Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / arch / x86 / kernel / hpet.c
blob36652ea1a2658d10d729647e0f613c01ccc88ee6
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
15 #define HPET_MASK CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT 22
18 /* FSEC = 10^-15
19 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
38 #ifdef CONFIG_X86_64
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
54 #else
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
66 #endif
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
72 int hpet_force_user;
74 static int __init hpet_setup(char* str)
76 if (str) {
77 if (!strncmp("disable", str, 7))
78 boot_hpet_disable = 1;
79 if (!strncmp("force", str, 5))
80 hpet_force_user = 1;
82 return 1;
84 __setup("hpet=", hpet_setup);
86 static int __init disable_hpet(char *str)
88 boot_hpet_disable = 1;
89 return 1;
91 __setup("nohpet", disable_hpet);
93 static inline int is_hpet_capable(void)
95 return (!boot_hpet_disable && hpet_address);
99 * HPET timer interrupt enable / disable
101 static int hpet_legacy_int_enabled;
104 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
106 int is_hpet_enabled(void)
108 return is_hpet_capable() && hpet_legacy_int_enabled;
110 EXPORT_SYMBOL_GPL(is_hpet_enabled);
113 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114 * timer 0 and timer 1 in case of RTC emulation.
116 #ifdef CONFIG_HPET
117 static void hpet_reserve_platform_timers(unsigned long id)
119 struct hpet __iomem *hpet = hpet_virt_address;
120 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
121 unsigned int nrtimers, i;
122 struct hpet_data hd;
124 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
126 memset(&hd, 0, sizeof (hd));
127 hd.hd_phys_address = hpet_address;
128 hd.hd_address = hpet;
129 hd.hd_nirqs = nrtimers;
130 hd.hd_flags = HPET_DATA_PLATFORM;
131 hpet_reserve_timer(&hd, 0);
133 #ifdef CONFIG_HPET_EMULATE_RTC
134 hpet_reserve_timer(&hd, 1);
135 #endif
137 hd.hd_irq[0] = HPET_LEGACY_8254;
138 hd.hd_irq[1] = HPET_LEGACY_RTC;
140 for (i = 2; i < nrtimers; timer++, i++)
141 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
142 Tn_INT_ROUTE_CNF_SHIFT;
144 hpet_alloc(&hd);
147 #else
148 static void hpet_reserve_platform_timers(unsigned long id) { }
149 #endif
152 * Common hpet info
154 static unsigned long hpet_period;
156 static void hpet_legacy_set_mode(enum clock_event_mode mode,
157 struct clock_event_device *evt);
158 static int hpet_legacy_next_event(unsigned long delta,
159 struct clock_event_device *evt);
162 * The hpet clock event device
164 static struct clock_event_device hpet_clockevent = {
165 .name = "hpet",
166 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
167 .set_mode = hpet_legacy_set_mode,
168 .set_next_event = hpet_legacy_next_event,
169 .shift = 32,
170 .irq = 0,
171 .rating = 50,
174 static void hpet_start_counter(void)
176 unsigned long cfg = hpet_readl(HPET_CFG);
178 cfg &= ~HPET_CFG_ENABLE;
179 hpet_writel(cfg, HPET_CFG);
180 hpet_writel(0, HPET_COUNTER);
181 hpet_writel(0, HPET_COUNTER + 4);
182 cfg |= HPET_CFG_ENABLE;
183 hpet_writel(cfg, HPET_CFG);
186 static void hpet_resume_device(void)
188 force_hpet_resume();
191 static void hpet_restart_counter(void)
193 hpet_resume_device();
194 hpet_start_counter();
197 static void hpet_enable_legacy_int(void)
199 unsigned long cfg = hpet_readl(HPET_CFG);
201 cfg |= HPET_CFG_LEGACY;
202 hpet_writel(cfg, HPET_CFG);
203 hpet_legacy_int_enabled = 1;
206 static void hpet_legacy_clockevent_register(void)
208 uint64_t hpet_freq;
210 /* Start HPET legacy interrupts */
211 hpet_enable_legacy_int();
214 * The period is a femto seconds value. We need to calculate the
215 * scaled math multiplication factor for nanosecond to hpet tick
216 * conversion.
218 hpet_freq = 1000000000000000ULL;
219 do_div(hpet_freq, hpet_period);
220 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
221 NSEC_PER_SEC, 32);
222 /* Calculate the min / max delta */
223 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
224 &hpet_clockevent);
225 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
226 &hpet_clockevent);
229 * Start hpet with the boot cpu mask and make it
230 * global after the IO_APIC has been initialized.
232 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
233 clockevents_register_device(&hpet_clockevent);
234 global_clock_event = &hpet_clockevent;
235 printk(KERN_DEBUG "hpet clockevent registered\n");
238 static void hpet_legacy_set_mode(enum clock_event_mode mode,
239 struct clock_event_device *evt)
241 unsigned long cfg, cmp, now;
242 uint64_t delta;
244 switch(mode) {
245 case CLOCK_EVT_MODE_PERIODIC:
246 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
247 delta >>= hpet_clockevent.shift;
248 now = hpet_readl(HPET_COUNTER);
249 cmp = now + (unsigned long) delta;
250 cfg = hpet_readl(HPET_T0_CFG);
251 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
252 HPET_TN_SETVAL | HPET_TN_32BIT;
253 hpet_writel(cfg, HPET_T0_CFG);
255 * The first write after writing TN_SETVAL to the
256 * config register sets the counter value, the second
257 * write sets the period.
259 hpet_writel(cmp, HPET_T0_CMP);
260 udelay(1);
261 hpet_writel((unsigned long) delta, HPET_T0_CMP);
262 break;
264 case CLOCK_EVT_MODE_ONESHOT:
265 cfg = hpet_readl(HPET_T0_CFG);
266 cfg &= ~HPET_TN_PERIODIC;
267 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
268 hpet_writel(cfg, HPET_T0_CFG);
269 break;
271 case CLOCK_EVT_MODE_UNUSED:
272 case CLOCK_EVT_MODE_SHUTDOWN:
273 cfg = hpet_readl(HPET_T0_CFG);
274 cfg &= ~HPET_TN_ENABLE;
275 hpet_writel(cfg, HPET_T0_CFG);
276 break;
278 case CLOCK_EVT_MODE_RESUME:
279 hpet_enable_legacy_int();
280 break;
284 static int hpet_legacy_next_event(unsigned long delta,
285 struct clock_event_device *evt)
287 unsigned long cnt;
289 cnt = hpet_readl(HPET_COUNTER);
290 cnt += delta;
291 hpet_writel(cnt, HPET_T0_CMP);
293 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
297 * Clock source related code
299 static cycle_t read_hpet(void)
301 return (cycle_t)hpet_readl(HPET_COUNTER);
304 #ifdef CONFIG_X86_64
305 static cycle_t __vsyscall_fn vread_hpet(void)
307 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
309 #endif
311 static struct clocksource clocksource_hpet = {
312 .name = "hpet",
313 .rating = 250,
314 .read = read_hpet,
315 .mask = HPET_MASK,
316 .shift = HPET_SHIFT,
317 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
318 .resume = hpet_restart_counter,
319 #ifdef CONFIG_X86_64
320 .vread = vread_hpet,
321 #endif
324 static int hpet_clocksource_register(void)
326 u64 tmp, start, now;
327 cycle_t t1;
329 /* Start the counter */
330 hpet_start_counter();
332 /* Verify whether hpet counter works */
333 t1 = read_hpet();
334 rdtscll(start);
337 * We don't know the TSC frequency yet, but waiting for
338 * 200000 TSC cycles is safe:
339 * 4 GHz == 50us
340 * 1 GHz == 200us
342 do {
343 rep_nop();
344 rdtscll(now);
345 } while ((now - start) < 200000UL);
347 if (t1 == read_hpet()) {
348 printk(KERN_WARNING
349 "HPET counter not counting. HPET disabled\n");
350 return -ENODEV;
353 /* Initialize and register HPET clocksource
355 * hpet period is in femto seconds per cycle
356 * so we need to convert this to ns/cyc units
357 * approximated by mult/2^shift
359 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
360 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
361 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
362 * (fsec/cyc << shift)/1000000 = mult
363 * (hpet_period << shift)/FSEC_PER_NSEC = mult
365 tmp = (u64)hpet_period << HPET_SHIFT;
366 do_div(tmp, FSEC_PER_NSEC);
367 clocksource_hpet.mult = (u32)tmp;
369 clocksource_register(&clocksource_hpet);
371 return 0;
375 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
377 int __init hpet_enable(void)
379 unsigned long id;
381 if (!is_hpet_capable())
382 return 0;
384 hpet_set_mapping();
387 * Read the period and check for a sane value:
389 hpet_period = hpet_readl(HPET_PERIOD);
390 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
391 goto out_nohpet;
394 * Read the HPET ID register to retrieve the IRQ routing
395 * information and the number of channels
397 id = hpet_readl(HPET_ID);
399 #ifdef CONFIG_HPET_EMULATE_RTC
401 * The legacy routing mode needs at least two channels, tick timer
402 * and the rtc emulation channel.
404 if (!(id & HPET_ID_NUMBER))
405 goto out_nohpet;
406 #endif
408 if (hpet_clocksource_register())
409 goto out_nohpet;
411 if (id & HPET_ID_LEGSUP) {
412 hpet_legacy_clockevent_register();
413 return 1;
415 return 0;
417 out_nohpet:
418 hpet_clear_mapping();
419 boot_hpet_disable = 1;
420 return 0;
424 * Needs to be late, as the reserve_timer code calls kalloc !
426 * Not a problem on i386 as hpet_enable is called from late_time_init,
427 * but on x86_64 it is necessary !
429 static __init int hpet_late_init(void)
431 if (boot_hpet_disable)
432 return -ENODEV;
434 if (!hpet_address) {
435 if (!force_hpet_address)
436 return -ENODEV;
438 hpet_address = force_hpet_address;
439 hpet_enable();
440 if (!hpet_virt_address)
441 return -ENODEV;
444 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
446 return 0;
448 fs_initcall(hpet_late_init);
450 void hpet_disable(void)
452 if (is_hpet_capable()) {
453 unsigned long cfg = hpet_readl(HPET_CFG);
455 if (hpet_legacy_int_enabled) {
456 cfg &= ~HPET_CFG_LEGACY;
457 hpet_legacy_int_enabled = 0;
459 cfg &= ~HPET_CFG_ENABLE;
460 hpet_writel(cfg, HPET_CFG);
464 #ifdef CONFIG_HPET_EMULATE_RTC
466 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
467 * is enabled, we support RTC interrupt functionality in software.
468 * RTC has 3 kinds of interrupts:
469 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
470 * is updated
471 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
472 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
473 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
474 * (1) and (2) above are implemented using polling at a frequency of
475 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
476 * overhead. (DEFAULT_RTC_INT_FREQ)
477 * For (3), we use interrupts at 64Hz or user specified periodic
478 * frequency, whichever is higher.
480 #include <linux/mc146818rtc.h>
481 #include <linux/rtc.h>
482 #include <asm/rtc.h>
484 #define DEFAULT_RTC_INT_FREQ 64
485 #define DEFAULT_RTC_SHIFT 6
486 #define RTC_NUM_INTS 1
488 static unsigned long hpet_rtc_flags;
489 static unsigned long hpet_prev_update_sec;
490 static struct rtc_time hpet_alarm_time;
491 static unsigned long hpet_pie_count;
492 static unsigned long hpet_t1_cmp;
493 static unsigned long hpet_default_delta;
494 static unsigned long hpet_pie_delta;
495 static unsigned long hpet_pie_limit;
497 static rtc_irq_handler irq_handler;
500 * Registers a IRQ handler.
502 int hpet_register_irq_handler(rtc_irq_handler handler)
504 if (!is_hpet_enabled())
505 return -ENODEV;
506 if (irq_handler)
507 return -EBUSY;
509 irq_handler = handler;
511 return 0;
513 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
516 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
517 * and does cleanup.
519 void hpet_unregister_irq_handler(rtc_irq_handler handler)
521 if (!is_hpet_enabled())
522 return;
524 irq_handler = NULL;
525 hpet_rtc_flags = 0;
527 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
530 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
531 * is not supported by all HPET implementations for timer 1.
533 * hpet_rtc_timer_init() is called when the rtc is initialized.
535 int hpet_rtc_timer_init(void)
537 unsigned long cfg, cnt, delta, flags;
539 if (!is_hpet_enabled())
540 return 0;
542 if (!hpet_default_delta) {
543 uint64_t clc;
545 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
546 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
547 hpet_default_delta = (unsigned long) clc;
550 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
551 delta = hpet_default_delta;
552 else
553 delta = hpet_pie_delta;
555 local_irq_save(flags);
557 cnt = delta + hpet_readl(HPET_COUNTER);
558 hpet_writel(cnt, HPET_T1_CMP);
559 hpet_t1_cmp = cnt;
561 cfg = hpet_readl(HPET_T1_CFG);
562 cfg &= ~HPET_TN_PERIODIC;
563 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
564 hpet_writel(cfg, HPET_T1_CFG);
566 local_irq_restore(flags);
568 return 1;
570 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
573 * The functions below are called from rtc driver.
574 * Return 0 if HPET is not being used.
575 * Otherwise do the necessary changes and return 1.
577 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
579 if (!is_hpet_enabled())
580 return 0;
582 hpet_rtc_flags &= ~bit_mask;
583 return 1;
585 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
587 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
589 unsigned long oldbits = hpet_rtc_flags;
591 if (!is_hpet_enabled())
592 return 0;
594 hpet_rtc_flags |= bit_mask;
596 if (!oldbits)
597 hpet_rtc_timer_init();
599 return 1;
601 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
603 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
604 unsigned char sec)
606 if (!is_hpet_enabled())
607 return 0;
609 hpet_alarm_time.tm_hour = hrs;
610 hpet_alarm_time.tm_min = min;
611 hpet_alarm_time.tm_sec = sec;
613 return 1;
615 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
617 int hpet_set_periodic_freq(unsigned long freq)
619 uint64_t clc;
621 if (!is_hpet_enabled())
622 return 0;
624 if (freq <= DEFAULT_RTC_INT_FREQ)
625 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
626 else {
627 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
628 do_div(clc, freq);
629 clc >>= hpet_clockevent.shift;
630 hpet_pie_delta = (unsigned long) clc;
632 return 1;
634 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
636 int hpet_rtc_dropped_irq(void)
638 return is_hpet_enabled();
640 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
642 static void hpet_rtc_timer_reinit(void)
644 unsigned long cfg, delta;
645 int lost_ints = -1;
647 if (unlikely(!hpet_rtc_flags)) {
648 cfg = hpet_readl(HPET_T1_CFG);
649 cfg &= ~HPET_TN_ENABLE;
650 hpet_writel(cfg, HPET_T1_CFG);
651 return;
654 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
655 delta = hpet_default_delta;
656 else
657 delta = hpet_pie_delta;
660 * Increment the comparator value until we are ahead of the
661 * current count.
663 do {
664 hpet_t1_cmp += delta;
665 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
666 lost_ints++;
667 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
669 if (lost_ints) {
670 if (hpet_rtc_flags & RTC_PIE)
671 hpet_pie_count += lost_ints;
672 if (printk_ratelimit())
673 printk(KERN_WARNING "rtc: lost %d interrupts\n",
674 lost_ints);
678 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
680 struct rtc_time curr_time;
681 unsigned long rtc_int_flag = 0;
683 hpet_rtc_timer_reinit();
684 memset(&curr_time, 0, sizeof(struct rtc_time));
686 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
687 get_rtc_time(&curr_time);
689 if (hpet_rtc_flags & RTC_UIE &&
690 curr_time.tm_sec != hpet_prev_update_sec) {
691 rtc_int_flag = RTC_UF;
692 hpet_prev_update_sec = curr_time.tm_sec;
695 if (hpet_rtc_flags & RTC_PIE &&
696 ++hpet_pie_count >= hpet_pie_limit) {
697 rtc_int_flag |= RTC_PF;
698 hpet_pie_count = 0;
701 if (hpet_rtc_flags & RTC_AIE &&
702 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
703 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
704 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
705 rtc_int_flag |= RTC_AF;
707 if (rtc_int_flag) {
708 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
709 if (irq_handler)
710 irq_handler(rtc_int_flag, dev_id);
712 return IRQ_HANDLED;
714 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
715 #endif