Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / mtd / ubi / scan.c
blob05aa3e7daba1edefb88a3b97befb6d4f717fc25c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * UBI scanning unit.
24 * This unit is responsible for scanning the flash media, checking UBI
25 * headers and providing complete information about the UBI flash image.
27 * The scanning information is represented by a &struct ubi_scan_info' object.
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
49 #else
50 #define paranoid_check_si(ubi, si) 0
51 #endif
53 /* Temporary variables used during scanning */
54 static struct ubi_ec_hdr *ech;
55 static struct ubi_vid_hdr *vidh;
57 /**
58 * add_to_list - add physical eraseblock to a list.
59 * @si: scanning information
60 * @pnum: physical eraseblock number to add
61 * @ec: erase counter of the physical eraseblock
62 * @list: the list to add to
64 * This function adds physical eraseblock @pnum to free, erase, corrupted or
65 * alien lists. Returns zero in case of success and a negative error code in
66 * case of failure.
68 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
69 struct list_head *list)
71 struct ubi_scan_leb *seb;
73 if (list == &si->free)
74 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
75 else if (list == &si->erase)
76 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
77 else if (list == &si->corr)
78 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
79 else if (list == &si->alien)
80 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
81 else
82 BUG();
84 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
85 if (!seb)
86 return -ENOMEM;
88 seb->pnum = pnum;
89 seb->ec = ec;
90 list_add_tail(&seb->u.list, list);
91 return 0;
94 /**
95 * commit_to_mean_value - commit intermediate results to the final mean erase
96 * counter value.
97 * @si: scanning information
99 * This is a helper function which calculates partial mean erase counter mean
100 * value and adds it to the resulting mean value. As we can work only in
101 * integer arithmetic and we want to calculate the mean value of erase counter
102 * accurately, we first sum erase counter values in @si->ec_sum variable and
103 * count these components in @si->ec_count. If this temporary @si->ec_sum is
104 * going to overflow, we calculate the partial mean value
105 * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
107 static void commit_to_mean_value(struct ubi_scan_info *si)
109 si->ec_sum /= si->ec_count;
110 if (si->ec_sum % si->ec_count >= si->ec_count / 2)
111 si->mean_ec += 1;
112 si->mean_ec += si->ec_sum;
116 * validate_vid_hdr - check that volume identifier header is correct and
117 * consistent.
118 * @vid_hdr: the volume identifier header to check
119 * @sv: information about the volume this logical eraseblock belongs to
120 * @pnum: physical eraseblock number the VID header came from
122 * This function checks that data stored in @vid_hdr is consistent. Returns
123 * non-zero if an inconsistency was found and zero if not.
125 * Note, UBI does sanity check of everything it reads from the flash media.
126 * Most of the checks are done in the I/O unit. Here we check that the
127 * information in the VID header is consistent to the information in other VID
128 * headers of the same volume.
130 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
131 const struct ubi_scan_volume *sv, int pnum)
133 int vol_type = vid_hdr->vol_type;
134 int vol_id = be32_to_cpu(vid_hdr->vol_id);
135 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
136 int data_pad = be32_to_cpu(vid_hdr->data_pad);
138 if (sv->leb_count != 0) {
139 int sv_vol_type;
142 * This is not the first logical eraseblock belonging to this
143 * volume. Ensure that the data in its VID header is consistent
144 * to the data in previous logical eraseblock headers.
147 if (vol_id != sv->vol_id) {
148 dbg_err("inconsistent vol_id");
149 goto bad;
152 if (sv->vol_type == UBI_STATIC_VOLUME)
153 sv_vol_type = UBI_VID_STATIC;
154 else
155 sv_vol_type = UBI_VID_DYNAMIC;
157 if (vol_type != sv_vol_type) {
158 dbg_err("inconsistent vol_type");
159 goto bad;
162 if (used_ebs != sv->used_ebs) {
163 dbg_err("inconsistent used_ebs");
164 goto bad;
167 if (data_pad != sv->data_pad) {
168 dbg_err("inconsistent data_pad");
169 goto bad;
173 return 0;
175 bad:
176 ubi_err("inconsistent VID header at PEB %d", pnum);
177 ubi_dbg_dump_vid_hdr(vid_hdr);
178 ubi_dbg_dump_sv(sv);
179 return -EINVAL;
183 * add_volume - add volume to the scanning information.
184 * @si: scanning information
185 * @vol_id: ID of the volume to add
186 * @pnum: physical eraseblock number
187 * @vid_hdr: volume identifier header
189 * If the volume corresponding to the @vid_hdr logical eraseblock is already
190 * present in the scanning information, this function does nothing. Otherwise
191 * it adds corresponding volume to the scanning information. Returns a pointer
192 * to the scanning volume object in case of success and a negative error code
193 * in case of failure.
195 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
196 int pnum,
197 const struct ubi_vid_hdr *vid_hdr)
199 struct ubi_scan_volume *sv;
200 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
202 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
204 /* Walk the volume RB-tree to look if this volume is already present */
205 while (*p) {
206 parent = *p;
207 sv = rb_entry(parent, struct ubi_scan_volume, rb);
209 if (vol_id == sv->vol_id)
210 return sv;
212 if (vol_id > sv->vol_id)
213 p = &(*p)->rb_left;
214 else
215 p = &(*p)->rb_right;
218 /* The volume is absent - add it */
219 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
220 if (!sv)
221 return ERR_PTR(-ENOMEM);
223 sv->highest_lnum = sv->leb_count = 0;
224 sv->vol_id = vol_id;
225 sv->root = RB_ROOT;
226 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
227 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
228 sv->compat = vid_hdr->compat;
229 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
230 : UBI_STATIC_VOLUME;
231 if (vol_id > si->highest_vol_id)
232 si->highest_vol_id = vol_id;
234 rb_link_node(&sv->rb, parent, p);
235 rb_insert_color(&sv->rb, &si->volumes);
236 si->vols_found += 1;
237 dbg_bld("added volume %d", vol_id);
238 return sv;
242 * compare_lebs - find out which logical eraseblock is newer.
243 * @ubi: UBI device description object
244 * @seb: first logical eraseblock to compare
245 * @pnum: physical eraseblock number of the second logical eraseblock to
246 * compare
247 * @vid_hdr: volume identifier header of the second logical eraseblock
249 * This function compares 2 copies of a LEB and informs which one is newer. In
250 * case of success this function returns a positive value, in case of failure, a
251 * negative error code is returned. The success return codes use the following
252 * bits:
253 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
254 * second PEB (described by @pnum and @vid_hdr);
255 * o bit 0 is set: the second PEB is newer;
256 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
257 * o bit 1 is set: bit-flips were detected in the newer LEB;
258 * o bit 2 is cleared: the older LEB is not corrupted;
259 * o bit 2 is set: the older LEB is corrupted.
261 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
262 int pnum, const struct ubi_vid_hdr *vid_hdr)
264 void *buf;
265 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
266 uint32_t data_crc, crc;
267 struct ubi_vid_hdr *vh = NULL;
268 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
270 if (seb->sqnum == 0 && sqnum2 == 0) {
271 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
274 * UBI constantly increases the logical eraseblock version
275 * number and it can overflow. Thus, we have to bear in mind
276 * that versions that are close to %0xFFFFFFFF are less then
277 * versions that are close to %0.
279 * The UBI WL unit guarantees that the number of pending tasks
280 * is not greater then %0x7FFFFFFF. So, if the difference
281 * between any two versions is greater or equivalent to
282 * %0x7FFFFFFF, there was an overflow and the logical
283 * eraseblock with lower version is actually newer then the one
284 * with higher version.
286 * FIXME: but this is anyway obsolete and will be removed at
287 * some point.
289 dbg_bld("using old crappy leb_ver stuff");
291 if (v1 == v2) {
292 ubi_err("PEB %d and PEB %d have the same version %lld",
293 seb->pnum, pnum, v1);
294 return -EINVAL;
297 abs = v1 - v2;
298 if (abs < 0)
299 abs = -abs;
301 if (abs < 0x7FFFFFFF)
302 /* Non-overflow situation */
303 second_is_newer = (v2 > v1);
304 else
305 second_is_newer = (v2 < v1);
306 } else
307 /* Obviously the LEB with lower sequence counter is older */
308 second_is_newer = sqnum2 > seb->sqnum;
311 * Now we know which copy is newer. If the copy flag of the PEB with
312 * newer version is not set, then we just return, otherwise we have to
313 * check data CRC. For the second PEB we already have the VID header,
314 * for the first one - we'll need to re-read it from flash.
316 * FIXME: this may be optimized so that we wouldn't read twice.
319 if (second_is_newer) {
320 if (!vid_hdr->copy_flag) {
321 /* It is not a copy, so it is newer */
322 dbg_bld("second PEB %d is newer, copy_flag is unset",
323 pnum);
324 return 1;
326 } else {
327 pnum = seb->pnum;
329 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
330 if (!vh)
331 return -ENOMEM;
333 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
334 if (err) {
335 if (err == UBI_IO_BITFLIPS)
336 bitflips = 1;
337 else {
338 dbg_err("VID of PEB %d header is bad, but it "
339 "was OK earlier", pnum);
340 if (err > 0)
341 err = -EIO;
343 goto out_free_vidh;
347 if (!vh->copy_flag) {
348 /* It is not a copy, so it is newer */
349 dbg_bld("first PEB %d is newer, copy_flag is unset",
350 pnum);
351 err = bitflips << 1;
352 goto out_free_vidh;
355 vid_hdr = vh;
358 /* Read the data of the copy and check the CRC */
360 len = be32_to_cpu(vid_hdr->data_size);
361 buf = vmalloc(len);
362 if (!buf) {
363 err = -ENOMEM;
364 goto out_free_vidh;
367 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
368 if (err && err != UBI_IO_BITFLIPS)
369 goto out_free_buf;
371 data_crc = be32_to_cpu(vid_hdr->data_crc);
372 crc = crc32(UBI_CRC32_INIT, buf, len);
373 if (crc != data_crc) {
374 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
375 pnum, crc, data_crc);
376 corrupted = 1;
377 bitflips = 0;
378 second_is_newer = !second_is_newer;
379 } else {
380 dbg_bld("PEB %d CRC is OK", pnum);
381 bitflips = !!err;
384 vfree(buf);
385 ubi_free_vid_hdr(ubi, vh);
387 if (second_is_newer)
388 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
389 else
390 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
392 return second_is_newer | (bitflips << 1) | (corrupted << 2);
394 out_free_buf:
395 vfree(buf);
396 out_free_vidh:
397 ubi_free_vid_hdr(ubi, vh);
398 return err;
402 * ubi_scan_add_used - add information about a physical eraseblock to the
403 * scanning information.
404 * @ubi: UBI device description object
405 * @si: scanning information
406 * @pnum: the physical eraseblock number
407 * @ec: erase counter
408 * @vid_hdr: the volume identifier header
409 * @bitflips: if bit-flips were detected when this physical eraseblock was read
411 * This function adds information about a used physical eraseblock to the
412 * 'used' tree of the corresponding volume. The function is rather complex
413 * because it has to handle cases when this is not the first physical
414 * eraseblock belonging to the same logical eraseblock, and the newer one has
415 * to be picked, while the older one has to be dropped. This function returns
416 * zero in case of success and a negative error code in case of failure.
418 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
419 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
420 int bitflips)
422 int err, vol_id, lnum;
423 uint32_t leb_ver;
424 unsigned long long sqnum;
425 struct ubi_scan_volume *sv;
426 struct ubi_scan_leb *seb;
427 struct rb_node **p, *parent = NULL;
429 vol_id = be32_to_cpu(vid_hdr->vol_id);
430 lnum = be32_to_cpu(vid_hdr->lnum);
431 sqnum = be64_to_cpu(vid_hdr->sqnum);
432 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
434 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
435 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
437 sv = add_volume(si, vol_id, pnum, vid_hdr);
438 if (IS_ERR(sv) < 0)
439 return PTR_ERR(sv);
441 if (si->max_sqnum < sqnum)
442 si->max_sqnum = sqnum;
445 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
446 * if this is the first instance of this logical eraseblock or not.
448 p = &sv->root.rb_node;
449 while (*p) {
450 int cmp_res;
452 parent = *p;
453 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
454 if (lnum != seb->lnum) {
455 if (lnum < seb->lnum)
456 p = &(*p)->rb_left;
457 else
458 p = &(*p)->rb_right;
459 continue;
463 * There is already a physical eraseblock describing the same
464 * logical eraseblock present.
467 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
468 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
469 seb->leb_ver, seb->ec);
472 * Make sure that the logical eraseblocks have different
473 * versions. Otherwise the image is bad.
475 if (seb->leb_ver == leb_ver && leb_ver != 0) {
476 ubi_err("two LEBs with same version %u", leb_ver);
477 ubi_dbg_dump_seb(seb, 0);
478 ubi_dbg_dump_vid_hdr(vid_hdr);
479 return -EINVAL;
483 * Make sure that the logical eraseblocks have different
484 * sequence numbers. Otherwise the image is bad.
486 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
488 if (seb->sqnum == sqnum && sqnum != 0) {
489 ubi_err("two LEBs with same sequence number %llu",
490 sqnum);
491 ubi_dbg_dump_seb(seb, 0);
492 ubi_dbg_dump_vid_hdr(vid_hdr);
493 return -EINVAL;
497 * Now we have to drop the older one and preserve the newer
498 * one.
500 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
501 if (cmp_res < 0)
502 return cmp_res;
504 if (cmp_res & 1) {
506 * This logical eraseblock is newer then the one
507 * found earlier.
509 err = validate_vid_hdr(vid_hdr, sv, pnum);
510 if (err)
511 return err;
513 if (cmp_res & 4)
514 err = add_to_list(si, seb->pnum, seb->ec,
515 &si->corr);
516 else
517 err = add_to_list(si, seb->pnum, seb->ec,
518 &si->erase);
519 if (err)
520 return err;
522 seb->ec = ec;
523 seb->pnum = pnum;
524 seb->scrub = ((cmp_res & 2) || bitflips);
525 seb->sqnum = sqnum;
526 seb->leb_ver = leb_ver;
528 if (sv->highest_lnum == lnum)
529 sv->last_data_size =
530 be32_to_cpu(vid_hdr->data_size);
532 return 0;
533 } else {
535 * This logical eraseblock is older then the one found
536 * previously.
538 if (cmp_res & 4)
539 return add_to_list(si, pnum, ec, &si->corr);
540 else
541 return add_to_list(si, pnum, ec, &si->erase);
546 * We've met this logical eraseblock for the first time, add it to the
547 * scanning information.
550 err = validate_vid_hdr(vid_hdr, sv, pnum);
551 if (err)
552 return err;
554 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
555 if (!seb)
556 return -ENOMEM;
558 seb->ec = ec;
559 seb->pnum = pnum;
560 seb->lnum = lnum;
561 seb->sqnum = sqnum;
562 seb->scrub = bitflips;
563 seb->leb_ver = leb_ver;
565 if (sv->highest_lnum <= lnum) {
566 sv->highest_lnum = lnum;
567 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
570 sv->leb_count += 1;
571 rb_link_node(&seb->u.rb, parent, p);
572 rb_insert_color(&seb->u.rb, &sv->root);
573 return 0;
577 * ubi_scan_find_sv - find information about a particular volume in the
578 * scanning information.
579 * @si: scanning information
580 * @vol_id: the requested volume ID
582 * This function returns a pointer to the volume description or %NULL if there
583 * are no data about this volume in the scanning information.
585 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
586 int vol_id)
588 struct ubi_scan_volume *sv;
589 struct rb_node *p = si->volumes.rb_node;
591 while (p) {
592 sv = rb_entry(p, struct ubi_scan_volume, rb);
594 if (vol_id == sv->vol_id)
595 return sv;
597 if (vol_id > sv->vol_id)
598 p = p->rb_left;
599 else
600 p = p->rb_right;
603 return NULL;
607 * ubi_scan_find_seb - find information about a particular logical
608 * eraseblock in the volume scanning information.
609 * @sv: a pointer to the volume scanning information
610 * @lnum: the requested logical eraseblock
612 * This function returns a pointer to the scanning logical eraseblock or %NULL
613 * if there are no data about it in the scanning volume information.
615 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
616 int lnum)
618 struct ubi_scan_leb *seb;
619 struct rb_node *p = sv->root.rb_node;
621 while (p) {
622 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
624 if (lnum == seb->lnum)
625 return seb;
627 if (lnum > seb->lnum)
628 p = p->rb_left;
629 else
630 p = p->rb_right;
633 return NULL;
637 * ubi_scan_rm_volume - delete scanning information about a volume.
638 * @si: scanning information
639 * @sv: the volume scanning information to delete
641 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
643 struct rb_node *rb;
644 struct ubi_scan_leb *seb;
646 dbg_bld("remove scanning information about volume %d", sv->vol_id);
648 while ((rb = rb_first(&sv->root))) {
649 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
650 rb_erase(&seb->u.rb, &sv->root);
651 list_add_tail(&seb->u.list, &si->erase);
654 rb_erase(&sv->rb, &si->volumes);
655 kfree(sv);
656 si->vols_found -= 1;
660 * ubi_scan_erase_peb - erase a physical eraseblock.
661 * @ubi: UBI device description object
662 * @si: scanning information
663 * @pnum: physical eraseblock number to erase;
664 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
666 * This function erases physical eraseblock 'pnum', and writes the erase
667 * counter header to it. This function should only be used on UBI device
668 * initialization stages, when the EBA unit had not been yet initialized. This
669 * function returns zero in case of success and a negative error code in case
670 * of failure.
672 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
673 int pnum, int ec)
675 int err;
676 struct ubi_ec_hdr *ec_hdr;
678 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
680 * Erase counter overflow. Upgrade UBI and use 64-bit
681 * erase counters internally.
683 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
684 return -EINVAL;
687 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
688 if (!ec_hdr)
689 return -ENOMEM;
691 ec_hdr->ec = cpu_to_be64(ec);
693 err = ubi_io_sync_erase(ubi, pnum, 0);
694 if (err < 0)
695 goto out_free;
697 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
699 out_free:
700 kfree(ec_hdr);
701 return err;
705 * ubi_scan_get_free_peb - get a free physical eraseblock.
706 * @ubi: UBI device description object
707 * @si: scanning information
709 * This function returns a free physical eraseblock. It is supposed to be
710 * called on the UBI initialization stages when the wear-leveling unit is not
711 * initialized yet. This function picks a physical eraseblocks from one of the
712 * lists, writes the EC header if it is needed, and removes it from the list.
714 * This function returns scanning physical eraseblock information in case of
715 * success and an error code in case of failure.
717 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
718 struct ubi_scan_info *si)
720 int err = 0, i;
721 struct ubi_scan_leb *seb;
723 if (!list_empty(&si->free)) {
724 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
725 list_del(&seb->u.list);
726 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
727 return seb;
730 for (i = 0; i < 2; i++) {
731 struct list_head *head;
732 struct ubi_scan_leb *tmp_seb;
734 if (i == 0)
735 head = &si->erase;
736 else
737 head = &si->corr;
740 * We try to erase the first physical eraseblock from the @head
741 * list and pick it if we succeed, or try to erase the
742 * next one if not. And so forth. We don't want to take care
743 * about bad eraseblocks here - they'll be handled later.
745 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
746 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
747 seb->ec = si->mean_ec;
749 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
750 if (err)
751 continue;
753 seb->ec += 1;
754 list_del(&seb->u.list);
755 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
756 return seb;
760 ubi_err("no eraseblocks found");
761 return ERR_PTR(-ENOSPC);
765 * process_eb - read UBI headers, check them and add corresponding data
766 * to the scanning information.
767 * @ubi: UBI device description object
768 * @si: scanning information
769 * @pnum: the physical eraseblock number
771 * This function returns a zero if the physical eraseblock was successfully
772 * handled and a negative error code in case of failure.
774 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
776 long long uninitialized_var(ec);
777 int err, bitflips = 0, vol_id, ec_corr = 0;
779 dbg_bld("scan PEB %d", pnum);
781 /* Skip bad physical eraseblocks */
782 err = ubi_io_is_bad(ubi, pnum);
783 if (err < 0)
784 return err;
785 else if (err) {
787 * FIXME: this is actually duty of the I/O unit to initialize
788 * this, but MTD does not provide enough information.
790 si->bad_peb_count += 1;
791 return 0;
794 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
795 if (err < 0)
796 return err;
797 else if (err == UBI_IO_BITFLIPS)
798 bitflips = 1;
799 else if (err == UBI_IO_PEB_EMPTY)
800 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801 else if (err == UBI_IO_BAD_EC_HDR) {
803 * We have to also look at the VID header, possibly it is not
804 * corrupted. Set %bitflips flag in order to make this PEB be
805 * moved and EC be re-created.
807 ec_corr = 1;
808 ec = UBI_SCAN_UNKNOWN_EC;
809 bitflips = 1;
812 si->is_empty = 0;
814 if (!ec_corr) {
815 /* Make sure UBI version is OK */
816 if (ech->version != UBI_VERSION) {
817 ubi_err("this UBI version is %d, image version is %d",
818 UBI_VERSION, (int)ech->version);
819 return -EINVAL;
822 ec = be64_to_cpu(ech->ec);
823 if (ec > UBI_MAX_ERASECOUNTER) {
825 * Erase counter overflow. The EC headers have 64 bits
826 * reserved, but we anyway make use of only 31 bit
827 * values, as this seems to be enough for any existing
828 * flash. Upgrade UBI and use 64-bit erase counters
829 * internally.
831 ubi_err("erase counter overflow, max is %d",
832 UBI_MAX_ERASECOUNTER);
833 ubi_dbg_dump_ec_hdr(ech);
834 return -EINVAL;
838 /* OK, we've done with the EC header, let's look at the VID header */
840 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
841 if (err < 0)
842 return err;
843 else if (err == UBI_IO_BITFLIPS)
844 bitflips = 1;
845 else if (err == UBI_IO_BAD_VID_HDR ||
846 (err == UBI_IO_PEB_FREE && ec_corr)) {
847 /* VID header is corrupted */
848 err = add_to_list(si, pnum, ec, &si->corr);
849 if (err)
850 return err;
851 goto adjust_mean_ec;
852 } else if (err == UBI_IO_PEB_FREE) {
853 /* No VID header - the physical eraseblock is free */
854 err = add_to_list(si, pnum, ec, &si->free);
855 if (err)
856 return err;
857 goto adjust_mean_ec;
860 vol_id = be32_to_cpu(vidh->vol_id);
861 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
862 int lnum = be32_to_cpu(vidh->lnum);
864 /* Unsupported internal volume */
865 switch (vidh->compat) {
866 case UBI_COMPAT_DELETE:
867 ubi_msg("\"delete\" compatible internal volume %d:%d"
868 " found, remove it", vol_id, lnum);
869 err = add_to_list(si, pnum, ec, &si->corr);
870 if (err)
871 return err;
872 break;
874 case UBI_COMPAT_RO:
875 ubi_msg("read-only compatible internal volume %d:%d"
876 " found, switch to read-only mode",
877 vol_id, lnum);
878 ubi->ro_mode = 1;
879 break;
881 case UBI_COMPAT_PRESERVE:
882 ubi_msg("\"preserve\" compatible internal volume %d:%d"
883 " found", vol_id, lnum);
884 err = add_to_list(si, pnum, ec, &si->alien);
885 if (err)
886 return err;
887 si->alien_peb_count += 1;
888 return 0;
890 case UBI_COMPAT_REJECT:
891 ubi_err("incompatible internal volume %d:%d found",
892 vol_id, lnum);
893 return -EINVAL;
897 /* Both UBI headers seem to be fine */
898 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
899 if (err)
900 return err;
902 adjust_mean_ec:
903 if (!ec_corr) {
904 if (si->ec_sum + ec < ec) {
905 commit_to_mean_value(si);
906 si->ec_sum = 0;
907 si->ec_count = 0;
908 } else {
909 si->ec_sum += ec;
910 si->ec_count += 1;
913 if (ec > si->max_ec)
914 si->max_ec = ec;
915 if (ec < si->min_ec)
916 si->min_ec = ec;
919 return 0;
923 * ubi_scan - scan an MTD device.
924 * @ubi: UBI device description object
926 * This function does full scanning of an MTD device and returns complete
927 * information about it. In case of failure, an error code is returned.
929 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
931 int err, pnum;
932 struct rb_node *rb1, *rb2;
933 struct ubi_scan_volume *sv;
934 struct ubi_scan_leb *seb;
935 struct ubi_scan_info *si;
937 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
938 if (!si)
939 return ERR_PTR(-ENOMEM);
941 INIT_LIST_HEAD(&si->corr);
942 INIT_LIST_HEAD(&si->free);
943 INIT_LIST_HEAD(&si->erase);
944 INIT_LIST_HEAD(&si->alien);
945 si->volumes = RB_ROOT;
946 si->is_empty = 1;
948 err = -ENOMEM;
949 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
950 if (!ech)
951 goto out_si;
953 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
954 if (!vidh)
955 goto out_ech;
957 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
958 cond_resched();
960 dbg_msg("process PEB %d", pnum);
961 err = process_eb(ubi, si, pnum);
962 if (err < 0)
963 goto out_vidh;
966 dbg_msg("scanning is finished");
968 /* Finish mean erase counter calculations */
969 if (si->ec_count)
970 commit_to_mean_value(si);
972 if (si->is_empty)
973 ubi_msg("empty MTD device detected");
976 * In case of unknown erase counter we use the mean erase counter
977 * value.
979 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
980 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
981 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
982 seb->ec = si->mean_ec;
985 list_for_each_entry(seb, &si->free, u.list) {
986 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
987 seb->ec = si->mean_ec;
990 list_for_each_entry(seb, &si->corr, u.list)
991 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
992 seb->ec = si->mean_ec;
994 list_for_each_entry(seb, &si->erase, u.list)
995 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
996 seb->ec = si->mean_ec;
998 err = paranoid_check_si(ubi, si);
999 if (err) {
1000 if (err > 0)
1001 err = -EINVAL;
1002 goto out_vidh;
1005 ubi_free_vid_hdr(ubi, vidh);
1006 kfree(ech);
1008 return si;
1010 out_vidh:
1011 ubi_free_vid_hdr(ubi, vidh);
1012 out_ech:
1013 kfree(ech);
1014 out_si:
1015 ubi_scan_destroy_si(si);
1016 return ERR_PTR(err);
1020 * destroy_sv - free the scanning volume information
1021 * @sv: scanning volume information
1023 * This function destroys the volume RB-tree (@sv->root) and the scanning
1024 * volume information.
1026 static void destroy_sv(struct ubi_scan_volume *sv)
1028 struct ubi_scan_leb *seb;
1029 struct rb_node *this = sv->root.rb_node;
1031 while (this) {
1032 if (this->rb_left)
1033 this = this->rb_left;
1034 else if (this->rb_right)
1035 this = this->rb_right;
1036 else {
1037 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1038 this = rb_parent(this);
1039 if (this) {
1040 if (this->rb_left == &seb->u.rb)
1041 this->rb_left = NULL;
1042 else
1043 this->rb_right = NULL;
1046 kfree(seb);
1049 kfree(sv);
1053 * ubi_scan_destroy_si - destroy scanning information.
1054 * @si: scanning information
1056 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1058 struct ubi_scan_leb *seb, *seb_tmp;
1059 struct ubi_scan_volume *sv;
1060 struct rb_node *rb;
1062 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1063 list_del(&seb->u.list);
1064 kfree(seb);
1066 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1067 list_del(&seb->u.list);
1068 kfree(seb);
1070 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1071 list_del(&seb->u.list);
1072 kfree(seb);
1074 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1075 list_del(&seb->u.list);
1076 kfree(seb);
1079 /* Destroy the volume RB-tree */
1080 rb = si->volumes.rb_node;
1081 while (rb) {
1082 if (rb->rb_left)
1083 rb = rb->rb_left;
1084 else if (rb->rb_right)
1085 rb = rb->rb_right;
1086 else {
1087 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1089 rb = rb_parent(rb);
1090 if (rb) {
1091 if (rb->rb_left == &sv->rb)
1092 rb->rb_left = NULL;
1093 else
1094 rb->rb_right = NULL;
1097 destroy_sv(sv);
1101 kfree(si);
1104 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1107 * paranoid_check_si - check if the scanning information is correct and
1108 * consistent.
1109 * @ubi: UBI device description object
1110 * @si: scanning information
1112 * This function returns zero if the scanning information is all right, %1 if
1113 * not and a negative error code if an error occurred.
1115 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1117 int pnum, err, vols_found = 0;
1118 struct rb_node *rb1, *rb2;
1119 struct ubi_scan_volume *sv;
1120 struct ubi_scan_leb *seb, *last_seb;
1121 uint8_t *buf;
1124 * At first, check that scanning information is OK.
1126 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1127 int leb_count = 0;
1129 cond_resched();
1131 vols_found += 1;
1133 if (si->is_empty) {
1134 ubi_err("bad is_empty flag");
1135 goto bad_sv;
1138 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1139 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1140 sv->data_pad < 0 || sv->last_data_size < 0) {
1141 ubi_err("negative values");
1142 goto bad_sv;
1145 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1146 sv->vol_id < UBI_INTERNAL_VOL_START) {
1147 ubi_err("bad vol_id");
1148 goto bad_sv;
1151 if (sv->vol_id > si->highest_vol_id) {
1152 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1153 si->highest_vol_id, sv->vol_id);
1154 goto out;
1157 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1158 sv->vol_type != UBI_STATIC_VOLUME) {
1159 ubi_err("bad vol_type");
1160 goto bad_sv;
1163 if (sv->data_pad > ubi->leb_size / 2) {
1164 ubi_err("bad data_pad");
1165 goto bad_sv;
1168 last_seb = NULL;
1169 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1170 cond_resched();
1172 last_seb = seb;
1173 leb_count += 1;
1175 if (seb->pnum < 0 || seb->ec < 0) {
1176 ubi_err("negative values");
1177 goto bad_seb;
1180 if (seb->ec < si->min_ec) {
1181 ubi_err("bad si->min_ec (%d), %d found",
1182 si->min_ec, seb->ec);
1183 goto bad_seb;
1186 if (seb->ec > si->max_ec) {
1187 ubi_err("bad si->max_ec (%d), %d found",
1188 si->max_ec, seb->ec);
1189 goto bad_seb;
1192 if (seb->pnum >= ubi->peb_count) {
1193 ubi_err("too high PEB number %d, total PEBs %d",
1194 seb->pnum, ubi->peb_count);
1195 goto bad_seb;
1198 if (sv->vol_type == UBI_STATIC_VOLUME) {
1199 if (seb->lnum >= sv->used_ebs) {
1200 ubi_err("bad lnum or used_ebs");
1201 goto bad_seb;
1203 } else {
1204 if (sv->used_ebs != 0) {
1205 ubi_err("non-zero used_ebs");
1206 goto bad_seb;
1210 if (seb->lnum > sv->highest_lnum) {
1211 ubi_err("incorrect highest_lnum or lnum");
1212 goto bad_seb;
1216 if (sv->leb_count != leb_count) {
1217 ubi_err("bad leb_count, %d objects in the tree",
1218 leb_count);
1219 goto bad_sv;
1222 if (!last_seb)
1223 continue;
1225 seb = last_seb;
1227 if (seb->lnum != sv->highest_lnum) {
1228 ubi_err("bad highest_lnum");
1229 goto bad_seb;
1233 if (vols_found != si->vols_found) {
1234 ubi_err("bad si->vols_found %d, should be %d",
1235 si->vols_found, vols_found);
1236 goto out;
1239 /* Check that scanning information is correct */
1240 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1241 last_seb = NULL;
1242 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1243 int vol_type;
1245 cond_resched();
1247 last_seb = seb;
1249 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1250 if (err && err != UBI_IO_BITFLIPS) {
1251 ubi_err("VID header is not OK (%d)", err);
1252 if (err > 0)
1253 err = -EIO;
1254 return err;
1257 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1258 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1259 if (sv->vol_type != vol_type) {
1260 ubi_err("bad vol_type");
1261 goto bad_vid_hdr;
1264 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1265 ubi_err("bad sqnum %llu", seb->sqnum);
1266 goto bad_vid_hdr;
1269 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1270 ubi_err("bad vol_id %d", sv->vol_id);
1271 goto bad_vid_hdr;
1274 if (sv->compat != vidh->compat) {
1275 ubi_err("bad compat %d", vidh->compat);
1276 goto bad_vid_hdr;
1279 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1280 ubi_err("bad lnum %d", seb->lnum);
1281 goto bad_vid_hdr;
1284 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1285 ubi_err("bad used_ebs %d", sv->used_ebs);
1286 goto bad_vid_hdr;
1289 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1290 ubi_err("bad data_pad %d", sv->data_pad);
1291 goto bad_vid_hdr;
1294 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
1295 ubi_err("bad leb_ver %u", seb->leb_ver);
1296 goto bad_vid_hdr;
1300 if (!last_seb)
1301 continue;
1303 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1304 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1305 goto bad_vid_hdr;
1308 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1309 ubi_err("bad last_data_size %d", sv->last_data_size);
1310 goto bad_vid_hdr;
1315 * Make sure that all the physical eraseblocks are in one of the lists
1316 * or trees.
1318 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1319 if (!buf)
1320 return -ENOMEM;
1322 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1323 err = ubi_io_is_bad(ubi, pnum);
1324 if (err < 0) {
1325 kfree(buf);
1326 return err;
1328 else if (err)
1329 buf[pnum] = 1;
1332 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1333 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1334 buf[seb->pnum] = 1;
1336 list_for_each_entry(seb, &si->free, u.list)
1337 buf[seb->pnum] = 1;
1339 list_for_each_entry(seb, &si->corr, u.list)
1340 buf[seb->pnum] = 1;
1342 list_for_each_entry(seb, &si->erase, u.list)
1343 buf[seb->pnum] = 1;
1345 list_for_each_entry(seb, &si->alien, u.list)
1346 buf[seb->pnum] = 1;
1348 err = 0;
1349 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1350 if (!buf[pnum]) {
1351 ubi_err("PEB %d is not referred", pnum);
1352 err = 1;
1355 kfree(buf);
1356 if (err)
1357 goto out;
1358 return 0;
1360 bad_seb:
1361 ubi_err("bad scanning information about LEB %d", seb->lnum);
1362 ubi_dbg_dump_seb(seb, 0);
1363 ubi_dbg_dump_sv(sv);
1364 goto out;
1366 bad_sv:
1367 ubi_err("bad scanning information about volume %d", sv->vol_id);
1368 ubi_dbg_dump_sv(sv);
1369 goto out;
1371 bad_vid_hdr:
1372 ubi_err("bad scanning information about volume %d", sv->vol_id);
1373 ubi_dbg_dump_sv(sv);
1374 ubi_dbg_dump_vid_hdr(vidh);
1376 out:
1377 ubi_dbg_dump_stack();
1378 return 1;
1381 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */