
3219 ioaddr = ioport_map(compaq_net_device->base_addr,
3220 VORTEX_TOTAL_SIZE);
3222 unregister_netdev(compaq_net_device);
3223 iowrite16(TotalReset, ioaddr + EL3_CMD);
3224 release_region(compaq_net_device->base_addr,
3225 VORTEX_TOTAL_SIZE);
3227 free_netdev(compaq_net_device);
3232 static void __exit vortex_cleanup(void)
3234 if (vortex_have_pci)
3235 pci_unregister_driver(&vortex_driver);
3236 if (vortex_have_eisa)
3237 vortex_eisa_cleanup();
3241 module_init(vortex_init);
3242 module_exit(vortex_cleanup);