Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / arch / ppc / 8xx_io / enet.c
blobc6d047ae77ac5d9f93b4f86be0c9ce716e476362
1 /*
2 * Ethernet driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * I copied the basic skeleton from the lance driver, because I did not
6 * know how to write the Linux driver, but I did know how the LANCE worked.
8 * This version of the driver is somewhat selectable for the different
9 * processor/board combinations. It works for the boards I know about
10 * now, and should be easily modified to include others. Some of the
11 * configuration information is contained in <asm/cpm1.h> and the
12 * remainder is here.
14 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
15 * buffers are in the host memory.
17 * Right now, I am very watseful with the buffers. I allocate memory
18 * pages and then divide them into 2K frame buffers. This way I know I
19 * have buffers large enough to hold one frame within one buffer descriptor.
20 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
21 * will be much more memory efficient and will easily handle lots of
22 * small packets.
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/string.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/bitops.h>
42 #include <asm/8xx_immap.h>
43 #include <asm/pgtable.h>
44 #include <asm/mpc8xx.h>
45 #include <asm/uaccess.h>
46 #include <asm/cpm1.h>
47 #include <asm/cacheflush.h>
50 * Theory of Operation
52 * The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
53 * an aribtrary number of buffers on byte boundaries, but must have at
54 * least two receive buffers to prevent constant overrun conditions.
56 * The buffer descriptors are allocated from the CPM dual port memory
57 * with the data buffers allocated from host memory, just like all other
58 * serial communication protocols. The host memory buffers are allocated
59 * from the free page pool, and then divided into smaller receive and
60 * transmit buffers. The size of the buffers should be a power of two,
61 * since that nicely divides the page. This creates a ring buffer
62 * structure similar to the LANCE and other controllers.
64 * Like the LANCE driver:
65 * The driver runs as two independent, single-threaded flows of control. One
66 * is the send-packet routine, which enforces single-threaded use by the
67 * cep->tx_busy flag. The other thread is the interrupt handler, which is
68 * single threaded by the hardware and other software.
70 * The send packet thread has partial control over the Tx ring and the
71 * 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx
72 * packet. If the next queue slot is empty, it clears the tx_busy flag when
73 * finished otherwise it sets the 'lp->tx_full' flag.
75 * The MBX has a control register external to the MPC8xx that has some
76 * control of the Ethernet interface. Information is in the manual for
77 * your board.
79 * The RPX boards have an external control/status register. Consult the
80 * programming documents for details unique to your board.
82 * For the TQM8xx(L) modules, there is no control register interface.
83 * All functions are directly controlled using I/O pins. See <asm/cpm1.h>.
86 /* The transmitter timeout
88 #define TX_TIMEOUT (2*HZ)
90 /* The number of Tx and Rx buffers. These are allocated from the page
91 * pool. The code may assume these are power of two, so it is best
92 * to keep them that size.
93 * We don't need to allocate pages for the transmitter. We just use
94 * the skbuffer directly.
96 #ifdef CONFIG_ENET_BIG_BUFFERS
97 #define CPM_ENET_RX_PAGES 32
98 #define CPM_ENET_RX_FRSIZE 2048
99 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
100 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
101 #define TX_RING_SIZE 64 /* Must be power of two */
102 #define TX_RING_MOD_MASK 63 /* for this to work */
103 #else
104 #define CPM_ENET_RX_PAGES 4
105 #define CPM_ENET_RX_FRSIZE 2048
106 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE)
107 #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
108 #define TX_RING_SIZE 8 /* Must be power of two */
109 #define TX_RING_MOD_MASK 7 /* for this to work */
110 #endif
112 /* The CPM stores dest/src/type, data, and checksum for receive packets.
114 #define PKT_MAXBUF_SIZE 1518
115 #define PKT_MINBUF_SIZE 64
116 #define PKT_MAXBLR_SIZE 1520
118 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
119 * tx_bd_base always point to the base of the buffer descriptors. The
120 * cur_rx and cur_tx point to the currently available buffer.
121 * The dirty_tx tracks the current buffer that is being sent by the
122 * controller. The cur_tx and dirty_tx are equal under both completely
123 * empty and completely full conditions. The empty/ready indicator in
124 * the buffer descriptor determines the actual condition.
126 struct scc_enet_private {
127 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
128 struct sk_buff* tx_skbuff[TX_RING_SIZE];
129 ushort skb_cur;
130 ushort skb_dirty;
132 /* CPM dual port RAM relative addresses.
134 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
135 cbd_t *tx_bd_base;
136 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
137 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
138 scc_t *sccp;
140 /* Virtual addresses for the receive buffers because we can't
141 * do a __va() on them anymore.
143 unsigned char *rx_vaddr[RX_RING_SIZE];
144 struct net_device_stats stats;
145 uint tx_full;
146 spinlock_t lock;
149 static int scc_enet_open(struct net_device *dev);
150 static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
151 static int scc_enet_rx(struct net_device *dev);
152 static void scc_enet_interrupt(void *dev_id);
153 static int scc_enet_close(struct net_device *dev);
154 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
155 static void set_multicast_list(struct net_device *dev);
157 /* Get this from various configuration locations (depends on board).
159 /*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/
161 /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards
162 * use SCC2. Some even may use SCC3.
163 * This is easily extended if necessary.
165 #if defined(CONFIG_SCC3_ENET)
166 #define CPM_CR_ENET CPM_CR_CH_SCC3
167 #define PROFF_ENET PROFF_SCC3
168 #define SCC_ENET 2 /* Index, not number! */
169 #define CPMVEC_ENET CPMVEC_SCC3
170 #elif defined(CONFIG_SCC2_ENET)
171 #define CPM_CR_ENET CPM_CR_CH_SCC2
172 #define PROFF_ENET PROFF_SCC2
173 #define SCC_ENET 1 /* Index, not number! */
174 #define CPMVEC_ENET CPMVEC_SCC2
175 #elif defined(CONFIG_SCC1_ENET)
176 #define CPM_CR_ENET CPM_CR_CH_SCC1
177 #define PROFF_ENET PROFF_SCC1
178 #define SCC_ENET 0 /* Index, not number! */
179 #define CPMVEC_ENET CPMVEC_SCC1
180 #else
181 #error CONFIG_SCCx_ENET not defined
182 #endif
184 static int
185 scc_enet_open(struct net_device *dev)
188 /* I should reset the ring buffers here, but I don't yet know
189 * a simple way to do that.
192 netif_start_queue(dev);
193 return 0; /* Always succeed */
196 static int
197 scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
199 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
200 volatile cbd_t *bdp;
202 /* Fill in a Tx ring entry */
203 bdp = cep->cur_tx;
205 #ifndef final_version
206 if (bdp->cbd_sc & BD_ENET_TX_READY) {
207 /* Ooops. All transmit buffers are full. Bail out.
208 * This should not happen, since cep->tx_busy should be set.
210 printk("%s: tx queue full!.\n", dev->name);
211 return 1;
213 #endif
215 /* Clear all of the status flags.
217 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
219 /* If the frame is short, tell CPM to pad it.
221 if (skb->len <= ETH_ZLEN)
222 bdp->cbd_sc |= BD_ENET_TX_PAD;
223 else
224 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
226 /* Set buffer length and buffer pointer.
228 bdp->cbd_datlen = skb->len;
229 bdp->cbd_bufaddr = __pa(skb->data);
231 /* Save skb pointer.
233 cep->tx_skbuff[cep->skb_cur] = skb;
235 cep->stats.tx_bytes += skb->len;
236 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
238 /* Push the data cache so the CPM does not get stale memory
239 * data.
241 flush_dcache_range((unsigned long)(skb->data),
242 (unsigned long)(skb->data + skb->len));
244 spin_lock_irq(&cep->lock);
246 /* Send it on its way. Tell CPM its ready, interrupt when done,
247 * its the last BD of the frame, and to put the CRC on the end.
249 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
251 dev->trans_start = jiffies;
253 /* If this was the last BD in the ring, start at the beginning again.
255 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
256 bdp = cep->tx_bd_base;
257 else
258 bdp++;
260 if (bdp->cbd_sc & BD_ENET_TX_READY) {
261 netif_stop_queue(dev);
262 cep->tx_full = 1;
265 cep->cur_tx = (cbd_t *)bdp;
267 spin_unlock_irq(&cep->lock);
269 return 0;
272 static void
273 scc_enet_timeout(struct net_device *dev)
275 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
277 printk("%s: transmit timed out.\n", dev->name);
278 cep->stats.tx_errors++;
279 #ifndef final_version
281 int i;
282 cbd_t *bdp;
283 printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
284 cep->cur_tx, cep->tx_full ? " (full)" : "",
285 cep->cur_rx);
286 bdp = cep->tx_bd_base;
287 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
288 printk("%04x %04x %08x\n",
289 bdp->cbd_sc,
290 bdp->cbd_datlen,
291 bdp->cbd_bufaddr);
292 bdp = cep->rx_bd_base;
293 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
294 printk("%04x %04x %08x\n",
295 bdp->cbd_sc,
296 bdp->cbd_datlen,
297 bdp->cbd_bufaddr);
299 #endif
300 if (!cep->tx_full)
301 netif_wake_queue(dev);
304 /* The interrupt handler.
305 * This is called from the CPM handler, not the MPC core interrupt.
307 static void
308 scc_enet_interrupt(void *dev_id)
310 struct net_device *dev = dev_id;
311 volatile struct scc_enet_private *cep;
312 volatile cbd_t *bdp;
313 ushort int_events;
314 int must_restart;
316 cep = (struct scc_enet_private *)dev->priv;
318 /* Get the interrupt events that caused us to be here.
320 int_events = cep->sccp->scc_scce;
321 cep->sccp->scc_scce = int_events;
322 must_restart = 0;
324 /* Handle receive event in its own function.
326 if (int_events & SCCE_ENET_RXF)
327 scc_enet_rx(dev_id);
329 /* Check for a transmit error. The manual is a little unclear
330 * about this, so the debug code until I get it figured out. It
331 * appears that if TXE is set, then TXB is not set. However,
332 * if carrier sense is lost during frame transmission, the TXE
333 * bit is set, "and continues the buffer transmission normally."
334 * I don't know if "normally" implies TXB is set when the buffer
335 * descriptor is closed.....trial and error :-).
338 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
340 if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
341 spin_lock(&cep->lock);
342 bdp = cep->dirty_tx;
343 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
344 if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
345 break;
347 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
348 cep->stats.tx_heartbeat_errors++;
349 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
350 cep->stats.tx_window_errors++;
351 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
352 cep->stats.tx_aborted_errors++;
353 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
354 cep->stats.tx_fifo_errors++;
355 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
356 cep->stats.tx_carrier_errors++;
359 /* No heartbeat or Lost carrier are not really bad errors.
360 * The others require a restart transmit command.
362 if (bdp->cbd_sc &
363 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
364 must_restart = 1;
365 cep->stats.tx_errors++;
368 cep->stats.tx_packets++;
370 /* Deferred means some collisions occurred during transmit,
371 * but we eventually sent the packet OK.
373 if (bdp->cbd_sc & BD_ENET_TX_DEF)
374 cep->stats.collisions++;
376 /* Free the sk buffer associated with this last transmit.
378 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
379 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
381 /* Update pointer to next buffer descriptor to be transmitted.
383 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
384 bdp = cep->tx_bd_base;
385 else
386 bdp++;
388 /* I don't know if we can be held off from processing these
389 * interrupts for more than one frame time. I really hope
390 * not. In such a case, we would now want to check the
391 * currently available BD (cur_tx) and determine if any
392 * buffers between the dirty_tx and cur_tx have also been
393 * sent. We would want to process anything in between that
394 * does not have BD_ENET_TX_READY set.
397 /* Since we have freed up a buffer, the ring is no longer
398 * full.
400 if (cep->tx_full) {
401 cep->tx_full = 0;
402 if (netif_queue_stopped(dev))
403 netif_wake_queue(dev);
406 cep->dirty_tx = (cbd_t *)bdp;
409 if (must_restart) {
410 volatile cpm8xx_t *cp;
412 /* Some transmit errors cause the transmitter to shut
413 * down. We now issue a restart transmit. Since the
414 * errors close the BD and update the pointers, the restart
415 * _should_ pick up without having to reset any of our
416 * pointers either.
418 cp = cpmp;
419 cp->cp_cpcr =
420 mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG;
421 while (cp->cp_cpcr & CPM_CR_FLG);
423 spin_unlock(&cep->lock);
426 /* Check for receive busy, i.e. packets coming but no place to
427 * put them. This "can't happen" because the receive interrupt
428 * is tossing previous frames.
430 if (int_events & SCCE_ENET_BSY) {
431 cep->stats.rx_dropped++;
432 printk("CPM ENET: BSY can't happen.\n");
435 return;
438 /* During a receive, the cur_rx points to the current incoming buffer.
439 * When we update through the ring, if the next incoming buffer has
440 * not been given to the system, we just set the empty indicator,
441 * effectively tossing the packet.
443 static int
444 scc_enet_rx(struct net_device *dev)
446 struct scc_enet_private *cep;
447 volatile cbd_t *bdp;
448 struct sk_buff *skb;
449 ushort pkt_len;
451 cep = (struct scc_enet_private *)dev->priv;
453 /* First, grab all of the stats for the incoming packet.
454 * These get messed up if we get called due to a busy condition.
456 bdp = cep->cur_rx;
458 for (;;) {
459 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
460 break;
462 #ifndef final_version
463 /* Since we have allocated space to hold a complete frame, both
464 * the first and last indicators should be set.
466 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
467 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
468 printk("CPM ENET: rcv is not first+last\n");
469 #endif
471 /* Frame too long or too short.
473 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
474 cep->stats.rx_length_errors++;
475 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
476 cep->stats.rx_frame_errors++;
477 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
478 cep->stats.rx_crc_errors++;
479 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
480 cep->stats.rx_crc_errors++;
482 /* Report late collisions as a frame error.
483 * On this error, the BD is closed, but we don't know what we
484 * have in the buffer. So, just drop this frame on the floor.
486 if (bdp->cbd_sc & BD_ENET_RX_CL) {
487 cep->stats.rx_frame_errors++;
489 else {
491 /* Process the incoming frame.
493 cep->stats.rx_packets++;
494 pkt_len = bdp->cbd_datlen;
495 cep->stats.rx_bytes += pkt_len;
497 /* This does 16 byte alignment, much more than we need.
498 * The packet length includes FCS, but we don't want to
499 * include that when passing upstream as it messes up
500 * bridging applications.
502 skb = dev_alloc_skb(pkt_len-4);
504 if (skb == NULL) {
505 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
506 cep->stats.rx_dropped++;
508 else {
509 skb_put(skb,pkt_len-4); /* Make room */
510 skb_copy_to_linear_data(skb,
511 cep->rx_vaddr[bdp - cep->rx_bd_base],
512 pkt_len-4);
513 skb->protocol=eth_type_trans(skb,dev);
514 netif_rx(skb);
518 /* Clear the status flags for this buffer.
520 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
522 /* Mark the buffer empty.
524 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
526 /* Update BD pointer to next entry.
528 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
529 bdp = cep->rx_bd_base;
530 else
531 bdp++;
534 cep->cur_rx = (cbd_t *)bdp;
536 return 0;
539 static int
540 scc_enet_close(struct net_device *dev)
542 /* Don't know what to do yet.
544 netif_stop_queue(dev);
546 return 0;
549 static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
551 struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
553 return &cep->stats;
556 /* Set or clear the multicast filter for this adaptor.
557 * Skeleton taken from sunlance driver.
558 * The CPM Ethernet implementation allows Multicast as well as individual
559 * MAC address filtering. Some of the drivers check to make sure it is
560 * a group multicast address, and discard those that are not. I guess I
561 * will do the same for now, but just remove the test if you want
562 * individual filtering as well (do the upper net layers want or support
563 * this kind of feature?).
566 static void set_multicast_list(struct net_device *dev)
568 struct scc_enet_private *cep;
569 struct dev_mc_list *dmi;
570 u_char *mcptr, *tdptr;
571 volatile scc_enet_t *ep;
572 int i, j;
573 cep = (struct scc_enet_private *)dev->priv;
575 /* Get pointer to SCC area in parameter RAM.
577 ep = (scc_enet_t *)dev->base_addr;
579 if (dev->flags&IFF_PROMISC) {
581 /* Log any net taps. */
582 printk("%s: Promiscuous mode enabled.\n", dev->name);
583 cep->sccp->scc_psmr |= SCC_PSMR_PRO;
584 } else {
586 cep->sccp->scc_psmr &= ~SCC_PSMR_PRO;
588 if (dev->flags & IFF_ALLMULTI) {
589 /* Catch all multicast addresses, so set the
590 * filter to all 1's.
592 ep->sen_gaddr1 = 0xffff;
593 ep->sen_gaddr2 = 0xffff;
594 ep->sen_gaddr3 = 0xffff;
595 ep->sen_gaddr4 = 0xffff;
597 else {
598 /* Clear filter and add the addresses in the list.
600 ep->sen_gaddr1 = 0;
601 ep->sen_gaddr2 = 0;
602 ep->sen_gaddr3 = 0;
603 ep->sen_gaddr4 = 0;
605 dmi = dev->mc_list;
607 for (i=0; i<dev->mc_count; i++) {
609 /* Only support group multicast for now.
611 if (!(dmi->dmi_addr[0] & 1))
612 continue;
614 /* The address in dmi_addr is LSB first,
615 * and taddr is MSB first. We have to
616 * copy bytes MSB first from dmi_addr.
618 mcptr = (u_char *)dmi->dmi_addr + 5;
619 tdptr = (u_char *)&ep->sen_taddrh;
620 for (j=0; j<6; j++)
621 *tdptr++ = *mcptr--;
623 /* Ask CPM to run CRC and set bit in
624 * filter mask.
626 cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG;
627 /* this delay is necessary here -- Cort */
628 udelay(10);
629 while (cpmp->cp_cpcr & CPM_CR_FLG);
635 /* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed
636 * some other network I/O, a whole bunch of this has already been set up.
637 * It is no big deal if we do it again, we just have to disable the
638 * transmit and receive to make sure we don't catch the CPM with some
639 * inconsistent control information.
641 static int __init scc_enet_init(void)
643 struct net_device *dev;
644 struct scc_enet_private *cep;
645 int i, j, k, err;
646 uint dp_offset;
647 unsigned char *eap, *ba;
648 dma_addr_t mem_addr;
649 bd_t *bd;
650 volatile cbd_t *bdp;
651 volatile cpm8xx_t *cp;
652 volatile scc_t *sccp;
653 volatile scc_enet_t *ep;
654 volatile immap_t *immap;
656 cp = cpmp; /* Get pointer to Communication Processor */
658 immap = (immap_t *)(mfspr(SPRN_IMMR) & 0xFFFF0000); /* and to internal registers */
660 bd = (bd_t *)__res;
662 dev = alloc_etherdev(sizeof(*cep));
663 if (!dev)
664 return -ENOMEM;
666 cep = dev->priv;
667 spin_lock_init(&cep->lock);
669 /* Get pointer to SCC area in parameter RAM.
671 ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]);
673 /* And another to the SCC register area.
675 sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]);
676 cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
678 /* Disable receive and transmit in case EPPC-Bug started it.
680 sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
682 /* Cookbook style from the MPC860 manual.....
683 * Not all of this is necessary if EPPC-Bug has initialized
684 * the network.
685 * So far we are lucky, all board configurations use the same
686 * pins, or at least the same I/O Port for these functions.....
687 * It can't last though......
690 #if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD))
691 /* Configure port A pins for Txd and Rxd.
693 immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD);
694 immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
695 immap->im_ioport.iop_paodr &= ~PA_ENET_TXD;
696 #elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD))
697 /* Configure port B pins for Txd and Rxd.
699 immap->im_cpm.cp_pbpar |= (PB_ENET_RXD | PB_ENET_TXD);
700 immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD);
701 immap->im_cpm.cp_pbodr &= ~PB_ENET_TXD;
702 #else
703 #error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined
704 #endif
706 #if defined(PC_ENET_LBK)
707 /* Configure port C pins to disable External Loopback
709 immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK;
710 immap->im_ioport.iop_pcdir |= PC_ENET_LBK;
711 immap->im_ioport.iop_pcso &= ~PC_ENET_LBK;
712 immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK; /* Disable Loopback */
713 #endif /* PC_ENET_LBK */
715 #ifdef PE_ENET_TCLK
716 /* Configure port E for TCLK and RCLK.
718 cp->cp_pepar |= (PE_ENET_TCLK | PE_ENET_RCLK);
719 cp->cp_pedir &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
720 cp->cp_peso &= ~(PE_ENET_TCLK | PE_ENET_RCLK);
721 #else
722 /* Configure port A for TCLK and RCLK.
724 immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK);
725 immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);
726 #endif
728 /* Configure port C pins to enable CLSN and RENA.
730 immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
731 immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
732 immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA);
734 /* Configure Serial Interface clock routing.
735 * First, clear all SCC bits to zero, then set the ones we want.
737 cp->cp_sicr &= ~SICR_ENET_MASK;
738 cp->cp_sicr |= SICR_ENET_CLKRT;
740 /* Manual says set SDDR, but I can't find anything with that
741 * name. I think it is a misprint, and should be SDCR. This
742 * has already been set by the communication processor initialization.
745 /* Allocate space for the buffer descriptors in the DP ram.
746 * These are relative offsets in the DP ram address space.
747 * Initialize base addresses for the buffer descriptors.
749 dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8);
750 ep->sen_genscc.scc_rbase = dp_offset;
751 cep->rx_bd_base = cpm_dpram_addr(dp_offset);
753 dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8);
754 ep->sen_genscc.scc_tbase = dp_offset;
755 cep->tx_bd_base = cpm_dpram_addr(dp_offset);
757 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
758 cep->cur_rx = cep->rx_bd_base;
760 /* Issue init Rx BD command for SCC.
761 * Manual says to perform an Init Rx parameters here. We have
762 * to perform both Rx and Tx because the SCC may have been
763 * already running.
764 * In addition, we have to do it later because we don't yet have
765 * all of the BD control/status set properly.
766 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG;
767 while (cp->cp_cpcr & CPM_CR_FLG);
770 /* Initialize function code registers for big-endian.
772 ep->sen_genscc.scc_rfcr = SCC_EB;
773 ep->sen_genscc.scc_tfcr = SCC_EB;
775 /* Set maximum bytes per receive buffer.
776 * This appears to be an Ethernet frame size, not the buffer
777 * fragment size. It must be a multiple of four.
779 ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
781 /* Set CRC preset and mask.
783 ep->sen_cpres = 0xffffffff;
784 ep->sen_cmask = 0xdebb20e3;
786 ep->sen_crcec = 0; /* CRC Error counter */
787 ep->sen_alec = 0; /* alignment error counter */
788 ep->sen_disfc = 0; /* discard frame counter */
790 ep->sen_pads = 0x8888; /* Tx short frame pad character */
791 ep->sen_retlim = 15; /* Retry limit threshold */
793 ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
794 ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
796 ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
797 ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
799 /* Clear hash tables.
801 ep->sen_gaddr1 = 0;
802 ep->sen_gaddr2 = 0;
803 ep->sen_gaddr3 = 0;
804 ep->sen_gaddr4 = 0;
805 ep->sen_iaddr1 = 0;
806 ep->sen_iaddr2 = 0;
807 ep->sen_iaddr3 = 0;
808 ep->sen_iaddr4 = 0;
810 /* Set Ethernet station address.
812 eap = (unsigned char *)&(ep->sen_paddrh);
813 for (i=5; i>=0; i--)
814 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
816 ep->sen_pper = 0; /* 'cause the book says so */
817 ep->sen_taddrl = 0; /* temp address (LSB) */
818 ep->sen_taddrm = 0;
819 ep->sen_taddrh = 0; /* temp address (MSB) */
821 /* Now allocate the host memory pages and initialize the
822 * buffer descriptors.
824 bdp = cep->tx_bd_base;
825 for (i=0; i<TX_RING_SIZE; i++) {
827 /* Initialize the BD for every fragment in the page.
829 bdp->cbd_sc = 0;
830 bdp->cbd_bufaddr = 0;
831 bdp++;
834 /* Set the last buffer to wrap.
836 bdp--;
837 bdp->cbd_sc |= BD_SC_WRAP;
839 bdp = cep->rx_bd_base;
840 k = 0;
841 for (i=0; i<CPM_ENET_RX_PAGES; i++) {
843 /* Allocate a page.
845 ba = (unsigned char *)dma_alloc_coherent(NULL, PAGE_SIZE,
846 &mem_addr, GFP_KERNEL);
847 /* BUG: no check for failure */
849 /* Initialize the BD for every fragment in the page.
851 for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
852 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
853 bdp->cbd_bufaddr = mem_addr;
854 cep->rx_vaddr[k++] = ba;
855 mem_addr += CPM_ENET_RX_FRSIZE;
856 ba += CPM_ENET_RX_FRSIZE;
857 bdp++;
861 /* Set the last buffer to wrap.
863 bdp--;
864 bdp->cbd_sc |= BD_SC_WRAP;
866 /* Let's re-initialize the channel now. We have to do it later
867 * than the manual describes because we have just now finished
868 * the BD initialization.
870 cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG;
871 while (cp->cp_cpcr & CPM_CR_FLG);
873 cep->skb_cur = cep->skb_dirty = 0;
875 sccp->scc_scce = 0xffff; /* Clear any pending events */
877 /* Enable interrupts for transmit error, complete frame
878 * received, and any transmit buffer we have also set the
879 * interrupt flag.
881 sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
883 /* Install our interrupt handler.
885 cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev);
887 /* Set GSMR_H to enable all normal operating modes.
888 * Set GSMR_L to enable Ethernet to MC68160.
890 sccp->scc_gsmrh = 0;
891 sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
893 /* Set sync/delimiters.
895 sccp->scc_dsr = 0xd555;
897 /* Set processing mode. Use Ethernet CRC, catch broadcast, and
898 * start frame search 22 bit times after RENA.
900 sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
902 /* It is now OK to enable the Ethernet transmitter.
903 * Unfortunately, there are board implementation differences here.
905 #if (!defined (PB_ENET_TENA) && defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
906 immap->im_ioport.iop_pcpar |= PC_ENET_TENA;
907 immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;
908 #elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && !defined (PE_ENET_TENA))
909 cp->cp_pbpar |= PB_ENET_TENA;
910 cp->cp_pbdir |= PB_ENET_TENA;
911 #elif ( !defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && defined (PE_ENET_TENA))
912 cp->cp_pepar |= PE_ENET_TENA;
913 cp->cp_pedir &= ~PE_ENET_TENA;
914 cp->cp_peso |= PE_ENET_TENA;
915 #else
916 #error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA, PE_ENET_TENA
917 #endif
919 #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
920 /* And while we are here, set the configuration to enable ethernet.
922 *((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
923 *((volatile uint *)RPX_CSR_ADDR) |=
924 (BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
925 #endif
927 #ifdef CONFIG_BSEIP
928 /* BSE uses port B and C for PHY control.
930 cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS);
931 cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
932 cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS);
934 immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK;
935 immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK;
936 immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK;
937 immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK;
938 #endif
940 #ifdef CONFIG_FADS
941 cp->cp_pbpar |= PB_ENET_TENA;
942 cp->cp_pbdir |= PB_ENET_TENA;
944 /* Enable the EEST PHY.
946 *((volatile uint *)BCSR1) &= ~BCSR1_ETHEN;
947 #endif
949 #ifdef CONFIG_MPC885ADS
951 /* Deassert PHY reset and enable the PHY.
954 volatile uint __iomem *bcsr = ioremap(BCSR_ADDR, BCSR_SIZE);
955 uint tmp;
957 tmp = in_be32(bcsr + 1 /* BCSR1 */);
958 tmp |= BCSR1_ETHEN;
959 out_be32(bcsr + 1, tmp);
960 tmp = in_be32(bcsr + 4 /* BCSR4 */);
961 tmp |= BCSR4_ETH10_RST;
962 out_be32(bcsr + 4, tmp);
963 iounmap(bcsr);
966 /* On MPC885ADS SCC ethernet PHY defaults to the full duplex mode
967 * upon reset. SCC is set to half duplex by default. So this
968 * inconsistency should be better fixed by the software.
970 #endif
972 dev->base_addr = (unsigned long)ep;
973 #if 0
974 dev->name = "CPM_ENET";
975 #endif
977 /* The CPM Ethernet specific entries in the device structure. */
978 dev->open = scc_enet_open;
979 dev->hard_start_xmit = scc_enet_start_xmit;
980 dev->tx_timeout = scc_enet_timeout;
981 dev->watchdog_timeo = TX_TIMEOUT;
982 dev->stop = scc_enet_close;
983 dev->get_stats = scc_enet_get_stats;
984 dev->set_multicast_list = set_multicast_list;
986 err = register_netdev(dev);
987 if (err) {
988 free_netdev(dev);
989 return err;
992 /* And last, enable the transmit and receive processing.
994 sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
996 printk("%s: CPM ENET Version 0.2 on SCC%d, ", dev->name, SCC_ENET+1);
997 for (i=0; i<5; i++)
998 printk("%02x:", dev->dev_addr[i]);
999 printk("%02x\n", dev->dev_addr[5]);
1001 return 0;
1004 module_init(scc_enet_init);