Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / arch / powerpc / kernel / rtas-proc.c
blobf2e3bc714d7695834971e627f2c89368c8798755
1 /*
2 * Copyright (C) 2000 Tilmann Bitterberg
3 * (tilmann@bitterberg.de)
5 * RTAS (Runtime Abstraction Services) stuff
6 * Intention is to provide a clean user interface
7 * to use the RTAS.
9 * TODO:
10 * Split off a header file and maybe move it to a different
11 * location. Write Documentation on what the /proc/rtas/ entries
12 * actually do.
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
35 /* Token for Sensors */
36 #define KEY_SWITCH 0x0001
37 #define ENCLOSURE_SWITCH 0x0002
38 #define THERMAL_SENSOR 0x0003
39 #define LID_STATUS 0x0004
40 #define POWER_SOURCE 0x0005
41 #define BATTERY_VOLTAGE 0x0006
42 #define BATTERY_REMAINING 0x0007
43 #define BATTERY_PERCENTAGE 0x0008
44 #define EPOW_SENSOR 0x0009
45 #define BATTERY_CYCLESTATE 0x000a
46 #define BATTERY_CHARGING 0x000b
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE 0x2328 /* 9000 */
50 #define IBM_FANRPM 0x2329 /* 9001 */
51 #define IBM_VOLTAGE 0x232a /* 9002 */
52 #define IBM_DRCONNECTOR 0x232b /* 9003 */
53 #define IBM_POWERSUPPLY 0x232c /* 9004 */
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH 13
57 #define SENSOR_WARNING_HIGH 12
58 #define SENSOR_NORMAL 11
59 #define SENSOR_WARNING_LOW 10
60 #define SENSOR_CRITICAL_LOW 9
61 #define SENSOR_SUCCESS 0
62 #define SENSOR_HW_ERROR -1
63 #define SENSOR_BUSY -2
64 #define SENSOR_NOT_EXIST -3
65 #define SENSOR_DR_ENTITY -9000
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR 'A'
69 #define LOC_SCSI_DEV_LOC 'B'
70 #define LOC_CPU 'C'
71 #define LOC_DISKETTE 'D'
72 #define LOC_ETHERNET 'E'
73 #define LOC_FAN 'F'
74 #define LOC_GRAPHICS 'G'
75 /* reserved / not used 'H' */
76 #define LOC_IO_ADAPTER 'I'
77 /* reserved / not used 'J' */
78 #define LOC_KEYBOARD 'K'
79 #define LOC_LCD 'L'
80 #define LOC_MEMORY 'M'
81 #define LOC_NV_MEMORY 'N'
82 #define LOC_MOUSE 'O'
83 #define LOC_PLANAR 'P'
84 #define LOC_OTHER_IO 'Q'
85 #define LOC_PARALLEL 'R'
86 #define LOC_SERIAL 'S'
87 #define LOC_DEAD_RING 'T'
88 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE 'V'
90 #define LOC_SWITCH_ADAPTER 'W'
91 #define LOC_OTHER 'X'
92 #define LOC_FIRMWARE 'Y'
93 #define LOC_SCSI 'Z'
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE 0x0003
99 #define WARNING_LIGHT 0x0004
100 #define DISK_ACTIVITY_LIGHT 0x0005
101 #define HEX_DISPLAY_UNIT 0x0006
102 #define BATTERY_WARNING_TIME 0x0007
103 #define CONDITION_CYCLE_REQUEST 0x0008
104 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
105 #define DR_ACTION 0x2329 /* 9001 */
106 #define DR_INDICATOR 0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
110 /* other */
111 #define MAX_SENSORS 17 /* I only know of 17 sensors */
112 #define MAX_LINELENGTH 256
113 #define SENSOR_PREFIX "ibm,sensor-"
114 #define cel_to_fahr(x) ((x*9/5)+32)
117 /* Globals */
118 static struct rtas_sensors sensors;
119 static struct device_node *rtas_node = NULL;
120 static unsigned long power_on_time = 0; /* Save the time the user set */
121 static char progress_led[MAX_LINELENGTH];
123 static unsigned long rtas_tone_frequency = 1000;
124 static unsigned long rtas_tone_volume = 0;
126 /* ****************STRUCTS******************************************* */
127 struct individual_sensor {
128 unsigned int token;
129 unsigned int quant;
132 struct rtas_sensors {
133 struct individual_sensor sensor[MAX_SENSORS];
134 unsigned int quant;
137 /* ****************************************************************** */
138 /* Declarations */
139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141 static ssize_t ppc_rtas_clock_write(struct file *file,
142 const char __user *buf, size_t count, loff_t *ppos);
143 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144 static ssize_t ppc_rtas_progress_write(struct file *file,
145 const char __user *buf, size_t count, loff_t *ppos);
146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147 static ssize_t ppc_rtas_poweron_write(struct file *file,
148 const char __user *buf, size_t count, loff_t *ppos);
150 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151 const char __user *buf, size_t count, loff_t *ppos);
152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154 const char __user *buf, size_t count, loff_t *ppos);
155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
158 static int sensors_open(struct inode *inode, struct file *file)
160 return single_open(file, ppc_rtas_sensors_show, NULL);
163 const struct file_operations ppc_rtas_sensors_operations = {
164 .open = sensors_open,
165 .read = seq_read,
166 .llseek = seq_lseek,
167 .release = single_release,
170 static int poweron_open(struct inode *inode, struct file *file)
172 return single_open(file, ppc_rtas_poweron_show, NULL);
175 const struct file_operations ppc_rtas_poweron_operations = {
176 .open = poweron_open,
177 .read = seq_read,
178 .llseek = seq_lseek,
179 .write = ppc_rtas_poweron_write,
180 .release = single_release,
183 static int progress_open(struct inode *inode, struct file *file)
185 return single_open(file, ppc_rtas_progress_show, NULL);
188 const struct file_operations ppc_rtas_progress_operations = {
189 .open = progress_open,
190 .read = seq_read,
191 .llseek = seq_lseek,
192 .write = ppc_rtas_progress_write,
193 .release = single_release,
196 static int clock_open(struct inode *inode, struct file *file)
198 return single_open(file, ppc_rtas_clock_show, NULL);
201 const struct file_operations ppc_rtas_clock_operations = {
202 .open = clock_open,
203 .read = seq_read,
204 .llseek = seq_lseek,
205 .write = ppc_rtas_clock_write,
206 .release = single_release,
209 static int tone_freq_open(struct inode *inode, struct file *file)
211 return single_open(file, ppc_rtas_tone_freq_show, NULL);
214 const struct file_operations ppc_rtas_tone_freq_operations = {
215 .open = tone_freq_open,
216 .read = seq_read,
217 .llseek = seq_lseek,
218 .write = ppc_rtas_tone_freq_write,
219 .release = single_release,
222 static int tone_volume_open(struct inode *inode, struct file *file)
224 return single_open(file, ppc_rtas_tone_volume_show, NULL);
227 const struct file_operations ppc_rtas_tone_volume_operations = {
228 .open = tone_volume_open,
229 .read = seq_read,
230 .llseek = seq_lseek,
231 .write = ppc_rtas_tone_volume_write,
232 .release = single_release,
235 static int rmo_buf_open(struct inode *inode, struct file *file)
237 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
240 const struct file_operations ppc_rtas_rmo_buf_ops = {
241 .open = rmo_buf_open,
242 .read = seq_read,
243 .llseek = seq_lseek,
244 .release = single_release,
247 static int ppc_rtas_find_all_sensors(void);
248 static void ppc_rtas_process_sensor(struct seq_file *m,
249 struct individual_sensor *s, int state, int error, const char *loc);
250 static char *ppc_rtas_process_error(int error);
251 static void get_location_code(struct seq_file *m,
252 struct individual_sensor *s, const char *loc);
253 static void check_location_string(struct seq_file *m, const char *c);
254 static void check_location(struct seq_file *m, const char *c);
256 static int __init proc_rtas_init(void)
258 struct proc_dir_entry *entry;
260 if (!machine_is(pseries))
261 return -ENODEV;
263 rtas_node = of_find_node_by_name(NULL, "rtas");
264 if (rtas_node == NULL)
265 return -ENODEV;
267 entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
268 if (entry)
269 entry->proc_fops = &ppc_rtas_progress_operations;
271 entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
272 if (entry)
273 entry->proc_fops = &ppc_rtas_clock_operations;
275 entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
276 if (entry)
277 entry->proc_fops = &ppc_rtas_poweron_operations;
279 entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
280 if (entry)
281 entry->proc_fops = &ppc_rtas_sensors_operations;
283 entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
284 NULL);
285 if (entry)
286 entry->proc_fops = &ppc_rtas_tone_freq_operations;
288 entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
289 if (entry)
290 entry->proc_fops = &ppc_rtas_tone_volume_operations;
292 entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
293 if (entry)
294 entry->proc_fops = &ppc_rtas_rmo_buf_ops;
296 return 0;
299 __initcall(proc_rtas_init);
301 static int parse_number(const char __user *p, size_t count, unsigned long *val)
303 char buf[40];
304 char *end;
306 if (count > 39)
307 return -EINVAL;
309 if (copy_from_user(buf, p, count))
310 return -EFAULT;
312 buf[count] = 0;
314 *val = simple_strtoul(buf, &end, 10);
315 if (*end && *end != '\n')
316 return -EINVAL;
318 return 0;
321 /* ****************************************************************** */
322 /* POWER-ON-TIME */
323 /* ****************************************************************** */
324 static ssize_t ppc_rtas_poweron_write(struct file *file,
325 const char __user *buf, size_t count, loff_t *ppos)
327 struct rtc_time tm;
328 unsigned long nowtime;
329 int error = parse_number(buf, count, &nowtime);
330 if (error)
331 return error;
333 power_on_time = nowtime; /* save the time */
335 to_tm(nowtime, &tm);
337 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
338 tm.tm_year, tm.tm_mon, tm.tm_mday,
339 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
340 if (error)
341 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
342 ppc_rtas_process_error(error));
343 return count;
345 /* ****************************************************************** */
346 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
348 if (power_on_time == 0)
349 seq_printf(m, "Power on time not set\n");
350 else
351 seq_printf(m, "%lu\n",power_on_time);
352 return 0;
355 /* ****************************************************************** */
356 /* PROGRESS */
357 /* ****************************************************************** */
358 static ssize_t ppc_rtas_progress_write(struct file *file,
359 const char __user *buf, size_t count, loff_t *ppos)
361 unsigned long hex;
363 if (count >= MAX_LINELENGTH)
364 count = MAX_LINELENGTH -1;
365 if (copy_from_user(progress_led, buf, count)) { /* save the string */
366 return -EFAULT;
368 progress_led[count] = 0;
370 /* Lets see if the user passed hexdigits */
371 hex = simple_strtoul(progress_led, NULL, 10);
373 rtas_progress ((char *)progress_led, hex);
374 return count;
376 /* clear the line */
377 /* rtas_progress(" ", 0xffff);*/
379 /* ****************************************************************** */
380 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
382 if (progress_led[0])
383 seq_printf(m, "%s\n", progress_led);
384 return 0;
387 /* ****************************************************************** */
388 /* CLOCK */
389 /* ****************************************************************** */
390 static ssize_t ppc_rtas_clock_write(struct file *file,
391 const char __user *buf, size_t count, loff_t *ppos)
393 struct rtc_time tm;
394 unsigned long nowtime;
395 int error = parse_number(buf, count, &nowtime);
396 if (error)
397 return error;
399 to_tm(nowtime, &tm);
400 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
401 tm.tm_year, tm.tm_mon, tm.tm_mday,
402 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
403 if (error)
404 printk(KERN_WARNING "error: setting the clock returned: %s\n",
405 ppc_rtas_process_error(error));
406 return count;
408 /* ****************************************************************** */
409 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
411 int ret[8];
412 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
414 if (error) {
415 printk(KERN_WARNING "error: reading the clock returned: %s\n",
416 ppc_rtas_process_error(error));
417 seq_printf(m, "0");
418 } else {
419 unsigned int year, mon, day, hour, min, sec;
420 year = ret[0]; mon = ret[1]; day = ret[2];
421 hour = ret[3]; min = ret[4]; sec = ret[5];
422 seq_printf(m, "%lu\n",
423 mktime(year, mon, day, hour, min, sec));
425 return 0;
428 /* ****************************************************************** */
429 /* SENSOR STUFF */
430 /* ****************************************************************** */
431 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
433 int i,j;
434 int state, error;
435 int get_sensor_state = rtas_token("get-sensor-state");
437 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
438 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
439 seq_printf(m, "********************************************************\n");
441 if (ppc_rtas_find_all_sensors() != 0) {
442 seq_printf(m, "\nNo sensors are available\n");
443 return 0;
446 for (i=0; i<sensors.quant; i++) {
447 struct individual_sensor *p = &sensors.sensor[i];
448 char rstr[64];
449 const char *loc;
450 int llen, offs;
452 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
453 loc = of_get_property(rtas_node, rstr, &llen);
455 /* A sensor may have multiple instances */
456 for (j = 0, offs = 0; j <= p->quant; j++) {
457 error = rtas_call(get_sensor_state, 2, 2, &state,
458 p->token, j);
460 ppc_rtas_process_sensor(m, p, state, error, loc);
461 seq_putc(m, '\n');
462 if (loc) {
463 offs += strlen(loc) + 1;
464 loc += strlen(loc) + 1;
465 if (offs >= llen)
466 loc = NULL;
470 return 0;
473 /* ****************************************************************** */
475 static int ppc_rtas_find_all_sensors(void)
477 const unsigned int *utmp;
478 int len, i;
480 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
481 if (utmp == NULL) {
482 printk (KERN_ERR "error: could not get rtas-sensors\n");
483 return 1;
486 sensors.quant = len / 8; /* int + int */
488 for (i=0; i<sensors.quant; i++) {
489 sensors.sensor[i].token = *utmp++;
490 sensors.sensor[i].quant = *utmp++;
492 return 0;
495 /* ****************************************************************** */
497 * Builds a string of what rtas returned
499 static char *ppc_rtas_process_error(int error)
501 switch (error) {
502 case SENSOR_CRITICAL_HIGH:
503 return "(critical high)";
504 case SENSOR_WARNING_HIGH:
505 return "(warning high)";
506 case SENSOR_NORMAL:
507 return "(normal)";
508 case SENSOR_WARNING_LOW:
509 return "(warning low)";
510 case SENSOR_CRITICAL_LOW:
511 return "(critical low)";
512 case SENSOR_SUCCESS:
513 return "(read ok)";
514 case SENSOR_HW_ERROR:
515 return "(hardware error)";
516 case SENSOR_BUSY:
517 return "(busy)";
518 case SENSOR_NOT_EXIST:
519 return "(non existent)";
520 case SENSOR_DR_ENTITY:
521 return "(dr entity removed)";
522 default:
523 return "(UNKNOWN)";
527 /* ****************************************************************** */
529 * Builds a string out of what the sensor said
532 static void ppc_rtas_process_sensor(struct seq_file *m,
533 struct individual_sensor *s, int state, int error, const char *loc)
535 /* Defined return vales */
536 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
537 "Maintenance" };
538 const char * enclosure_switch[] = { "Closed", "Open" };
539 const char * lid_status[] = { " ", "Open", "Closed" };
540 const char * power_source[] = { "AC\t", "Battery",
541 "AC & Battery" };
542 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
543 const char * epow_sensor[] = {
544 "EPOW Reset", "Cooling warning", "Power warning",
545 "System shutdown", "System halt", "EPOW main enclosure",
546 "EPOW power off" };
547 const char * battery_cyclestate[] = { "None", "In progress",
548 "Requested" };
549 const char * battery_charging[] = { "Charging", "Discharching",
550 "No current flow" };
551 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
552 "Exchange" };
554 int have_strings = 0;
555 int num_states = 0;
556 int temperature = 0;
557 int unknown = 0;
559 /* What kind of sensor do we have here? */
561 switch (s->token) {
562 case KEY_SWITCH:
563 seq_printf(m, "Key switch:\t");
564 num_states = sizeof(key_switch) / sizeof(char *);
565 if (state < num_states) {
566 seq_printf(m, "%s\t", key_switch[state]);
567 have_strings = 1;
569 break;
570 case ENCLOSURE_SWITCH:
571 seq_printf(m, "Enclosure switch:\t");
572 num_states = sizeof(enclosure_switch) / sizeof(char *);
573 if (state < num_states) {
574 seq_printf(m, "%s\t",
575 enclosure_switch[state]);
576 have_strings = 1;
578 break;
579 case THERMAL_SENSOR:
580 seq_printf(m, "Temp. (C/F):\t");
581 temperature = 1;
582 break;
583 case LID_STATUS:
584 seq_printf(m, "Lid status:\t");
585 num_states = sizeof(lid_status) / sizeof(char *);
586 if (state < num_states) {
587 seq_printf(m, "%s\t", lid_status[state]);
588 have_strings = 1;
590 break;
591 case POWER_SOURCE:
592 seq_printf(m, "Power source:\t");
593 num_states = sizeof(power_source) / sizeof(char *);
594 if (state < num_states) {
595 seq_printf(m, "%s\t",
596 power_source[state]);
597 have_strings = 1;
599 break;
600 case BATTERY_VOLTAGE:
601 seq_printf(m, "Battery voltage:\t");
602 break;
603 case BATTERY_REMAINING:
604 seq_printf(m, "Battery remaining:\t");
605 num_states = sizeof(battery_remaining) / sizeof(char *);
606 if (state < num_states)
608 seq_printf(m, "%s\t",
609 battery_remaining[state]);
610 have_strings = 1;
612 break;
613 case BATTERY_PERCENTAGE:
614 seq_printf(m, "Battery percentage:\t");
615 break;
616 case EPOW_SENSOR:
617 seq_printf(m, "EPOW Sensor:\t");
618 num_states = sizeof(epow_sensor) / sizeof(char *);
619 if (state < num_states) {
620 seq_printf(m, "%s\t", epow_sensor[state]);
621 have_strings = 1;
623 break;
624 case BATTERY_CYCLESTATE:
625 seq_printf(m, "Battery cyclestate:\t");
626 num_states = sizeof(battery_cyclestate) /
627 sizeof(char *);
628 if (state < num_states) {
629 seq_printf(m, "%s\t",
630 battery_cyclestate[state]);
631 have_strings = 1;
633 break;
634 case BATTERY_CHARGING:
635 seq_printf(m, "Battery Charging:\t");
636 num_states = sizeof(battery_charging) / sizeof(char *);
637 if (state < num_states) {
638 seq_printf(m, "%s\t",
639 battery_charging[state]);
640 have_strings = 1;
642 break;
643 case IBM_SURVEILLANCE:
644 seq_printf(m, "Surveillance:\t");
645 break;
646 case IBM_FANRPM:
647 seq_printf(m, "Fan (rpm):\t");
648 break;
649 case IBM_VOLTAGE:
650 seq_printf(m, "Voltage (mv):\t");
651 break;
652 case IBM_DRCONNECTOR:
653 seq_printf(m, "DR connector:\t");
654 num_states = sizeof(ibm_drconnector) / sizeof(char *);
655 if (state < num_states) {
656 seq_printf(m, "%s\t",
657 ibm_drconnector[state]);
658 have_strings = 1;
660 break;
661 case IBM_POWERSUPPLY:
662 seq_printf(m, "Powersupply:\t");
663 break;
664 default:
665 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
666 s->token);
667 unknown = 1;
668 have_strings = 1;
669 break;
671 if (have_strings == 0) {
672 if (temperature) {
673 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
674 } else
675 seq_printf(m, "%10d\t", state);
677 if (unknown == 0) {
678 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
679 get_location_code(m, s, loc);
683 /* ****************************************************************** */
685 static void check_location(struct seq_file *m, const char *c)
687 switch (c[0]) {
688 case LOC_PLANAR:
689 seq_printf(m, "Planar #%c", c[1]);
690 break;
691 case LOC_CPU:
692 seq_printf(m, "CPU #%c", c[1]);
693 break;
694 case LOC_FAN:
695 seq_printf(m, "Fan #%c", c[1]);
696 break;
697 case LOC_RACKMOUNTED:
698 seq_printf(m, "Rack #%c", c[1]);
699 break;
700 case LOC_VOLTAGE:
701 seq_printf(m, "Voltage #%c", c[1]);
702 break;
703 case LOC_LCD:
704 seq_printf(m, "LCD #%c", c[1]);
705 break;
706 case '.':
707 seq_printf(m, "- %c", c[1]);
708 break;
709 default:
710 seq_printf(m, "Unknown location");
711 break;
716 /* ****************************************************************** */
718 * Format:
719 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
720 * the '.' may be an abbrevation
722 static void check_location_string(struct seq_file *m, const char *c)
724 while (*c) {
725 if (isalpha(*c) || *c == '.')
726 check_location(m, c);
727 else if (*c == '/' || *c == '-')
728 seq_printf(m, " at ");
729 c++;
734 /* ****************************************************************** */
736 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
737 const char *loc)
739 if (!loc || !*loc) {
740 seq_printf(m, "---");/* does not have a location */
741 } else {
742 check_location_string(m, loc);
744 seq_putc(m, ' ');
746 /* ****************************************************************** */
747 /* INDICATORS - Tone Frequency */
748 /* ****************************************************************** */
749 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750 const char __user *buf, size_t count, loff_t *ppos)
752 unsigned long freq;
753 int error = parse_number(buf, count, &freq);
754 if (error)
755 return error;
757 rtas_tone_frequency = freq; /* save it for later */
758 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759 TONE_FREQUENCY, 0, freq);
760 if (error)
761 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
762 ppc_rtas_process_error(error));
763 return count;
765 /* ****************************************************************** */
766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
768 seq_printf(m, "%lu\n", rtas_tone_frequency);
769 return 0;
771 /* ****************************************************************** */
772 /* INDICATORS - Tone Volume */
773 /* ****************************************************************** */
774 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775 const char __user *buf, size_t count, loff_t *ppos)
777 unsigned long volume;
778 int error = parse_number(buf, count, &volume);
779 if (error)
780 return error;
782 if (volume > 100)
783 volume = 100;
785 rtas_tone_volume = volume; /* save it for later */
786 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787 TONE_VOLUME, 0, volume);
788 if (error)
789 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
790 ppc_rtas_process_error(error));
791 return count;
793 /* ****************************************************************** */
794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
796 seq_printf(m, "%lu\n", rtas_tone_volume);
797 return 0;
800 #define RMO_READ_BUF_MAX 30
802 /* RTAS Userspace access */
803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
805 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806 return 0;