Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / drivers / firewire / fw-ohci.c
blobca6d51efd8bb9277419406bff8a6e4835a726eba
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
33 #include <asm/page.h>
34 #include <asm/system.h>
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
38 #endif
40 #include "fw-ohci.h"
41 #include "fw-transaction.h"
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
57 struct descriptor {
58 __le16 req_count;
59 __le16 control;
60 __le32 data_address;
61 __le32 branch_address;
62 __le16 res_count;
63 __le16 transfer_status;
64 } __attribute__((aligned(16)));
66 struct db_descriptor {
67 __le16 first_size;
68 __le16 control;
69 __le16 second_req_count;
70 __le16 first_req_count;
71 __le32 branch_address;
72 __le16 second_res_count;
73 __le16 first_res_count;
74 __le32 reserved0;
75 __le32 first_buffer;
76 __le32 second_buffer;
77 __le32 reserved1;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 struct ar_buffer {
86 struct descriptor descriptor;
87 struct ar_buffer *next;
88 __le32 data[0];
91 struct ar_context {
92 struct fw_ohci *ohci;
93 struct ar_buffer *current_buffer;
94 struct ar_buffer *last_buffer;
95 void *pointer;
96 u32 regs;
97 struct tasklet_struct tasklet;
100 struct context;
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103 struct descriptor *d,
104 struct descriptor *last);
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
110 struct descriptor_buffer {
111 struct list_head list;
112 dma_addr_t buffer_bus;
113 size_t buffer_size;
114 size_t used;
115 struct descriptor buffer[0];
118 struct context {
119 struct fw_ohci *ohci;
120 u32 regs;
121 int total_allocation;
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
126 * free buffers.
128 struct list_head buffer_list;
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
134 struct descriptor_buffer *buffer_tail;
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
140 struct descriptor *last;
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
146 struct descriptor *prev;
148 descriptor_callback_t callback;
150 struct tasklet_struct tasklet;
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 struct iso_context {
161 struct fw_iso_context base;
162 struct context context;
163 int excess_bytes;
164 void *header;
165 size_t header_length;
168 #define CONFIG_ROM_SIZE 1024
170 struct fw_ohci {
171 struct fw_card card;
173 u32 version;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation;
181 u32 bus_seconds;
182 bool old_uninorth;
185 * Spinlock for accessing fw_ohci data. Never call out of
186 * this driver with this lock held.
188 spinlock_t lock;
189 u32 self_id_buffer[512];
191 /* Config rom buffers */
192 __be32 *config_rom;
193 dma_addr_t config_rom_bus;
194 __be32 *next_config_rom;
195 dma_addr_t next_config_rom_bus;
196 u32 next_header;
198 struct ar_context ar_request_ctx;
199 struct ar_context ar_response_ctx;
200 struct context at_request_ctx;
201 struct context at_response_ctx;
203 u32 it_context_mask;
204 struct iso_context *it_context_list;
205 u32 ir_context_mask;
206 struct iso_context *ir_context_list;
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 return container_of(card, struct fw_ohci, card);
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
230 #define FW_OHCI_MAJOR 240
231 #define OHCI1394_REGISTER_SIZE 0x800
232 #define OHCI_LOOP_COUNT 500
233 #define OHCI1394_PCI_HCI_Control 0x40
234 #define SELF_ID_BUF_SIZE 0x800
235 #define OHCI_TCODE_PHY_PACKET 0x0e
236 #define OHCI_VERSION_1_1 0x010010
238 static char ohci_driver_name[] = KBUILD_MODNAME;
240 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
242 writel(data, ohci->registers + offset);
245 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
247 return readl(ohci->registers + offset);
250 static inline void flush_writes(const struct fw_ohci *ohci)
252 /* Do a dummy read to flush writes. */
253 reg_read(ohci, OHCI1394_Version);
256 static int
257 ohci_update_phy_reg(struct fw_card *card, int addr,
258 int clear_bits, int set_bits)
260 struct fw_ohci *ohci = fw_ohci(card);
261 u32 val, old;
263 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264 flush_writes(ohci);
265 msleep(2);
266 val = reg_read(ohci, OHCI1394_PhyControl);
267 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
268 fw_error("failed to set phy reg bits.\n");
269 return -EBUSY;
272 old = OHCI1394_PhyControl_ReadData(val);
273 old = (old & ~clear_bits) | set_bits;
274 reg_write(ohci, OHCI1394_PhyControl,
275 OHCI1394_PhyControl_Write(addr, old));
277 return 0;
280 static int ar_context_add_page(struct ar_context *ctx)
282 struct device *dev = ctx->ohci->card.device;
283 struct ar_buffer *ab;
284 dma_addr_t uninitialized_var(ab_bus);
285 size_t offset;
287 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
288 if (ab == NULL)
289 return -ENOMEM;
291 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
292 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
293 DESCRIPTOR_STATUS |
294 DESCRIPTOR_BRANCH_ALWAYS);
295 offset = offsetof(struct ar_buffer, data);
296 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
297 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
298 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
299 ab->descriptor.branch_address = 0;
301 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
302 ctx->last_buffer->next = ab;
303 ctx->last_buffer = ab;
305 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
306 flush_writes(ctx->ohci);
308 return 0;
311 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
312 #define cond_le32_to_cpu(v) \
313 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
314 #else
315 #define cond_le32_to_cpu(v) le32_to_cpu(v)
316 #endif
318 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
320 struct fw_ohci *ohci = ctx->ohci;
321 struct fw_packet p;
322 u32 status, length, tcode;
324 p.header[0] = cond_le32_to_cpu(buffer[0]);
325 p.header[1] = cond_le32_to_cpu(buffer[1]);
326 p.header[2] = cond_le32_to_cpu(buffer[2]);
328 tcode = (p.header[0] >> 4) & 0x0f;
329 switch (tcode) {
330 case TCODE_WRITE_QUADLET_REQUEST:
331 case TCODE_READ_QUADLET_RESPONSE:
332 p.header[3] = (__force __u32) buffer[3];
333 p.header_length = 16;
334 p.payload_length = 0;
335 break;
337 case TCODE_READ_BLOCK_REQUEST :
338 p.header[3] = cond_le32_to_cpu(buffer[3]);
339 p.header_length = 16;
340 p.payload_length = 0;
341 break;
343 case TCODE_WRITE_BLOCK_REQUEST:
344 case TCODE_READ_BLOCK_RESPONSE:
345 case TCODE_LOCK_REQUEST:
346 case TCODE_LOCK_RESPONSE:
347 p.header[3] = cond_le32_to_cpu(buffer[3]);
348 p.header_length = 16;
349 p.payload_length = p.header[3] >> 16;
350 break;
352 case TCODE_WRITE_RESPONSE:
353 case TCODE_READ_QUADLET_REQUEST:
354 case OHCI_TCODE_PHY_PACKET:
355 p.header_length = 12;
356 p.payload_length = 0;
357 break;
360 p.payload = (void *) buffer + p.header_length;
362 /* FIXME: What to do about evt_* errors? */
363 length = (p.header_length + p.payload_length + 3) / 4;
364 status = cond_le32_to_cpu(buffer[length]);
366 p.ack = ((status >> 16) & 0x1f) - 16;
367 p.speed = (status >> 21) & 0x7;
368 p.timestamp = status & 0xffff;
369 p.generation = ohci->request_generation;
372 * The OHCI bus reset handler synthesizes a phy packet with
373 * the new generation number when a bus reset happens (see
374 * section 8.4.2.3). This helps us determine when a request
375 * was received and make sure we send the response in the same
376 * generation. We only need this for requests; for responses
377 * we use the unique tlabel for finding the matching
378 * request.
381 if (p.ack + 16 == 0x09)
382 ohci->request_generation = (p.header[2] >> 16) & 0xff;
383 else if (ctx == &ohci->ar_request_ctx)
384 fw_core_handle_request(&ohci->card, &p);
385 else
386 fw_core_handle_response(&ohci->card, &p);
388 return buffer + length + 1;
391 static void ar_context_tasklet(unsigned long data)
393 struct ar_context *ctx = (struct ar_context *)data;
394 struct fw_ohci *ohci = ctx->ohci;
395 struct ar_buffer *ab;
396 struct descriptor *d;
397 void *buffer, *end;
399 ab = ctx->current_buffer;
400 d = &ab->descriptor;
402 if (d->res_count == 0) {
403 size_t size, rest, offset;
404 dma_addr_t start_bus;
405 void *start;
408 * This descriptor is finished and we may have a
409 * packet split across this and the next buffer. We
410 * reuse the page for reassembling the split packet.
413 offset = offsetof(struct ar_buffer, data);
414 start = buffer = ab;
415 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
417 ab = ab->next;
418 d = &ab->descriptor;
419 size = buffer + PAGE_SIZE - ctx->pointer;
420 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
421 memmove(buffer, ctx->pointer, size);
422 memcpy(buffer + size, ab->data, rest);
423 ctx->current_buffer = ab;
424 ctx->pointer = (void *) ab->data + rest;
425 end = buffer + size + rest;
427 while (buffer < end)
428 buffer = handle_ar_packet(ctx, buffer);
430 dma_free_coherent(ohci->card.device, PAGE_SIZE,
431 start, start_bus);
432 ar_context_add_page(ctx);
433 } else {
434 buffer = ctx->pointer;
435 ctx->pointer = end =
436 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
438 while (buffer < end)
439 buffer = handle_ar_packet(ctx, buffer);
443 static int
444 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
446 struct ar_buffer ab;
448 ctx->regs = regs;
449 ctx->ohci = ohci;
450 ctx->last_buffer = &ab;
451 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
453 ar_context_add_page(ctx);
454 ar_context_add_page(ctx);
455 ctx->current_buffer = ab.next;
456 ctx->pointer = ctx->current_buffer->data;
458 return 0;
461 static void ar_context_run(struct ar_context *ctx)
463 struct ar_buffer *ab = ctx->current_buffer;
464 dma_addr_t ab_bus;
465 size_t offset;
467 offset = offsetof(struct ar_buffer, data);
468 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
470 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
471 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
472 flush_writes(ctx->ohci);
475 static struct descriptor *
476 find_branch_descriptor(struct descriptor *d, int z)
478 int b, key;
480 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
481 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
483 /* figure out which descriptor the branch address goes in */
484 if (z == 2 && (b == 3 || key == 2))
485 return d;
486 else
487 return d + z - 1;
490 static void context_tasklet(unsigned long data)
492 struct context *ctx = (struct context *) data;
493 struct descriptor *d, *last;
494 u32 address;
495 int z;
496 struct descriptor_buffer *desc;
498 desc = list_entry(ctx->buffer_list.next,
499 struct descriptor_buffer, list);
500 last = ctx->last;
501 while (last->branch_address != 0) {
502 struct descriptor_buffer *old_desc = desc;
503 address = le32_to_cpu(last->branch_address);
504 z = address & 0xf;
505 address &= ~0xf;
507 /* If the branch address points to a buffer outside of the
508 * current buffer, advance to the next buffer. */
509 if (address < desc->buffer_bus ||
510 address >= desc->buffer_bus + desc->used)
511 desc = list_entry(desc->list.next,
512 struct descriptor_buffer, list);
513 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
514 last = find_branch_descriptor(d, z);
516 if (!ctx->callback(ctx, d, last))
517 break;
519 if (old_desc != desc) {
520 /* If we've advanced to the next buffer, move the
521 * previous buffer to the free list. */
522 unsigned long flags;
523 old_desc->used = 0;
524 spin_lock_irqsave(&ctx->ohci->lock, flags);
525 list_move_tail(&old_desc->list, &ctx->buffer_list);
526 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
528 ctx->last = last;
533 * Allocate a new buffer and add it to the list of free buffers for this
534 * context. Must be called with ohci->lock held.
536 static int
537 context_add_buffer(struct context *ctx)
539 struct descriptor_buffer *desc;
540 dma_addr_t uninitialized_var(bus_addr);
541 int offset;
544 * 16MB of descriptors should be far more than enough for any DMA
545 * program. This will catch run-away userspace or DoS attacks.
547 if (ctx->total_allocation >= 16*1024*1024)
548 return -ENOMEM;
550 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
551 &bus_addr, GFP_ATOMIC);
552 if (!desc)
553 return -ENOMEM;
555 offset = (void *)&desc->buffer - (void *)desc;
556 desc->buffer_size = PAGE_SIZE - offset;
557 desc->buffer_bus = bus_addr + offset;
558 desc->used = 0;
560 list_add_tail(&desc->list, &ctx->buffer_list);
561 ctx->total_allocation += PAGE_SIZE;
563 return 0;
566 static int
567 context_init(struct context *ctx, struct fw_ohci *ohci,
568 u32 regs, descriptor_callback_t callback)
570 ctx->ohci = ohci;
571 ctx->regs = regs;
572 ctx->total_allocation = 0;
574 INIT_LIST_HEAD(&ctx->buffer_list);
575 if (context_add_buffer(ctx) < 0)
576 return -ENOMEM;
578 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
579 struct descriptor_buffer, list);
581 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
582 ctx->callback = callback;
585 * We put a dummy descriptor in the buffer that has a NULL
586 * branch address and looks like it's been sent. That way we
587 * have a descriptor to append DMA programs to.
589 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
590 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
591 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
592 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
593 ctx->last = ctx->buffer_tail->buffer;
594 ctx->prev = ctx->buffer_tail->buffer;
596 return 0;
599 static void
600 context_release(struct context *ctx)
602 struct fw_card *card = &ctx->ohci->card;
603 struct descriptor_buffer *desc, *tmp;
605 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
606 dma_free_coherent(card->device, PAGE_SIZE, desc,
607 desc->buffer_bus -
608 ((void *)&desc->buffer - (void *)desc));
611 /* Must be called with ohci->lock held */
612 static struct descriptor *
613 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
615 struct descriptor *d = NULL;
616 struct descriptor_buffer *desc = ctx->buffer_tail;
618 if (z * sizeof(*d) > desc->buffer_size)
619 return NULL;
621 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
622 /* No room for the descriptor in this buffer, so advance to the
623 * next one. */
625 if (desc->list.next == &ctx->buffer_list) {
626 /* If there is no free buffer next in the list,
627 * allocate one. */
628 if (context_add_buffer(ctx) < 0)
629 return NULL;
631 desc = list_entry(desc->list.next,
632 struct descriptor_buffer, list);
633 ctx->buffer_tail = desc;
636 d = desc->buffer + desc->used / sizeof(*d);
637 memset(d, 0, z * sizeof(*d));
638 *d_bus = desc->buffer_bus + desc->used;
640 return d;
643 static void context_run(struct context *ctx, u32 extra)
645 struct fw_ohci *ohci = ctx->ohci;
647 reg_write(ohci, COMMAND_PTR(ctx->regs),
648 le32_to_cpu(ctx->last->branch_address));
649 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
650 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
651 flush_writes(ohci);
654 static void context_append(struct context *ctx,
655 struct descriptor *d, int z, int extra)
657 dma_addr_t d_bus;
658 struct descriptor_buffer *desc = ctx->buffer_tail;
660 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
662 desc->used += (z + extra) * sizeof(*d);
663 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
664 ctx->prev = find_branch_descriptor(d, z);
666 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
667 flush_writes(ctx->ohci);
670 static void context_stop(struct context *ctx)
672 u32 reg;
673 int i;
675 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
676 flush_writes(ctx->ohci);
678 for (i = 0; i < 10; i++) {
679 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
680 if ((reg & CONTEXT_ACTIVE) == 0)
681 break;
683 fw_notify("context_stop: still active (0x%08x)\n", reg);
684 mdelay(1);
688 struct driver_data {
689 struct fw_packet *packet;
693 * This function apppends a packet to the DMA queue for transmission.
694 * Must always be called with the ochi->lock held to ensure proper
695 * generation handling and locking around packet queue manipulation.
697 static int
698 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
700 struct fw_ohci *ohci = ctx->ohci;
701 dma_addr_t d_bus, uninitialized_var(payload_bus);
702 struct driver_data *driver_data;
703 struct descriptor *d, *last;
704 __le32 *header;
705 int z, tcode;
706 u32 reg;
708 d = context_get_descriptors(ctx, 4, &d_bus);
709 if (d == NULL) {
710 packet->ack = RCODE_SEND_ERROR;
711 return -1;
714 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
715 d[0].res_count = cpu_to_le16(packet->timestamp);
718 * The DMA format for asyncronous link packets is different
719 * from the IEEE1394 layout, so shift the fields around
720 * accordingly. If header_length is 8, it's a PHY packet, to
721 * which we need to prepend an extra quadlet.
724 header = (__le32 *) &d[1];
725 if (packet->header_length > 8) {
726 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
727 (packet->speed << 16));
728 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
729 (packet->header[0] & 0xffff0000));
730 header[2] = cpu_to_le32(packet->header[2]);
732 tcode = (packet->header[0] >> 4) & 0x0f;
733 if (TCODE_IS_BLOCK_PACKET(tcode))
734 header[3] = cpu_to_le32(packet->header[3]);
735 else
736 header[3] = (__force __le32) packet->header[3];
738 d[0].req_count = cpu_to_le16(packet->header_length);
739 } else {
740 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
741 (packet->speed << 16));
742 header[1] = cpu_to_le32(packet->header[0]);
743 header[2] = cpu_to_le32(packet->header[1]);
744 d[0].req_count = cpu_to_le16(12);
747 driver_data = (struct driver_data *) &d[3];
748 driver_data->packet = packet;
749 packet->driver_data = driver_data;
751 if (packet->payload_length > 0) {
752 payload_bus =
753 dma_map_single(ohci->card.device, packet->payload,
754 packet->payload_length, DMA_TO_DEVICE);
755 if (dma_mapping_error(payload_bus)) {
756 packet->ack = RCODE_SEND_ERROR;
757 return -1;
760 d[2].req_count = cpu_to_le16(packet->payload_length);
761 d[2].data_address = cpu_to_le32(payload_bus);
762 last = &d[2];
763 z = 3;
764 } else {
765 last = &d[0];
766 z = 2;
769 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
770 DESCRIPTOR_IRQ_ALWAYS |
771 DESCRIPTOR_BRANCH_ALWAYS);
773 /* FIXME: Document how the locking works. */
774 if (ohci->generation != packet->generation) {
775 if (packet->payload_length > 0)
776 dma_unmap_single(ohci->card.device, payload_bus,
777 packet->payload_length, DMA_TO_DEVICE);
778 packet->ack = RCODE_GENERATION;
779 return -1;
782 context_append(ctx, d, z, 4 - z);
784 /* If the context isn't already running, start it up. */
785 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
786 if ((reg & CONTEXT_RUN) == 0)
787 context_run(ctx, 0);
789 return 0;
792 static int handle_at_packet(struct context *context,
793 struct descriptor *d,
794 struct descriptor *last)
796 struct driver_data *driver_data;
797 struct fw_packet *packet;
798 struct fw_ohci *ohci = context->ohci;
799 dma_addr_t payload_bus;
800 int evt;
802 if (last->transfer_status == 0)
803 /* This descriptor isn't done yet, stop iteration. */
804 return 0;
806 driver_data = (struct driver_data *) &d[3];
807 packet = driver_data->packet;
808 if (packet == NULL)
809 /* This packet was cancelled, just continue. */
810 return 1;
812 payload_bus = le32_to_cpu(last->data_address);
813 if (payload_bus != 0)
814 dma_unmap_single(ohci->card.device, payload_bus,
815 packet->payload_length, DMA_TO_DEVICE);
817 evt = le16_to_cpu(last->transfer_status) & 0x1f;
818 packet->timestamp = le16_to_cpu(last->res_count);
820 switch (evt) {
821 case OHCI1394_evt_timeout:
822 /* Async response transmit timed out. */
823 packet->ack = RCODE_CANCELLED;
824 break;
826 case OHCI1394_evt_flushed:
828 * The packet was flushed should give same error as
829 * when we try to use a stale generation count.
831 packet->ack = RCODE_GENERATION;
832 break;
834 case OHCI1394_evt_missing_ack:
836 * Using a valid (current) generation count, but the
837 * node is not on the bus or not sending acks.
839 packet->ack = RCODE_NO_ACK;
840 break;
842 case ACK_COMPLETE + 0x10:
843 case ACK_PENDING + 0x10:
844 case ACK_BUSY_X + 0x10:
845 case ACK_BUSY_A + 0x10:
846 case ACK_BUSY_B + 0x10:
847 case ACK_DATA_ERROR + 0x10:
848 case ACK_TYPE_ERROR + 0x10:
849 packet->ack = evt - 0x10;
850 break;
852 default:
853 packet->ack = RCODE_SEND_ERROR;
854 break;
857 packet->callback(packet, &ohci->card, packet->ack);
859 return 1;
862 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
863 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
864 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
865 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
866 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
868 static void
869 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
871 struct fw_packet response;
872 int tcode, length, i;
874 tcode = HEADER_GET_TCODE(packet->header[0]);
875 if (TCODE_IS_BLOCK_PACKET(tcode))
876 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
877 else
878 length = 4;
880 i = csr - CSR_CONFIG_ROM;
881 if (i + length > CONFIG_ROM_SIZE) {
882 fw_fill_response(&response, packet->header,
883 RCODE_ADDRESS_ERROR, NULL, 0);
884 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
885 fw_fill_response(&response, packet->header,
886 RCODE_TYPE_ERROR, NULL, 0);
887 } else {
888 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
889 (void *) ohci->config_rom + i, length);
892 fw_core_handle_response(&ohci->card, &response);
895 static void
896 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
898 struct fw_packet response;
899 int tcode, length, ext_tcode, sel;
900 __be32 *payload, lock_old;
901 u32 lock_arg, lock_data;
903 tcode = HEADER_GET_TCODE(packet->header[0]);
904 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
905 payload = packet->payload;
906 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
908 if (tcode == TCODE_LOCK_REQUEST &&
909 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
910 lock_arg = be32_to_cpu(payload[0]);
911 lock_data = be32_to_cpu(payload[1]);
912 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
913 lock_arg = 0;
914 lock_data = 0;
915 } else {
916 fw_fill_response(&response, packet->header,
917 RCODE_TYPE_ERROR, NULL, 0);
918 goto out;
921 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
922 reg_write(ohci, OHCI1394_CSRData, lock_data);
923 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
924 reg_write(ohci, OHCI1394_CSRControl, sel);
926 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
927 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
928 else
929 fw_notify("swap not done yet\n");
931 fw_fill_response(&response, packet->header,
932 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
933 out:
934 fw_core_handle_response(&ohci->card, &response);
937 static void
938 handle_local_request(struct context *ctx, struct fw_packet *packet)
940 u64 offset;
941 u32 csr;
943 if (ctx == &ctx->ohci->at_request_ctx) {
944 packet->ack = ACK_PENDING;
945 packet->callback(packet, &ctx->ohci->card, packet->ack);
948 offset =
949 ((unsigned long long)
950 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
951 packet->header[2];
952 csr = offset - CSR_REGISTER_BASE;
954 /* Handle config rom reads. */
955 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
956 handle_local_rom(ctx->ohci, packet, csr);
957 else switch (csr) {
958 case CSR_BUS_MANAGER_ID:
959 case CSR_BANDWIDTH_AVAILABLE:
960 case CSR_CHANNELS_AVAILABLE_HI:
961 case CSR_CHANNELS_AVAILABLE_LO:
962 handle_local_lock(ctx->ohci, packet, csr);
963 break;
964 default:
965 if (ctx == &ctx->ohci->at_request_ctx)
966 fw_core_handle_request(&ctx->ohci->card, packet);
967 else
968 fw_core_handle_response(&ctx->ohci->card, packet);
969 break;
972 if (ctx == &ctx->ohci->at_response_ctx) {
973 packet->ack = ACK_COMPLETE;
974 packet->callback(packet, &ctx->ohci->card, packet->ack);
978 static void
979 at_context_transmit(struct context *ctx, struct fw_packet *packet)
981 unsigned long flags;
982 int retval;
984 spin_lock_irqsave(&ctx->ohci->lock, flags);
986 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
987 ctx->ohci->generation == packet->generation) {
988 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
989 handle_local_request(ctx, packet);
990 return;
993 retval = at_context_queue_packet(ctx, packet);
994 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
996 if (retval < 0)
997 packet->callback(packet, &ctx->ohci->card, packet->ack);
1001 static void bus_reset_tasklet(unsigned long data)
1003 struct fw_ohci *ohci = (struct fw_ohci *)data;
1004 int self_id_count, i, j, reg;
1005 int generation, new_generation;
1006 unsigned long flags;
1007 void *free_rom = NULL;
1008 dma_addr_t free_rom_bus = 0;
1010 reg = reg_read(ohci, OHCI1394_NodeID);
1011 if (!(reg & OHCI1394_NodeID_idValid)) {
1012 fw_notify("node ID not valid, new bus reset in progress\n");
1013 return;
1015 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1016 fw_notify("malconfigured bus\n");
1017 return;
1019 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1020 OHCI1394_NodeID_nodeNumber);
1023 * The count in the SelfIDCount register is the number of
1024 * bytes in the self ID receive buffer. Since we also receive
1025 * the inverted quadlets and a header quadlet, we shift one
1026 * bit extra to get the actual number of self IDs.
1029 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1030 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1031 rmb();
1033 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1034 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
1035 fw_error("inconsistent self IDs\n");
1036 ohci->self_id_buffer[j] =
1037 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1039 rmb();
1042 * Check the consistency of the self IDs we just read. The
1043 * problem we face is that a new bus reset can start while we
1044 * read out the self IDs from the DMA buffer. If this happens,
1045 * the DMA buffer will be overwritten with new self IDs and we
1046 * will read out inconsistent data. The OHCI specification
1047 * (section 11.2) recommends a technique similar to
1048 * linux/seqlock.h, where we remember the generation of the
1049 * self IDs in the buffer before reading them out and compare
1050 * it to the current generation after reading them out. If
1051 * the two generations match we know we have a consistent set
1052 * of self IDs.
1055 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1056 if (new_generation != generation) {
1057 fw_notify("recursive bus reset detected, "
1058 "discarding self ids\n");
1059 return;
1062 /* FIXME: Document how the locking works. */
1063 spin_lock_irqsave(&ohci->lock, flags);
1065 ohci->generation = generation;
1066 context_stop(&ohci->at_request_ctx);
1067 context_stop(&ohci->at_response_ctx);
1068 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1071 * This next bit is unrelated to the AT context stuff but we
1072 * have to do it under the spinlock also. If a new config rom
1073 * was set up before this reset, the old one is now no longer
1074 * in use and we can free it. Update the config rom pointers
1075 * to point to the current config rom and clear the
1076 * next_config_rom pointer so a new udpate can take place.
1079 if (ohci->next_config_rom != NULL) {
1080 if (ohci->next_config_rom != ohci->config_rom) {
1081 free_rom = ohci->config_rom;
1082 free_rom_bus = ohci->config_rom_bus;
1084 ohci->config_rom = ohci->next_config_rom;
1085 ohci->config_rom_bus = ohci->next_config_rom_bus;
1086 ohci->next_config_rom = NULL;
1089 * Restore config_rom image and manually update
1090 * config_rom registers. Writing the header quadlet
1091 * will indicate that the config rom is ready, so we
1092 * do that last.
1094 reg_write(ohci, OHCI1394_BusOptions,
1095 be32_to_cpu(ohci->config_rom[2]));
1096 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1097 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1100 spin_unlock_irqrestore(&ohci->lock, flags);
1102 if (free_rom)
1103 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1104 free_rom, free_rom_bus);
1106 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1107 self_id_count, ohci->self_id_buffer);
1110 static irqreturn_t irq_handler(int irq, void *data)
1112 struct fw_ohci *ohci = data;
1113 u32 event, iso_event, cycle_time;
1114 int i;
1116 event = reg_read(ohci, OHCI1394_IntEventClear);
1118 if (!event || !~event)
1119 return IRQ_NONE;
1121 reg_write(ohci, OHCI1394_IntEventClear, event);
1123 if (event & OHCI1394_selfIDComplete)
1124 tasklet_schedule(&ohci->bus_reset_tasklet);
1126 if (event & OHCI1394_RQPkt)
1127 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1129 if (event & OHCI1394_RSPkt)
1130 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1132 if (event & OHCI1394_reqTxComplete)
1133 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1135 if (event & OHCI1394_respTxComplete)
1136 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1138 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1139 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1141 while (iso_event) {
1142 i = ffs(iso_event) - 1;
1143 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1144 iso_event &= ~(1 << i);
1147 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1148 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1150 while (iso_event) {
1151 i = ffs(iso_event) - 1;
1152 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1153 iso_event &= ~(1 << i);
1156 if (unlikely(event & OHCI1394_postedWriteErr))
1157 fw_error("PCI posted write error\n");
1159 if (unlikely(event & OHCI1394_cycleTooLong)) {
1160 if (printk_ratelimit())
1161 fw_notify("isochronous cycle too long\n");
1162 reg_write(ohci, OHCI1394_LinkControlSet,
1163 OHCI1394_LinkControl_cycleMaster);
1166 if (event & OHCI1394_cycle64Seconds) {
1167 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1168 if ((cycle_time & 0x80000000) == 0)
1169 ohci->bus_seconds++;
1172 return IRQ_HANDLED;
1175 static int software_reset(struct fw_ohci *ohci)
1177 int i;
1179 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1181 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1182 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1183 OHCI1394_HCControl_softReset) == 0)
1184 return 0;
1185 msleep(1);
1188 return -EBUSY;
1191 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1193 struct fw_ohci *ohci = fw_ohci(card);
1194 struct pci_dev *dev = to_pci_dev(card->device);
1196 if (software_reset(ohci)) {
1197 fw_error("Failed to reset ohci card.\n");
1198 return -EBUSY;
1202 * Now enable LPS, which we need in order to start accessing
1203 * most of the registers. In fact, on some cards (ALI M5251),
1204 * accessing registers in the SClk domain without LPS enabled
1205 * will lock up the machine. Wait 50msec to make sure we have
1206 * full link enabled.
1208 reg_write(ohci, OHCI1394_HCControlSet,
1209 OHCI1394_HCControl_LPS |
1210 OHCI1394_HCControl_postedWriteEnable);
1211 flush_writes(ohci);
1212 msleep(50);
1214 reg_write(ohci, OHCI1394_HCControlClear,
1215 OHCI1394_HCControl_noByteSwapData);
1217 reg_write(ohci, OHCI1394_LinkControlSet,
1218 OHCI1394_LinkControl_rcvSelfID |
1219 OHCI1394_LinkControl_cycleTimerEnable |
1220 OHCI1394_LinkControl_cycleMaster);
1222 reg_write(ohci, OHCI1394_ATRetries,
1223 OHCI1394_MAX_AT_REQ_RETRIES |
1224 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1225 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1227 ar_context_run(&ohci->ar_request_ctx);
1228 ar_context_run(&ohci->ar_response_ctx);
1230 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1231 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1232 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1233 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1234 reg_write(ohci, OHCI1394_IntMaskSet,
1235 OHCI1394_selfIDComplete |
1236 OHCI1394_RQPkt | OHCI1394_RSPkt |
1237 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1238 OHCI1394_isochRx | OHCI1394_isochTx |
1239 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1240 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1242 /* Activate link_on bit and contender bit in our self ID packets.*/
1243 if (ohci_update_phy_reg(card, 4, 0,
1244 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1245 return -EIO;
1248 * When the link is not yet enabled, the atomic config rom
1249 * update mechanism described below in ohci_set_config_rom()
1250 * is not active. We have to update ConfigRomHeader and
1251 * BusOptions manually, and the write to ConfigROMmap takes
1252 * effect immediately. We tie this to the enabling of the
1253 * link, so we have a valid config rom before enabling - the
1254 * OHCI requires that ConfigROMhdr and BusOptions have valid
1255 * values before enabling.
1257 * However, when the ConfigROMmap is written, some controllers
1258 * always read back quadlets 0 and 2 from the config rom to
1259 * the ConfigRomHeader and BusOptions registers on bus reset.
1260 * They shouldn't do that in this initial case where the link
1261 * isn't enabled. This means we have to use the same
1262 * workaround here, setting the bus header to 0 and then write
1263 * the right values in the bus reset tasklet.
1266 if (config_rom) {
1267 ohci->next_config_rom =
1268 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1269 &ohci->next_config_rom_bus,
1270 GFP_KERNEL);
1271 if (ohci->next_config_rom == NULL)
1272 return -ENOMEM;
1274 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1275 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1276 } else {
1278 * In the suspend case, config_rom is NULL, which
1279 * means that we just reuse the old config rom.
1281 ohci->next_config_rom = ohci->config_rom;
1282 ohci->next_config_rom_bus = ohci->config_rom_bus;
1285 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1286 ohci->next_config_rom[0] = 0;
1287 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1288 reg_write(ohci, OHCI1394_BusOptions,
1289 be32_to_cpu(ohci->next_config_rom[2]));
1290 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1292 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1294 if (request_irq(dev->irq, irq_handler,
1295 IRQF_SHARED, ohci_driver_name, ohci)) {
1296 fw_error("Failed to allocate shared interrupt %d.\n",
1297 dev->irq);
1298 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1299 ohci->config_rom, ohci->config_rom_bus);
1300 return -EIO;
1303 reg_write(ohci, OHCI1394_HCControlSet,
1304 OHCI1394_HCControl_linkEnable |
1305 OHCI1394_HCControl_BIBimageValid);
1306 flush_writes(ohci);
1309 * We are ready to go, initiate bus reset to finish the
1310 * initialization.
1313 fw_core_initiate_bus_reset(&ohci->card, 1);
1315 return 0;
1318 static int
1319 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1321 struct fw_ohci *ohci;
1322 unsigned long flags;
1323 int retval = -EBUSY;
1324 __be32 *next_config_rom;
1325 dma_addr_t uninitialized_var(next_config_rom_bus);
1327 ohci = fw_ohci(card);
1330 * When the OHCI controller is enabled, the config rom update
1331 * mechanism is a bit tricky, but easy enough to use. See
1332 * section 5.5.6 in the OHCI specification.
1334 * The OHCI controller caches the new config rom address in a
1335 * shadow register (ConfigROMmapNext) and needs a bus reset
1336 * for the changes to take place. When the bus reset is
1337 * detected, the controller loads the new values for the
1338 * ConfigRomHeader and BusOptions registers from the specified
1339 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1340 * shadow register. All automatically and atomically.
1342 * Now, there's a twist to this story. The automatic load of
1343 * ConfigRomHeader and BusOptions doesn't honor the
1344 * noByteSwapData bit, so with a be32 config rom, the
1345 * controller will load be32 values in to these registers
1346 * during the atomic update, even on litte endian
1347 * architectures. The workaround we use is to put a 0 in the
1348 * header quadlet; 0 is endian agnostic and means that the
1349 * config rom isn't ready yet. In the bus reset tasklet we
1350 * then set up the real values for the two registers.
1352 * We use ohci->lock to avoid racing with the code that sets
1353 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1356 next_config_rom =
1357 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1358 &next_config_rom_bus, GFP_KERNEL);
1359 if (next_config_rom == NULL)
1360 return -ENOMEM;
1362 spin_lock_irqsave(&ohci->lock, flags);
1364 if (ohci->next_config_rom == NULL) {
1365 ohci->next_config_rom = next_config_rom;
1366 ohci->next_config_rom_bus = next_config_rom_bus;
1368 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1369 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1370 length * 4);
1372 ohci->next_header = config_rom[0];
1373 ohci->next_config_rom[0] = 0;
1375 reg_write(ohci, OHCI1394_ConfigROMmap,
1376 ohci->next_config_rom_bus);
1377 retval = 0;
1380 spin_unlock_irqrestore(&ohci->lock, flags);
1383 * Now initiate a bus reset to have the changes take
1384 * effect. We clean up the old config rom memory and DMA
1385 * mappings in the bus reset tasklet, since the OHCI
1386 * controller could need to access it before the bus reset
1387 * takes effect.
1389 if (retval == 0)
1390 fw_core_initiate_bus_reset(&ohci->card, 1);
1391 else
1392 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1393 next_config_rom, next_config_rom_bus);
1395 return retval;
1398 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1400 struct fw_ohci *ohci = fw_ohci(card);
1402 at_context_transmit(&ohci->at_request_ctx, packet);
1405 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1407 struct fw_ohci *ohci = fw_ohci(card);
1409 at_context_transmit(&ohci->at_response_ctx, packet);
1412 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1414 struct fw_ohci *ohci = fw_ohci(card);
1415 struct context *ctx = &ohci->at_request_ctx;
1416 struct driver_data *driver_data = packet->driver_data;
1417 int retval = -ENOENT;
1419 tasklet_disable(&ctx->tasklet);
1421 if (packet->ack != 0)
1422 goto out;
1424 driver_data->packet = NULL;
1425 packet->ack = RCODE_CANCELLED;
1426 packet->callback(packet, &ohci->card, packet->ack);
1427 retval = 0;
1429 out:
1430 tasklet_enable(&ctx->tasklet);
1432 return retval;
1435 static int
1436 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1438 struct fw_ohci *ohci = fw_ohci(card);
1439 unsigned long flags;
1440 int n, retval = 0;
1443 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1444 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1447 spin_lock_irqsave(&ohci->lock, flags);
1449 if (ohci->generation != generation) {
1450 retval = -ESTALE;
1451 goto out;
1455 * Note, if the node ID contains a non-local bus ID, physical DMA is
1456 * enabled for _all_ nodes on remote buses.
1459 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1460 if (n < 32)
1461 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1462 else
1463 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1465 flush_writes(ohci);
1466 out:
1467 spin_unlock_irqrestore(&ohci->lock, flags);
1468 return retval;
1471 static u64
1472 ohci_get_bus_time(struct fw_card *card)
1474 struct fw_ohci *ohci = fw_ohci(card);
1475 u32 cycle_time;
1476 u64 bus_time;
1478 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1479 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1481 return bus_time;
1484 static int handle_ir_dualbuffer_packet(struct context *context,
1485 struct descriptor *d,
1486 struct descriptor *last)
1488 struct iso_context *ctx =
1489 container_of(context, struct iso_context, context);
1490 struct db_descriptor *db = (struct db_descriptor *) d;
1491 __le32 *ir_header;
1492 size_t header_length;
1493 void *p, *end;
1494 int i;
1496 if (db->first_res_count != 0 && db->second_res_count != 0) {
1497 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1498 /* This descriptor isn't done yet, stop iteration. */
1499 return 0;
1501 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1504 header_length = le16_to_cpu(db->first_req_count) -
1505 le16_to_cpu(db->first_res_count);
1507 i = ctx->header_length;
1508 p = db + 1;
1509 end = p + header_length;
1510 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1512 * The iso header is byteswapped to little endian by
1513 * the controller, but the remaining header quadlets
1514 * are big endian. We want to present all the headers
1515 * as big endian, so we have to swap the first
1516 * quadlet.
1518 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1519 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1520 i += ctx->base.header_size;
1521 ctx->excess_bytes +=
1522 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1523 p += ctx->base.header_size + 4;
1525 ctx->header_length = i;
1527 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1528 le16_to_cpu(db->second_res_count);
1530 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1531 ir_header = (__le32 *) (db + 1);
1532 ctx->base.callback(&ctx->base,
1533 le32_to_cpu(ir_header[0]) & 0xffff,
1534 ctx->header_length, ctx->header,
1535 ctx->base.callback_data);
1536 ctx->header_length = 0;
1539 return 1;
1542 static int handle_ir_packet_per_buffer(struct context *context,
1543 struct descriptor *d,
1544 struct descriptor *last)
1546 struct iso_context *ctx =
1547 container_of(context, struct iso_context, context);
1548 struct descriptor *pd;
1549 __le32 *ir_header;
1550 void *p;
1551 int i;
1553 for (pd = d; pd <= last; pd++) {
1554 if (pd->transfer_status)
1555 break;
1557 if (pd > last)
1558 /* Descriptor(s) not done yet, stop iteration */
1559 return 0;
1561 i = ctx->header_length;
1562 p = last + 1;
1564 if (ctx->base.header_size > 0 &&
1565 i + ctx->base.header_size <= PAGE_SIZE) {
1567 * The iso header is byteswapped to little endian by
1568 * the controller, but the remaining header quadlets
1569 * are big endian. We want to present all the headers
1570 * as big endian, so we have to swap the first quadlet.
1572 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1573 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1574 ctx->header_length += ctx->base.header_size;
1577 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1578 ir_header = (__le32 *) p;
1579 ctx->base.callback(&ctx->base,
1580 le32_to_cpu(ir_header[0]) & 0xffff,
1581 ctx->header_length, ctx->header,
1582 ctx->base.callback_data);
1583 ctx->header_length = 0;
1586 return 1;
1589 static int handle_it_packet(struct context *context,
1590 struct descriptor *d,
1591 struct descriptor *last)
1593 struct iso_context *ctx =
1594 container_of(context, struct iso_context, context);
1596 if (last->transfer_status == 0)
1597 /* This descriptor isn't done yet, stop iteration. */
1598 return 0;
1600 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1601 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1602 0, NULL, ctx->base.callback_data);
1604 return 1;
1607 static struct fw_iso_context *
1608 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1610 struct fw_ohci *ohci = fw_ohci(card);
1611 struct iso_context *ctx, *list;
1612 descriptor_callback_t callback;
1613 u32 *mask, regs;
1614 unsigned long flags;
1615 int index, retval = -ENOMEM;
1617 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1618 mask = &ohci->it_context_mask;
1619 list = ohci->it_context_list;
1620 callback = handle_it_packet;
1621 } else {
1622 mask = &ohci->ir_context_mask;
1623 list = ohci->ir_context_list;
1624 if (ohci->version >= OHCI_VERSION_1_1)
1625 callback = handle_ir_dualbuffer_packet;
1626 else
1627 callback = handle_ir_packet_per_buffer;
1630 spin_lock_irqsave(&ohci->lock, flags);
1631 index = ffs(*mask) - 1;
1632 if (index >= 0)
1633 *mask &= ~(1 << index);
1634 spin_unlock_irqrestore(&ohci->lock, flags);
1636 if (index < 0)
1637 return ERR_PTR(-EBUSY);
1639 if (type == FW_ISO_CONTEXT_TRANSMIT)
1640 regs = OHCI1394_IsoXmitContextBase(index);
1641 else
1642 regs = OHCI1394_IsoRcvContextBase(index);
1644 ctx = &list[index];
1645 memset(ctx, 0, sizeof(*ctx));
1646 ctx->header_length = 0;
1647 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1648 if (ctx->header == NULL)
1649 goto out;
1651 retval = context_init(&ctx->context, ohci, regs, callback);
1652 if (retval < 0)
1653 goto out_with_header;
1655 return &ctx->base;
1657 out_with_header:
1658 free_page((unsigned long)ctx->header);
1659 out:
1660 spin_lock_irqsave(&ohci->lock, flags);
1661 *mask |= 1 << index;
1662 spin_unlock_irqrestore(&ohci->lock, flags);
1664 return ERR_PTR(retval);
1667 static int ohci_start_iso(struct fw_iso_context *base,
1668 s32 cycle, u32 sync, u32 tags)
1670 struct iso_context *ctx = container_of(base, struct iso_context, base);
1671 struct fw_ohci *ohci = ctx->context.ohci;
1672 u32 control, match;
1673 int index;
1675 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1676 index = ctx - ohci->it_context_list;
1677 match = 0;
1678 if (cycle >= 0)
1679 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1680 (cycle & 0x7fff) << 16;
1682 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1683 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1684 context_run(&ctx->context, match);
1685 } else {
1686 index = ctx - ohci->ir_context_list;
1687 control = IR_CONTEXT_ISOCH_HEADER;
1688 if (ohci->version >= OHCI_VERSION_1_1)
1689 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1690 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1691 if (cycle >= 0) {
1692 match |= (cycle & 0x07fff) << 12;
1693 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1696 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1697 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1698 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1699 context_run(&ctx->context, control);
1702 return 0;
1705 static int ohci_stop_iso(struct fw_iso_context *base)
1707 struct fw_ohci *ohci = fw_ohci(base->card);
1708 struct iso_context *ctx = container_of(base, struct iso_context, base);
1709 int index;
1711 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1712 index = ctx - ohci->it_context_list;
1713 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1714 } else {
1715 index = ctx - ohci->ir_context_list;
1716 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1718 flush_writes(ohci);
1719 context_stop(&ctx->context);
1721 return 0;
1724 static void ohci_free_iso_context(struct fw_iso_context *base)
1726 struct fw_ohci *ohci = fw_ohci(base->card);
1727 struct iso_context *ctx = container_of(base, struct iso_context, base);
1728 unsigned long flags;
1729 int index;
1731 ohci_stop_iso(base);
1732 context_release(&ctx->context);
1733 free_page((unsigned long)ctx->header);
1735 spin_lock_irqsave(&ohci->lock, flags);
1737 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1738 index = ctx - ohci->it_context_list;
1739 ohci->it_context_mask |= 1 << index;
1740 } else {
1741 index = ctx - ohci->ir_context_list;
1742 ohci->ir_context_mask |= 1 << index;
1745 spin_unlock_irqrestore(&ohci->lock, flags);
1748 static int
1749 ohci_queue_iso_transmit(struct fw_iso_context *base,
1750 struct fw_iso_packet *packet,
1751 struct fw_iso_buffer *buffer,
1752 unsigned long payload)
1754 struct iso_context *ctx = container_of(base, struct iso_context, base);
1755 struct descriptor *d, *last, *pd;
1756 struct fw_iso_packet *p;
1757 __le32 *header;
1758 dma_addr_t d_bus, page_bus;
1759 u32 z, header_z, payload_z, irq;
1760 u32 payload_index, payload_end_index, next_page_index;
1761 int page, end_page, i, length, offset;
1764 * FIXME: Cycle lost behavior should be configurable: lose
1765 * packet, retransmit or terminate..
1768 p = packet;
1769 payload_index = payload;
1771 if (p->skip)
1772 z = 1;
1773 else
1774 z = 2;
1775 if (p->header_length > 0)
1776 z++;
1778 /* Determine the first page the payload isn't contained in. */
1779 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1780 if (p->payload_length > 0)
1781 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1782 else
1783 payload_z = 0;
1785 z += payload_z;
1787 /* Get header size in number of descriptors. */
1788 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1790 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1791 if (d == NULL)
1792 return -ENOMEM;
1794 if (!p->skip) {
1795 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1796 d[0].req_count = cpu_to_le16(8);
1798 header = (__le32 *) &d[1];
1799 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1800 IT_HEADER_TAG(p->tag) |
1801 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1802 IT_HEADER_CHANNEL(ctx->base.channel) |
1803 IT_HEADER_SPEED(ctx->base.speed));
1804 header[1] =
1805 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1806 p->payload_length));
1809 if (p->header_length > 0) {
1810 d[2].req_count = cpu_to_le16(p->header_length);
1811 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1812 memcpy(&d[z], p->header, p->header_length);
1815 pd = d + z - payload_z;
1816 payload_end_index = payload_index + p->payload_length;
1817 for (i = 0; i < payload_z; i++) {
1818 page = payload_index >> PAGE_SHIFT;
1819 offset = payload_index & ~PAGE_MASK;
1820 next_page_index = (page + 1) << PAGE_SHIFT;
1821 length =
1822 min(next_page_index, payload_end_index) - payload_index;
1823 pd[i].req_count = cpu_to_le16(length);
1825 page_bus = page_private(buffer->pages[page]);
1826 pd[i].data_address = cpu_to_le32(page_bus + offset);
1828 payload_index += length;
1831 if (p->interrupt)
1832 irq = DESCRIPTOR_IRQ_ALWAYS;
1833 else
1834 irq = DESCRIPTOR_NO_IRQ;
1836 last = z == 2 ? d : d + z - 1;
1837 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1838 DESCRIPTOR_STATUS |
1839 DESCRIPTOR_BRANCH_ALWAYS |
1840 irq);
1842 context_append(&ctx->context, d, z, header_z);
1844 return 0;
1847 static int
1848 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1849 struct fw_iso_packet *packet,
1850 struct fw_iso_buffer *buffer,
1851 unsigned long payload)
1853 struct iso_context *ctx = container_of(base, struct iso_context, base);
1854 struct db_descriptor *db = NULL;
1855 struct descriptor *d;
1856 struct fw_iso_packet *p;
1857 dma_addr_t d_bus, page_bus;
1858 u32 z, header_z, length, rest;
1859 int page, offset, packet_count, header_size;
1862 * FIXME: Cycle lost behavior should be configurable: lose
1863 * packet, retransmit or terminate..
1866 p = packet;
1867 z = 2;
1870 * The OHCI controller puts the status word in the header
1871 * buffer too, so we need 4 extra bytes per packet.
1873 packet_count = p->header_length / ctx->base.header_size;
1874 header_size = packet_count * (ctx->base.header_size + 4);
1876 /* Get header size in number of descriptors. */
1877 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1878 page = payload >> PAGE_SHIFT;
1879 offset = payload & ~PAGE_MASK;
1880 rest = p->payload_length;
1882 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1883 while (rest > 0) {
1884 d = context_get_descriptors(&ctx->context,
1885 z + header_z, &d_bus);
1886 if (d == NULL)
1887 return -ENOMEM;
1889 db = (struct db_descriptor *) d;
1890 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1891 DESCRIPTOR_BRANCH_ALWAYS);
1892 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1893 if (p->skip && rest == p->payload_length) {
1894 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1895 db->first_req_count = db->first_size;
1896 } else {
1897 db->first_req_count = cpu_to_le16(header_size);
1899 db->first_res_count = db->first_req_count;
1900 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1902 if (p->skip && rest == p->payload_length)
1903 length = 4;
1904 else if (offset + rest < PAGE_SIZE)
1905 length = rest;
1906 else
1907 length = PAGE_SIZE - offset;
1909 db->second_req_count = cpu_to_le16(length);
1910 db->second_res_count = db->second_req_count;
1911 page_bus = page_private(buffer->pages[page]);
1912 db->second_buffer = cpu_to_le32(page_bus + offset);
1914 if (p->interrupt && length == rest)
1915 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1917 context_append(&ctx->context, d, z, header_z);
1918 offset = (offset + length) & ~PAGE_MASK;
1919 rest -= length;
1920 if (offset == 0)
1921 page++;
1924 return 0;
1927 static int
1928 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1929 struct fw_iso_packet *packet,
1930 struct fw_iso_buffer *buffer,
1931 unsigned long payload)
1933 struct iso_context *ctx = container_of(base, struct iso_context, base);
1934 struct descriptor *d = NULL, *pd = NULL;
1935 struct fw_iso_packet *p = packet;
1936 dma_addr_t d_bus, page_bus;
1937 u32 z, header_z, rest;
1938 int i, j, length;
1939 int page, offset, packet_count, header_size, payload_per_buffer;
1942 * The OHCI controller puts the status word in the
1943 * buffer too, so we need 4 extra bytes per packet.
1945 packet_count = p->header_length / ctx->base.header_size;
1946 header_size = ctx->base.header_size + 4;
1948 /* Get header size in number of descriptors. */
1949 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1950 page = payload >> PAGE_SHIFT;
1951 offset = payload & ~PAGE_MASK;
1952 payload_per_buffer = p->payload_length / packet_count;
1954 for (i = 0; i < packet_count; i++) {
1955 /* d points to the header descriptor */
1956 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1957 d = context_get_descriptors(&ctx->context,
1958 z + header_z, &d_bus);
1959 if (d == NULL)
1960 return -ENOMEM;
1962 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1963 DESCRIPTOR_INPUT_MORE);
1964 if (p->skip && i == 0)
1965 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1966 d->req_count = cpu_to_le16(header_size);
1967 d->res_count = d->req_count;
1968 d->transfer_status = 0;
1969 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1971 rest = payload_per_buffer;
1972 for (j = 1; j < z; j++) {
1973 pd = d + j;
1974 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1975 DESCRIPTOR_INPUT_MORE);
1977 if (offset + rest < PAGE_SIZE)
1978 length = rest;
1979 else
1980 length = PAGE_SIZE - offset;
1981 pd->req_count = cpu_to_le16(length);
1982 pd->res_count = pd->req_count;
1983 pd->transfer_status = 0;
1985 page_bus = page_private(buffer->pages[page]);
1986 pd->data_address = cpu_to_le32(page_bus + offset);
1988 offset = (offset + length) & ~PAGE_MASK;
1989 rest -= length;
1990 if (offset == 0)
1991 page++;
1993 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1994 DESCRIPTOR_INPUT_LAST |
1995 DESCRIPTOR_BRANCH_ALWAYS);
1996 if (p->interrupt && i == packet_count - 1)
1997 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1999 context_append(&ctx->context, d, z, header_z);
2002 return 0;
2005 static int
2006 ohci_queue_iso(struct fw_iso_context *base,
2007 struct fw_iso_packet *packet,
2008 struct fw_iso_buffer *buffer,
2009 unsigned long payload)
2011 struct iso_context *ctx = container_of(base, struct iso_context, base);
2012 unsigned long flags;
2013 int retval;
2015 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2016 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2017 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2018 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2019 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2020 buffer, payload);
2021 else
2022 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2023 buffer,
2024 payload);
2025 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2027 return retval;
2030 static const struct fw_card_driver ohci_driver = {
2031 .name = ohci_driver_name,
2032 .enable = ohci_enable,
2033 .update_phy_reg = ohci_update_phy_reg,
2034 .set_config_rom = ohci_set_config_rom,
2035 .send_request = ohci_send_request,
2036 .send_response = ohci_send_response,
2037 .cancel_packet = ohci_cancel_packet,
2038 .enable_phys_dma = ohci_enable_phys_dma,
2039 .get_bus_time = ohci_get_bus_time,
2041 .allocate_iso_context = ohci_allocate_iso_context,
2042 .free_iso_context = ohci_free_iso_context,
2043 .queue_iso = ohci_queue_iso,
2044 .start_iso = ohci_start_iso,
2045 .stop_iso = ohci_stop_iso,
2048 static int __devinit
2049 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2051 struct fw_ohci *ohci;
2052 u32 bus_options, max_receive, link_speed;
2053 u64 guid;
2054 int err;
2055 size_t size;
2057 #ifdef CONFIG_PPC_PMAC
2058 /* Necessary on some machines if fw-ohci was loaded/ unloaded before */
2059 if (machine_is(powermac)) {
2060 struct device_node *ofn = pci_device_to_OF_node(dev);
2062 if (ofn) {
2063 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2064 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2067 #endif /* CONFIG_PPC_PMAC */
2069 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2070 if (ohci == NULL) {
2071 fw_error("Could not malloc fw_ohci data.\n");
2072 return -ENOMEM;
2075 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2077 err = pci_enable_device(dev);
2078 if (err) {
2079 fw_error("Failed to enable OHCI hardware.\n");
2080 goto fail_put_card;
2083 pci_set_master(dev);
2084 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2085 pci_set_drvdata(dev, ohci);
2087 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2088 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2089 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2090 #endif
2091 spin_lock_init(&ohci->lock);
2093 tasklet_init(&ohci->bus_reset_tasklet,
2094 bus_reset_tasklet, (unsigned long)ohci);
2096 err = pci_request_region(dev, 0, ohci_driver_name);
2097 if (err) {
2098 fw_error("MMIO resource unavailable\n");
2099 goto fail_disable;
2102 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2103 if (ohci->registers == NULL) {
2104 fw_error("Failed to remap registers\n");
2105 err = -ENXIO;
2106 goto fail_iomem;
2109 ar_context_init(&ohci->ar_request_ctx, ohci,
2110 OHCI1394_AsReqRcvContextControlSet);
2112 ar_context_init(&ohci->ar_response_ctx, ohci,
2113 OHCI1394_AsRspRcvContextControlSet);
2115 context_init(&ohci->at_request_ctx, ohci,
2116 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2118 context_init(&ohci->at_response_ctx, ohci,
2119 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2121 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2122 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2123 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2124 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2125 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2127 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2128 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2129 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2130 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2131 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2133 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2134 fw_error("Out of memory for it/ir contexts.\n");
2135 err = -ENOMEM;
2136 goto fail_registers;
2139 /* self-id dma buffer allocation */
2140 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2141 SELF_ID_BUF_SIZE,
2142 &ohci->self_id_bus,
2143 GFP_KERNEL);
2144 if (ohci->self_id_cpu == NULL) {
2145 fw_error("Out of memory for self ID buffer.\n");
2146 err = -ENOMEM;
2147 goto fail_registers;
2150 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2151 max_receive = (bus_options >> 12) & 0xf;
2152 link_speed = bus_options & 0x7;
2153 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2154 reg_read(ohci, OHCI1394_GUIDLo);
2156 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2157 if (err < 0)
2158 goto fail_self_id;
2160 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2161 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2162 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2163 return 0;
2165 fail_self_id:
2166 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2167 ohci->self_id_cpu, ohci->self_id_bus);
2168 fail_registers:
2169 kfree(ohci->it_context_list);
2170 kfree(ohci->ir_context_list);
2171 pci_iounmap(dev, ohci->registers);
2172 fail_iomem:
2173 pci_release_region(dev, 0);
2174 fail_disable:
2175 pci_disable_device(dev);
2176 fail_put_card:
2177 fw_card_put(&ohci->card);
2179 return err;
2182 static void pci_remove(struct pci_dev *dev)
2184 struct fw_ohci *ohci;
2186 ohci = pci_get_drvdata(dev);
2187 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2188 flush_writes(ohci);
2189 fw_core_remove_card(&ohci->card);
2192 * FIXME: Fail all pending packets here, now that the upper
2193 * layers can't queue any more.
2196 software_reset(ohci);
2197 free_irq(dev->irq, ohci);
2198 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2199 ohci->self_id_cpu, ohci->self_id_bus);
2200 kfree(ohci->it_context_list);
2201 kfree(ohci->ir_context_list);
2202 pci_iounmap(dev, ohci->registers);
2203 pci_release_region(dev, 0);
2204 pci_disable_device(dev);
2205 fw_card_put(&ohci->card);
2207 #ifdef CONFIG_PPC_PMAC
2208 /* On UniNorth, power down the cable and turn off the chip clock
2209 * to save power on laptops */
2210 if (machine_is(powermac)) {
2211 struct device_node *ofn = pci_device_to_OF_node(dev);
2213 if (ofn) {
2214 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2215 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2218 #endif /* CONFIG_PPC_PMAC */
2220 fw_notify("Removed fw-ohci device.\n");
2223 #ifdef CONFIG_PM
2224 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2226 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2227 int err;
2229 software_reset(ohci);
2230 free_irq(pdev->irq, ohci);
2231 err = pci_save_state(pdev);
2232 if (err) {
2233 fw_error("pci_save_state failed\n");
2234 return err;
2236 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2237 if (err)
2238 fw_error("pci_set_power_state failed with %d\n", err);
2240 /* PowerMac suspend code comes last */
2241 #ifdef CONFIG_PPC_PMAC
2242 if (machine_is(powermac)) {
2243 struct device_node *ofn = pci_device_to_OF_node(pdev);
2245 if (ofn)
2246 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2248 #endif /* CONFIG_PPC_PMAC */
2250 return 0;
2253 static int pci_resume(struct pci_dev *pdev)
2255 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2256 int err;
2258 /* PowerMac resume code comes first */
2259 #ifdef CONFIG_PPC_PMAC
2260 if (machine_is(powermac)) {
2261 struct device_node *ofn = pci_device_to_OF_node(pdev);
2263 if (ofn)
2264 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2266 #endif /* CONFIG_PPC_PMAC */
2268 pci_set_power_state(pdev, PCI_D0);
2269 pci_restore_state(pdev);
2270 err = pci_enable_device(pdev);
2271 if (err) {
2272 fw_error("pci_enable_device failed\n");
2273 return err;
2276 return ohci_enable(&ohci->card, NULL, 0);
2278 #endif
2280 static struct pci_device_id pci_table[] = {
2281 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2285 MODULE_DEVICE_TABLE(pci, pci_table);
2287 static struct pci_driver fw_ohci_pci_driver = {
2288 .name = ohci_driver_name,
2289 .id_table = pci_table,
2290 .probe = pci_probe,
2291 .remove = pci_remove,
2292 #ifdef CONFIG_PM
2293 .resume = pci_resume,
2294 .suspend = pci_suspend,
2295 #endif
2298 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2299 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2300 MODULE_LICENSE("GPL");
2302 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2303 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2304 MODULE_ALIAS("ohci1394");
2305 #endif
2307 static int __init fw_ohci_init(void)
2309 return pci_register_driver(&fw_ohci_pci_driver);
2312 static void __exit fw_ohci_cleanup(void)
2314 pci_unregister_driver(&fw_ohci_pci_driver);
2317 module_init(fw_ohci_init);
2318 module_exit(fw_ohci_cleanup);