Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / arch / s390 / mm / vmem.c
blob35d90a4720fdcc7570a0dd1d09c231c85c1ab097
1 /*
2 * arch/s390/mm/vmem.c
4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
18 static DEFINE_MUTEX(vmem_mutex);
20 struct memory_segment {
21 struct list_head list;
22 unsigned long start;
23 unsigned long size;
26 static LIST_HEAD(mem_segs);
28 void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
29 unsigned long start_pfn)
31 struct page *start, *end;
32 struct page *map_start, *map_end;
33 int i;
35 start = pfn_to_page(start_pfn);
36 end = start + size;
38 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
39 unsigned long cstart, cend;
41 cstart = PFN_DOWN(memory_chunk[i].addr);
42 cend = cstart + PFN_DOWN(memory_chunk[i].size);
44 map_start = mem_map + cstart;
45 map_end = mem_map + cend;
47 if (map_start < start)
48 map_start = start;
49 if (map_end > end)
50 map_end = end;
52 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
53 / sizeof(struct page);
54 map_end += ((PFN_ALIGN((unsigned long) map_end)
55 - (unsigned long) map_end)
56 / sizeof(struct page));
58 if (map_start < map_end)
59 memmap_init_zone((unsigned long)(map_end - map_start),
60 nid, zone, page_to_pfn(map_start),
61 MEMMAP_EARLY);
65 static void __ref *vmem_alloc_pages(unsigned int order)
67 if (slab_is_available())
68 return (void *)__get_free_pages(GFP_KERNEL, order);
69 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
72 static inline pud_t *vmem_pud_alloc(void)
74 pud_t *pud = NULL;
76 #ifdef CONFIG_64BIT
77 pud = vmem_alloc_pages(2);
78 if (!pud)
79 return NULL;
80 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
81 memcpy(pud + 1, pud, (PTRS_PER_PUD - 1)*sizeof(pud_t));
82 #endif
83 return pud;
86 static inline pmd_t *vmem_pmd_alloc(void)
88 pmd_t *pmd = NULL;
90 #ifdef CONFIG_64BIT
91 pmd = vmem_alloc_pages(2);
92 if (!pmd)
93 return NULL;
94 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
95 #endif
96 return pmd;
99 static pte_t __init_refok *vmem_pte_alloc(void)
101 pte_t *pte;
103 if (slab_is_available())
104 pte = (pte_t *) page_table_alloc(&init_mm);
105 else
106 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
107 if (!pte)
108 return NULL;
109 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
110 PTRS_PER_PTE * sizeof(pte_t));
111 return pte;
115 * Add a physical memory range to the 1:1 mapping.
117 static int vmem_add_range(unsigned long start, unsigned long size)
119 unsigned long address;
120 pgd_t *pg_dir;
121 pud_t *pu_dir;
122 pmd_t *pm_dir;
123 pte_t *pt_dir;
124 pte_t pte;
125 int ret = -ENOMEM;
127 for (address = start; address < start + size; address += PAGE_SIZE) {
128 pg_dir = pgd_offset_k(address);
129 if (pgd_none(*pg_dir)) {
130 pu_dir = vmem_pud_alloc();
131 if (!pu_dir)
132 goto out;
133 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
136 pu_dir = pud_offset(pg_dir, address);
137 if (pud_none(*pu_dir)) {
138 pm_dir = vmem_pmd_alloc();
139 if (!pm_dir)
140 goto out;
141 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
144 pm_dir = pmd_offset(pu_dir, address);
145 if (pmd_none(*pm_dir)) {
146 pt_dir = vmem_pte_alloc();
147 if (!pt_dir)
148 goto out;
149 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
152 pt_dir = pte_offset_kernel(pm_dir, address);
153 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
154 *pt_dir = pte;
156 ret = 0;
157 out:
158 flush_tlb_kernel_range(start, start + size);
159 return ret;
163 * Remove a physical memory range from the 1:1 mapping.
164 * Currently only invalidates page table entries.
166 static void vmem_remove_range(unsigned long start, unsigned long size)
168 unsigned long address;
169 pgd_t *pg_dir;
170 pud_t *pu_dir;
171 pmd_t *pm_dir;
172 pte_t *pt_dir;
173 pte_t pte;
175 pte_val(pte) = _PAGE_TYPE_EMPTY;
176 for (address = start; address < start + size; address += PAGE_SIZE) {
177 pg_dir = pgd_offset_k(address);
178 pu_dir = pud_offset(pg_dir, address);
179 if (pud_none(*pu_dir))
180 continue;
181 pm_dir = pmd_offset(pu_dir, address);
182 if (pmd_none(*pm_dir))
183 continue;
184 pt_dir = pte_offset_kernel(pm_dir, address);
185 *pt_dir = pte;
187 flush_tlb_kernel_range(start, start + size);
191 * Add a backed mem_map array to the virtual mem_map array.
193 static int vmem_add_mem_map(unsigned long start, unsigned long size)
195 unsigned long address, start_addr, end_addr;
196 struct page *map_start, *map_end;
197 pgd_t *pg_dir;
198 pud_t *pu_dir;
199 pmd_t *pm_dir;
200 pte_t *pt_dir;
201 pte_t pte;
202 int ret = -ENOMEM;
204 map_start = VMEM_MAP + PFN_DOWN(start);
205 map_end = VMEM_MAP + PFN_DOWN(start + size);
207 start_addr = (unsigned long) map_start & PAGE_MASK;
208 end_addr = PFN_ALIGN((unsigned long) map_end);
210 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
211 pg_dir = pgd_offset_k(address);
212 if (pgd_none(*pg_dir)) {
213 pu_dir = vmem_pud_alloc();
214 if (!pu_dir)
215 goto out;
216 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
219 pu_dir = pud_offset(pg_dir, address);
220 if (pud_none(*pu_dir)) {
221 pm_dir = vmem_pmd_alloc();
222 if (!pm_dir)
223 goto out;
224 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
227 pm_dir = pmd_offset(pu_dir, address);
228 if (pmd_none(*pm_dir)) {
229 pt_dir = vmem_pte_alloc();
230 if (!pt_dir)
231 goto out;
232 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
235 pt_dir = pte_offset_kernel(pm_dir, address);
236 if (pte_none(*pt_dir)) {
237 unsigned long new_page;
239 new_page =__pa(vmem_alloc_pages(0));
240 if (!new_page)
241 goto out;
242 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
243 *pt_dir = pte;
246 ret = 0;
247 out:
248 flush_tlb_kernel_range(start_addr, end_addr);
249 return ret;
252 static int vmem_add_mem(unsigned long start, unsigned long size)
254 int ret;
256 ret = vmem_add_mem_map(start, size);
257 if (ret)
258 return ret;
259 return vmem_add_range(start, size);
263 * Add memory segment to the segment list if it doesn't overlap with
264 * an already present segment.
266 static int insert_memory_segment(struct memory_segment *seg)
268 struct memory_segment *tmp;
270 if (seg->start + seg->size >= VMEM_MAX_PHYS ||
271 seg->start + seg->size < seg->start)
272 return -ERANGE;
274 list_for_each_entry(tmp, &mem_segs, list) {
275 if (seg->start >= tmp->start + tmp->size)
276 continue;
277 if (seg->start + seg->size <= tmp->start)
278 continue;
279 return -ENOSPC;
281 list_add(&seg->list, &mem_segs);
282 return 0;
286 * Remove memory segment from the segment list.
288 static void remove_memory_segment(struct memory_segment *seg)
290 list_del(&seg->list);
293 static void __remove_shared_memory(struct memory_segment *seg)
295 remove_memory_segment(seg);
296 vmem_remove_range(seg->start, seg->size);
299 int remove_shared_memory(unsigned long start, unsigned long size)
301 struct memory_segment *seg;
302 int ret;
304 mutex_lock(&vmem_mutex);
306 ret = -ENOENT;
307 list_for_each_entry(seg, &mem_segs, list) {
308 if (seg->start == start && seg->size == size)
309 break;
312 if (seg->start != start || seg->size != size)
313 goto out;
315 ret = 0;
316 __remove_shared_memory(seg);
317 kfree(seg);
318 out:
319 mutex_unlock(&vmem_mutex);
320 return ret;
323 int add_shared_memory(unsigned long start, unsigned long size)
325 struct memory_segment *seg;
326 struct page *page;
327 unsigned long pfn, num_pfn, end_pfn;
328 int ret;
330 mutex_lock(&vmem_mutex);
331 ret = -ENOMEM;
332 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
333 if (!seg)
334 goto out;
335 seg->start = start;
336 seg->size = size;
338 ret = insert_memory_segment(seg);
339 if (ret)
340 goto out_free;
342 ret = vmem_add_mem(start, size);
343 if (ret)
344 goto out_remove;
346 pfn = PFN_DOWN(start);
347 num_pfn = PFN_DOWN(size);
348 end_pfn = pfn + num_pfn;
350 page = pfn_to_page(pfn);
351 memset(page, 0, num_pfn * sizeof(struct page));
353 for (; pfn < end_pfn; pfn++) {
354 page = pfn_to_page(pfn);
355 init_page_count(page);
356 reset_page_mapcount(page);
357 SetPageReserved(page);
358 INIT_LIST_HEAD(&page->lru);
360 goto out;
362 out_remove:
363 __remove_shared_memory(seg);
364 out_free:
365 kfree(seg);
366 out:
367 mutex_unlock(&vmem_mutex);
368 return ret;
372 * map whole physical memory to virtual memory (identity mapping)
373 * we reserve enough space in the vmalloc area for vmemmap to hotplug
374 * additional memory segments.
376 void __init vmem_map_init(void)
378 int i;
380 INIT_LIST_HEAD(&init_mm.context.crst_list);
381 INIT_LIST_HEAD(&init_mm.context.pgtable_list);
382 init_mm.context.noexec = 0;
383 NODE_DATA(0)->node_mem_map = VMEM_MAP;
384 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
385 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
389 * Convert memory chunk array to a memory segment list so there is a single
390 * list that contains both r/w memory and shared memory segments.
392 static int __init vmem_convert_memory_chunk(void)
394 struct memory_segment *seg;
395 int i;
397 mutex_lock(&vmem_mutex);
398 for (i = 0; i < MEMORY_CHUNKS; i++) {
399 if (!memory_chunk[i].size)
400 continue;
401 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
402 if (!seg)
403 panic("Out of memory...\n");
404 seg->start = memory_chunk[i].addr;
405 seg->size = memory_chunk[i].size;
406 insert_memory_segment(seg);
408 mutex_unlock(&vmem_mutex);
409 return 0;
412 core_initcall(vmem_convert_memory_chunk);