Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / infiniband / hw / ipath / ipath_eeprom.c
blobe28a42f5376920667d3f93bdfe8166fde26abda8
1 /*
2 * Copyright (c) 2006, 2007 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/delay.h>
35 #include <linux/pci.h>
36 #include <linux/vmalloc.h>
38 #include "ipath_kernel.h"
41 * InfiniPath I2C driver for a serial eeprom. This is not a generic
42 * I2C interface. For a start, the device we're using (Atmel AT24C11)
43 * doesn't work like a regular I2C device. It looks like one
44 * electrically, but not logically. Normal I2C devices have a single
45 * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit
46 * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78
47 * to 0x7F are special reserved addresses (e.g. 0x00 is the "general
48 * call" address.) The Atmel device, on the other hand, responds to ALL
49 * 7-bit addresses. It's designed to be the only device on a given I2C
50 * bus. A 7-bit address corresponds to the memory address within the
51 * Atmel device itself.
53 * Also, the timing requirements mean more than simple software
54 * bitbanging, with readbacks from chip to ensure timing (simple udelay
55 * is not enough).
57 * This all means that accessing the device is specialized enough
58 * that using the standard kernel I2C bitbanging interface would be
59 * impossible. For example, the core I2C eeprom driver expects to find
60 * a device at one or more of a limited set of addresses only. It doesn't
61 * allow writing to an eeprom. It also doesn't provide any means of
62 * accessing eeprom contents from within the kernel, only via sysfs.
65 enum i2c_type {
66 i2c_line_scl = 0,
67 i2c_line_sda
70 enum i2c_state {
71 i2c_line_low = 0,
72 i2c_line_high
75 #define READ_CMD 1
76 #define WRITE_CMD 0
78 static int eeprom_init;
81 * The gpioval manipulation really should be protected by spinlocks
82 * or be converted to use atomic operations.
85 /**
86 * i2c_gpio_set - set a GPIO line
87 * @dd: the infinipath device
88 * @line: the line to set
89 * @new_line_state: the state to set
91 * Returns 0 if the line was set to the new state successfully, non-zero
92 * on error.
94 static int i2c_gpio_set(struct ipath_devdata *dd,
95 enum i2c_type line,
96 enum i2c_state new_line_state)
98 u64 out_mask, dir_mask, *gpioval;
99 unsigned long flags = 0;
101 gpioval = &dd->ipath_gpio_out;
103 if (line == i2c_line_scl) {
104 dir_mask = dd->ipath_gpio_scl;
105 out_mask = (1UL << dd->ipath_gpio_scl_num);
106 } else {
107 dir_mask = dd->ipath_gpio_sda;
108 out_mask = (1UL << dd->ipath_gpio_sda_num);
111 spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
112 if (new_line_state == i2c_line_high) {
113 /* tri-state the output rather than force high */
114 dd->ipath_extctrl &= ~dir_mask;
115 } else {
116 /* config line to be an output */
117 dd->ipath_extctrl |= dir_mask;
119 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
121 /* set output as well (no real verify) */
122 if (new_line_state == i2c_line_high)
123 *gpioval |= out_mask;
124 else
125 *gpioval &= ~out_mask;
127 ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval);
128 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
130 return 0;
134 * i2c_gpio_get - get a GPIO line state
135 * @dd: the infinipath device
136 * @line: the line to get
137 * @curr_statep: where to put the line state
139 * Returns 0 if the line was set to the new state successfully, non-zero
140 * on error. curr_state is not set on error.
142 static int i2c_gpio_get(struct ipath_devdata *dd,
143 enum i2c_type line,
144 enum i2c_state *curr_statep)
146 u64 read_val, mask;
147 int ret;
148 unsigned long flags = 0;
150 /* check args */
151 if (curr_statep == NULL) {
152 ret = 1;
153 goto bail;
156 /* config line to be an input */
157 if (line == i2c_line_scl)
158 mask = dd->ipath_gpio_scl;
159 else
160 mask = dd->ipath_gpio_sda;
162 spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
163 dd->ipath_extctrl &= ~mask;
164 ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl);
166 * Below is very unlikely to reflect true input state if Output
167 * Enable actually changed.
169 read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus);
170 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
172 if (read_val & mask)
173 *curr_statep = i2c_line_high;
174 else
175 *curr_statep = i2c_line_low;
177 ret = 0;
179 bail:
180 return ret;
184 * i2c_wait_for_writes - wait for a write
185 * @dd: the infinipath device
187 * We use this instead of udelay directly, so we can make sure
188 * that previous register writes have been flushed all the way
189 * to the chip. Since we are delaying anyway, the cost doesn't
190 * hurt, and makes the bit twiddling more regular
192 static void i2c_wait_for_writes(struct ipath_devdata *dd)
194 (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
195 rmb();
198 static void scl_out(struct ipath_devdata *dd, u8 bit)
200 udelay(1);
201 i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low);
203 i2c_wait_for_writes(dd);
206 static void sda_out(struct ipath_devdata *dd, u8 bit)
208 i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low);
210 i2c_wait_for_writes(dd);
213 static u8 sda_in(struct ipath_devdata *dd, int wait)
215 enum i2c_state bit;
217 if (i2c_gpio_get(dd, i2c_line_sda, &bit))
218 ipath_dbg("get bit failed!\n");
220 if (wait)
221 i2c_wait_for_writes(dd);
223 return bit == i2c_line_high ? 1U : 0;
227 * i2c_ackrcv - see if ack following write is true
228 * @dd: the infinipath device
230 static int i2c_ackrcv(struct ipath_devdata *dd)
232 u8 ack_received;
234 /* AT ENTRY SCL = LOW */
235 /* change direction, ignore data */
236 ack_received = sda_in(dd, 1);
237 scl_out(dd, i2c_line_high);
238 ack_received = sda_in(dd, 1) == 0;
239 scl_out(dd, i2c_line_low);
240 return ack_received;
244 * wr_byte - write a byte, one bit at a time
245 * @dd: the infinipath device
246 * @data: the byte to write
248 * Returns 0 if we got the following ack, otherwise 1
250 static int wr_byte(struct ipath_devdata *dd, u8 data)
252 int bit_cntr;
253 u8 bit;
255 for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) {
256 bit = (data >> bit_cntr) & 1;
257 sda_out(dd, bit);
258 scl_out(dd, i2c_line_high);
259 scl_out(dd, i2c_line_low);
261 return (!i2c_ackrcv(dd)) ? 1 : 0;
264 static void send_ack(struct ipath_devdata *dd)
266 sda_out(dd, i2c_line_low);
267 scl_out(dd, i2c_line_high);
268 scl_out(dd, i2c_line_low);
269 sda_out(dd, i2c_line_high);
273 * i2c_startcmd - transmit the start condition, followed by address/cmd
274 * @dd: the infinipath device
275 * @offset_dir: direction byte
277 * (both clock/data high, clock high, data low while clock is high)
279 static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir)
281 int res;
283 /* issue start sequence */
284 sda_out(dd, i2c_line_high);
285 scl_out(dd, i2c_line_high);
286 sda_out(dd, i2c_line_low);
287 scl_out(dd, i2c_line_low);
289 /* issue length and direction byte */
290 res = wr_byte(dd, offset_dir);
292 if (res)
293 ipath_cdbg(VERBOSE, "No ack to complete start\n");
295 return res;
299 * stop_cmd - transmit the stop condition
300 * @dd: the infinipath device
302 * (both clock/data low, clock high, data high while clock is high)
304 static void stop_cmd(struct ipath_devdata *dd)
306 scl_out(dd, i2c_line_low);
307 sda_out(dd, i2c_line_low);
308 scl_out(dd, i2c_line_high);
309 sda_out(dd, i2c_line_high);
310 udelay(2);
314 * eeprom_reset - reset I2C communication
315 * @dd: the infinipath device
318 static int eeprom_reset(struct ipath_devdata *dd)
320 int clock_cycles_left = 9;
321 u64 *gpioval = &dd->ipath_gpio_out;
322 int ret;
323 unsigned long flags;
325 spin_lock_irqsave(&dd->ipath_gpio_lock, flags);
326 /* Make sure shadows are consistent */
327 dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl);
328 *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out);
329 spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags);
331 ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg "
332 "is %llx\n", (unsigned long long) *gpioval);
334 eeprom_init = 1;
336 * This is to get the i2c into a known state, by first going low,
337 * then tristate sda (and then tristate scl as first thing
338 * in loop)
340 scl_out(dd, i2c_line_low);
341 sda_out(dd, i2c_line_high);
343 while (clock_cycles_left--) {
344 scl_out(dd, i2c_line_high);
346 if (sda_in(dd, 0)) {
347 sda_out(dd, i2c_line_low);
348 scl_out(dd, i2c_line_low);
349 ret = 0;
350 goto bail;
353 scl_out(dd, i2c_line_low);
356 ret = 1;
358 bail:
359 return ret;
363 * ipath_eeprom_read - receives bytes from the eeprom via I2C
364 * @dd: the infinipath device
365 * @eeprom_offset: address to read from
366 * @buffer: where to store result
367 * @len: number of bytes to receive
370 static int ipath_eeprom_internal_read(struct ipath_devdata *dd,
371 u8 eeprom_offset, void *buffer, int len)
373 /* compiler complains unless initialized */
374 u8 single_byte = 0;
375 int bit_cntr;
376 int ret;
378 if (!eeprom_init)
379 eeprom_reset(dd);
381 eeprom_offset = (eeprom_offset << 1) | READ_CMD;
383 if (i2c_startcmd(dd, eeprom_offset)) {
384 ipath_dbg("Failed startcmd\n");
385 stop_cmd(dd);
386 ret = 1;
387 goto bail;
391 * eeprom keeps clocking data out as long as we ack, automatically
392 * incrementing the address.
394 while (len-- > 0) {
395 /* get data */
396 single_byte = 0;
397 for (bit_cntr = 8; bit_cntr; bit_cntr--) {
398 u8 bit;
399 scl_out(dd, i2c_line_high);
400 bit = sda_in(dd, 0);
401 single_byte |= bit << (bit_cntr - 1);
402 scl_out(dd, i2c_line_low);
405 /* send ack if not the last byte */
406 if (len)
407 send_ack(dd);
409 *((u8 *) buffer) = single_byte;
410 buffer++;
413 stop_cmd(dd);
415 ret = 0;
417 bail:
418 return ret;
423 * ipath_eeprom_write - writes data to the eeprom via I2C
424 * @dd: the infinipath device
425 * @eeprom_offset: where to place data
426 * @buffer: data to write
427 * @len: number of bytes to write
429 static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset,
430 const void *buffer, int len)
432 u8 single_byte;
433 int sub_len;
434 const u8 *bp = buffer;
435 int max_wait_time, i;
436 int ret;
438 if (!eeprom_init)
439 eeprom_reset(dd);
441 while (len > 0) {
442 if (i2c_startcmd(dd, (eeprom_offset << 1) | WRITE_CMD)) {
443 ipath_dbg("Failed to start cmd offset %u\n",
444 eeprom_offset);
445 goto failed_write;
448 sub_len = min(len, 4);
449 eeprom_offset += sub_len;
450 len -= sub_len;
452 for (i = 0; i < sub_len; i++) {
453 if (wr_byte(dd, *bp++)) {
454 ipath_dbg("no ack after byte %u/%u (%u "
455 "total remain)\n", i, sub_len,
456 len + sub_len - i);
457 goto failed_write;
461 stop_cmd(dd);
464 * wait for write complete by waiting for a successful
465 * read (the chip replies with a zero after the write
466 * cmd completes, and before it writes to the eeprom.
467 * The startcmd for the read will fail the ack until
468 * the writes have completed. We do this inline to avoid
469 * the debug prints that are in the real read routine
470 * if the startcmd fails.
472 max_wait_time = 100;
473 while (i2c_startcmd(dd, READ_CMD)) {
474 stop_cmd(dd);
475 if (!--max_wait_time) {
476 ipath_dbg("Did not get successful read to "
477 "complete write\n");
478 goto failed_write;
481 /* now read the zero byte */
482 for (i = single_byte = 0; i < 8; i++) {
483 u8 bit;
484 scl_out(dd, i2c_line_high);
485 bit = sda_in(dd, 0);
486 scl_out(dd, i2c_line_low);
487 single_byte <<= 1;
488 single_byte |= bit;
490 stop_cmd(dd);
493 ret = 0;
494 goto bail;
496 failed_write:
497 stop_cmd(dd);
498 ret = 1;
500 bail:
501 return ret;
505 * The public entry-points ipath_eeprom_read() and ipath_eeprom_write()
506 * are now just wrappers around the internal functions.
508 int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset,
509 void *buff, int len)
511 int ret;
513 ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
514 if (!ret) {
515 ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len);
516 mutex_unlock(&dd->ipath_eep_lock);
519 return ret;
522 int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset,
523 const void *buff, int len)
525 int ret;
527 ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
528 if (!ret) {
529 ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len);
530 mutex_unlock(&dd->ipath_eep_lock);
533 return ret;
536 static u8 flash_csum(struct ipath_flash *ifp, int adjust)
538 u8 *ip = (u8 *) ifp;
539 u8 csum = 0, len;
542 * Limit length checksummed to max length of actual data.
543 * Checksum of erased eeprom will still be bad, but we avoid
544 * reading past the end of the buffer we were passed.
546 len = ifp->if_length;
547 if (len > sizeof(struct ipath_flash))
548 len = sizeof(struct ipath_flash);
549 while (len--)
550 csum += *ip++;
551 csum -= ifp->if_csum;
552 csum = ~csum;
553 if (adjust)
554 ifp->if_csum = csum;
556 return csum;
560 * ipath_get_guid - get the GUID from the i2c device
561 * @dd: the infinipath device
563 * We have the capability to use the ipath_nguid field, and get
564 * the guid from the first chip's flash, to use for all of them.
566 void ipath_get_eeprom_info(struct ipath_devdata *dd)
568 void *buf;
569 struct ipath_flash *ifp;
570 __be64 guid;
571 int len, eep_stat;
572 u8 csum, *bguid;
573 int t = dd->ipath_unit;
574 struct ipath_devdata *dd0 = ipath_lookup(0);
576 if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) {
577 u8 oguid;
578 dd->ipath_guid = dd0->ipath_guid;
579 bguid = (u8 *) & dd->ipath_guid;
581 oguid = bguid[7];
582 bguid[7] += t;
583 if (oguid > bguid[7]) {
584 if (bguid[6] == 0xff) {
585 if (bguid[5] == 0xff) {
586 ipath_dev_err(
588 "Can't set %s GUID from "
589 "base, wraps to OUI!\n",
590 ipath_get_unit_name(t));
591 dd->ipath_guid = 0;
592 goto bail;
594 bguid[5]++;
596 bguid[6]++;
598 dd->ipath_nguid = 1;
600 ipath_dbg("nguid %u, so adding %u to device 0 guid, "
601 "for %llx\n",
602 dd0->ipath_nguid, t,
603 (unsigned long long) be64_to_cpu(dd->ipath_guid));
604 goto bail;
608 * read full flash, not just currently used part, since it may have
609 * been written with a newer definition
610 * */
611 len = sizeof(struct ipath_flash);
612 buf = vmalloc(len);
613 if (!buf) {
614 ipath_dev_err(dd, "Couldn't allocate memory to read %u "
615 "bytes from eeprom for GUID\n", len);
616 goto bail;
619 mutex_lock(&dd->ipath_eep_lock);
620 eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len);
621 mutex_unlock(&dd->ipath_eep_lock);
623 if (eep_stat) {
624 ipath_dev_err(dd, "Failed reading GUID from eeprom\n");
625 goto done;
627 ifp = (struct ipath_flash *)buf;
629 csum = flash_csum(ifp, 0);
630 if (csum != ifp->if_csum) {
631 dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: "
632 "0x%x, not 0x%x\n", csum, ifp->if_csum);
633 goto done;
635 if (*(__be64 *) ifp->if_guid == 0ULL ||
636 *(__be64 *) ifp->if_guid == __constant_cpu_to_be64(-1LL)) {
637 ipath_dev_err(dd, "Invalid GUID %llx from flash; "
638 "ignoring\n",
639 *(unsigned long long *) ifp->if_guid);
640 /* don't allow GUID if all 0 or all 1's */
641 goto done;
644 /* complain, but allow it */
645 if (*(u64 *) ifp->if_guid == 0x100007511000000ULL)
646 dev_info(&dd->pcidev->dev, "Warning, GUID %llx is "
647 "default, probably not correct!\n",
648 *(unsigned long long *) ifp->if_guid);
650 bguid = ifp->if_guid;
651 if (!bguid[0] && !bguid[1] && !bguid[2]) {
652 /* original incorrect GUID format in flash; fix in
653 * core copy, by shifting up 2 octets; don't need to
654 * change top octet, since both it and shifted are
655 * 0.. */
656 bguid[1] = bguid[3];
657 bguid[2] = bguid[4];
658 bguid[3] = bguid[4] = 0;
659 guid = *(__be64 *) ifp->if_guid;
660 ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, "
661 "shifting 2 octets\n");
662 } else
663 guid = *(__be64 *) ifp->if_guid;
664 dd->ipath_guid = guid;
665 dd->ipath_nguid = ifp->if_numguid;
667 * Things are slightly complicated by the desire to transparently
668 * support both the Pathscale 10-digit serial number and the QLogic
669 * 13-character version.
671 if ((ifp->if_fversion > 1) && ifp->if_sprefix[0]
672 && ((u8 *)ifp->if_sprefix)[0] != 0xFF) {
673 /* This board has a Serial-prefix, which is stored
674 * elsewhere for backward-compatibility.
676 char *snp = dd->ipath_serial;
677 memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix);
678 snp[sizeof ifp->if_sprefix] = '\0';
679 len = strlen(snp);
680 snp += len;
681 len = (sizeof dd->ipath_serial) - len;
682 if (len > sizeof ifp->if_serial) {
683 len = sizeof ifp->if_serial;
685 memcpy(snp, ifp->if_serial, len);
686 } else
687 memcpy(dd->ipath_serial, ifp->if_serial,
688 sizeof ifp->if_serial);
689 if (!strstr(ifp->if_comment, "Tested successfully"))
690 ipath_dev_err(dd, "Board SN %s did not pass functional "
691 "test: %s\n", dd->ipath_serial,
692 ifp->if_comment);
694 ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n",
695 (unsigned long long) be64_to_cpu(dd->ipath_guid));
697 memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT);
699 * Power-on (actually "active") hours are kept as little-endian value
700 * in EEPROM, but as seconds in a (possibly as small as 24-bit)
701 * atomic_t while running.
703 atomic_set(&dd->ipath_active_time, 0);
704 dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8);
706 done:
707 vfree(buf);
709 bail:;
713 * ipath_update_eeprom_log - copy active-time and error counters to eeprom
714 * @dd: the infinipath device
716 * Although the time is kept as seconds in the ipath_devdata struct, it is
717 * rounded to hours for re-write, as we have only 16 bits in EEPROM.
718 * First-cut code reads whole (expected) struct ipath_flash, modifies,
719 * re-writes. Future direction: read/write only what we need, assuming
720 * that the EEPROM had to have been "good enough" for driver init, and
721 * if not, we aren't making it worse.
725 int ipath_update_eeprom_log(struct ipath_devdata *dd)
727 void *buf;
728 struct ipath_flash *ifp;
729 int len, hi_water;
730 uint32_t new_time, new_hrs;
731 u8 csum;
732 int ret, idx;
733 unsigned long flags;
735 /* first, check if we actually need to do anything. */
736 ret = 0;
737 for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
738 if (dd->ipath_eep_st_new_errs[idx]) {
739 ret = 1;
740 break;
743 new_time = atomic_read(&dd->ipath_active_time);
745 if (ret == 0 && new_time < 3600)
746 return 0;
749 * The quick-check above determined that there is something worthy
750 * of logging, so get current contents and do a more detailed idea.
751 * read full flash, not just currently used part, since it may have
752 * been written with a newer definition
754 len = sizeof(struct ipath_flash);
755 buf = vmalloc(len);
756 ret = 1;
757 if (!buf) {
758 ipath_dev_err(dd, "Couldn't allocate memory to read %u "
759 "bytes from eeprom for logging\n", len);
760 goto bail;
763 /* Grab semaphore and read current EEPROM. If we get an
764 * error, let go, but if not, keep it until we finish write.
766 ret = mutex_lock_interruptible(&dd->ipath_eep_lock);
767 if (ret) {
768 ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n");
769 goto free_bail;
771 ret = ipath_eeprom_internal_read(dd, 0, buf, len);
772 if (ret) {
773 mutex_unlock(&dd->ipath_eep_lock);
774 ipath_dev_err(dd, "Unable read EEPROM for logging\n");
775 goto free_bail;
777 ifp = (struct ipath_flash *)buf;
779 csum = flash_csum(ifp, 0);
780 if (csum != ifp->if_csum) {
781 mutex_unlock(&dd->ipath_eep_lock);
782 ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n",
783 csum, ifp->if_csum);
784 ret = 1;
785 goto free_bail;
787 hi_water = 0;
788 spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
789 for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) {
790 int new_val = dd->ipath_eep_st_new_errs[idx];
791 if (new_val) {
793 * If we have seen any errors, add to EEPROM values
794 * We need to saturate at 0xFF (255) and we also
795 * would need to adjust the checksum if we were
796 * trying to minimize EEPROM traffic
797 * Note that we add to actual current count in EEPROM,
798 * in case it was altered while we were running.
800 new_val += ifp->if_errcntp[idx];
801 if (new_val > 0xFF)
802 new_val = 0xFF;
803 if (ifp->if_errcntp[idx] != new_val) {
804 ifp->if_errcntp[idx] = new_val;
805 hi_water = offsetof(struct ipath_flash,
806 if_errcntp) + idx;
809 * update our shadow (used to minimize EEPROM
810 * traffic), to match what we are about to write.
812 dd->ipath_eep_st_errs[idx] = new_val;
813 dd->ipath_eep_st_new_errs[idx] = 0;
817 * now update active-time. We would like to round to the nearest hour
818 * but unless atomic_t are sure to be proper signed ints we cannot,
819 * because we need to account for what we "transfer" to EEPROM and
820 * if we log an hour at 31 minutes, then we would need to set
821 * active_time to -29 to accurately count the _next_ hour.
823 if (new_time > 3600) {
824 new_hrs = new_time / 3600;
825 atomic_sub((new_hrs * 3600), &dd->ipath_active_time);
826 new_hrs += dd->ipath_eep_hrs;
827 if (new_hrs > 0xFFFF)
828 new_hrs = 0xFFFF;
829 dd->ipath_eep_hrs = new_hrs;
830 if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) {
831 ifp->if_powerhour[0] = new_hrs & 0xFF;
832 hi_water = offsetof(struct ipath_flash, if_powerhour);
834 if ((new_hrs >> 8) != ifp->if_powerhour[1]) {
835 ifp->if_powerhour[1] = new_hrs >> 8;
836 hi_water = offsetof(struct ipath_flash, if_powerhour)
837 + 1;
841 * There is a tiny possibility that we could somehow fail to write
842 * the EEPROM after updating our shadows, but problems from holding
843 * the spinlock too long are a much bigger issue.
845 spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
846 if (hi_water) {
847 /* we made some change to the data, uopdate cksum and write */
848 csum = flash_csum(ifp, 1);
849 ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1);
851 mutex_unlock(&dd->ipath_eep_lock);
852 if (ret)
853 ipath_dev_err(dd, "Failed updating EEPROM\n");
855 free_bail:
856 vfree(buf);
857 bail:
858 return ret;
863 * ipath_inc_eeprom_err - increment one of the four error counters
864 * that are logged to EEPROM.
865 * @dd: the infinipath device
866 * @eidx: 0..3, the counter to increment
867 * @incr: how much to add
869 * Each counter is 8-bits, and saturates at 255 (0xFF). They
870 * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log()
871 * is called, but it can only be called in a context that allows sleep.
872 * This function can be called even at interrupt level.
875 void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr)
877 uint new_val;
878 unsigned long flags;
880 spin_lock_irqsave(&dd->ipath_eep_st_lock, flags);
881 new_val = dd->ipath_eep_st_new_errs[eidx] + incr;
882 if (new_val > 255)
883 new_val = 255;
884 dd->ipath_eep_st_new_errs[eidx] = new_val;
885 spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags);
886 return;