Committer: Michael Beasley <mike@snafu.setup>
[mikesnafu-overlay.git] / arch / cris / arch-v32 / kernel / smp.c
bloba9c3334e46c94fb1d2282048999b7c978730dfb5
1 #include <linux/types.h>
2 #include <asm/delay.h>
3 #include <irq.h>
4 #include <hwregs/intr_vect.h>
5 #include <hwregs/intr_vect_defs.h>
6 #include <asm/tlbflush.h>
7 #include <asm/mmu_context.h>
8 #include <hwregs/asm/mmu_defs_asm.h>
9 #include <hwregs/supp_reg.h>
10 #include <asm/atomic.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/timex.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/cpumask.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
21 #define IPI_SCHEDULE 1
22 #define IPI_CALL 2
23 #define IPI_FLUSH_TLB 4
24 #define IPI_BOOT 8
26 #define FLUSH_ALL (void*)0xffffffff
28 /* Vector of locks used for various atomic operations */
29 spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED};
31 /* CPU masks */
32 cpumask_t cpu_online_map = CPU_MASK_NONE;
33 EXPORT_SYMBOL(cpu_online_map);
34 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
35 cpumask_t cpu_possible_map;
36 EXPORT_SYMBOL(cpu_possible_map);
37 EXPORT_SYMBOL(phys_cpu_present_map);
39 /* Variables used during SMP boot */
40 volatile int cpu_now_booting = 0;
41 volatile struct thread_info *smp_init_current_idle_thread;
43 /* Variables used during IPI */
44 static DEFINE_SPINLOCK(call_lock);
45 static DEFINE_SPINLOCK(tlbstate_lock);
47 struct call_data_struct {
48 void (*func) (void *info);
49 void *info;
50 int wait;
53 static struct call_data_struct * call_data;
55 static struct mm_struct* flush_mm;
56 static struct vm_area_struct* flush_vma;
57 static unsigned long flush_addr;
59 extern int setup_irq(int, struct irqaction *);
61 /* Mode registers */
62 static unsigned long irq_regs[NR_CPUS] = {
63 regi_irq,
64 regi_irq2
67 static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
68 static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
69 static struct irqaction irq_ipi = {
70 .handler = crisv32_ipi_interrupt,
71 .flags = IRQF_DISABLED,
72 .mask = CPU_MASK_NONE,
73 .name = "ipi",
76 extern void cris_mmu_init(void);
77 extern void cris_timer_init(void);
79 /* SMP initialization */
80 void __init smp_prepare_cpus(unsigned int max_cpus)
82 int i;
84 /* From now on we can expect IPIs so set them up */
85 setup_irq(IPI_INTR_VECT, &irq_ipi);
87 /* Mark all possible CPUs as present */
88 for (i = 0; i < max_cpus; i++)
89 cpu_set(i, phys_cpu_present_map);
92 void __devinit smp_prepare_boot_cpu(void)
94 /* PGD pointer has moved after per_cpu initialization so
95 * update the MMU.
97 pgd_t **pgd;
98 pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
100 SUPP_BANK_SEL(1);
101 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
102 SUPP_BANK_SEL(2);
103 SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
105 cpu_set(0, cpu_online_map);
106 cpu_set(0, phys_cpu_present_map);
107 cpu_set(0, cpu_possible_map);
110 void __init smp_cpus_done(unsigned int max_cpus)
114 /* Bring one cpu online.*/
115 static int __init
116 smp_boot_one_cpu(int cpuid)
118 unsigned timeout;
119 struct task_struct *idle;
120 cpumask_t cpu_mask = CPU_MASK_NONE;
122 idle = fork_idle(cpuid);
123 if (IS_ERR(idle))
124 panic("SMP: fork failed for CPU:%d", cpuid);
126 task_thread_info(idle)->cpu = cpuid;
128 /* Information to the CPU that is about to boot */
129 smp_init_current_idle_thread = task_thread_info(idle);
130 cpu_now_booting = cpuid;
132 /* Kick it */
133 cpu_set(cpuid, cpu_online_map);
134 cpu_set(cpuid, cpu_mask);
135 send_ipi(IPI_BOOT, 0, cpu_mask);
136 cpu_clear(cpuid, cpu_online_map);
138 /* Wait for CPU to come online */
139 for (timeout = 0; timeout < 10000; timeout++) {
140 if(cpu_online(cpuid)) {
141 cpu_now_booting = 0;
142 smp_init_current_idle_thread = NULL;
143 return 0; /* CPU online */
145 udelay(100);
146 barrier();
149 put_task_struct(idle);
150 idle = NULL;
152 printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
153 return -1;
156 /* Secondary CPUs starts using C here. Here we need to setup CPU
157 * specific stuff such as the local timer and the MMU. */
158 void __init smp_callin(void)
160 extern void cpu_idle(void);
162 int cpu = cpu_now_booting;
163 reg_intr_vect_rw_mask vect_mask = {0};
165 /* Initialise the idle task for this CPU */
166 atomic_inc(&init_mm.mm_count);
167 current->active_mm = &init_mm;
169 /* Set up MMU */
170 cris_mmu_init();
171 __flush_tlb_all();
173 /* Setup local timer. */
174 cris_timer_init();
176 /* Enable IRQ and idle */
177 REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
178 unmask_irq(IPI_INTR_VECT);
179 unmask_irq(TIMER0_INTR_VECT);
180 preempt_disable();
181 local_irq_enable();
183 cpu_set(cpu, cpu_online_map);
184 cpu_idle();
187 /* Stop execution on this CPU.*/
188 void stop_this_cpu(void* dummy)
190 local_irq_disable();
191 asm volatile("halt");
194 /* Other calls */
195 void smp_send_stop(void)
197 smp_call_function(stop_this_cpu, NULL, 1, 0);
200 int setup_profiling_timer(unsigned int multiplier)
202 return -EINVAL;
206 /* cache_decay_ticks is used by the scheduler to decide if a process
207 * is "hot" on one CPU. A higher value means a higher penalty to move
208 * a process to another CPU. Our cache is rather small so we report
209 * 1 tick.
211 unsigned long cache_decay_ticks = 1;
213 int __cpuinit __cpu_up(unsigned int cpu)
215 smp_boot_one_cpu(cpu);
216 return cpu_online(cpu) ? 0 : -ENOSYS;
219 void smp_send_reschedule(int cpu)
221 cpumask_t cpu_mask = CPU_MASK_NONE;
222 cpu_set(cpu, cpu_mask);
223 send_ipi(IPI_SCHEDULE, 0, cpu_mask);
226 /* TLB flushing
228 * Flush needs to be done on the local CPU and on any other CPU that
229 * may have the same mapping. The mm->cpu_vm_mask is used to keep track
230 * of which CPUs that a specific process has been executed on.
232 void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
234 unsigned long flags;
235 cpumask_t cpu_mask;
237 spin_lock_irqsave(&tlbstate_lock, flags);
238 cpu_mask = (mm == FLUSH_ALL ? CPU_MASK_ALL : mm->cpu_vm_mask);
239 cpu_clear(smp_processor_id(), cpu_mask);
240 flush_mm = mm;
241 flush_vma = vma;
242 flush_addr = addr;
243 send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
244 spin_unlock_irqrestore(&tlbstate_lock, flags);
247 void flush_tlb_all(void)
249 __flush_tlb_all();
250 flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
253 void flush_tlb_mm(struct mm_struct *mm)
255 __flush_tlb_mm(mm);
256 flush_tlb_common(mm, FLUSH_ALL, 0);
257 /* No more mappings in other CPUs */
258 cpus_clear(mm->cpu_vm_mask);
259 cpu_set(smp_processor_id(), mm->cpu_vm_mask);
262 void flush_tlb_page(struct vm_area_struct *vma,
263 unsigned long addr)
265 __flush_tlb_page(vma, addr);
266 flush_tlb_common(vma->vm_mm, vma, addr);
269 /* Inter processor interrupts
271 * The IPIs are used for:
272 * * Force a schedule on a CPU
273 * * FLush TLB on other CPUs
274 * * Call a function on other CPUs
277 int send_ipi(int vector, int wait, cpumask_t cpu_mask)
279 int i = 0;
280 reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
281 int ret = 0;
283 /* Calculate CPUs to send to. */
284 cpus_and(cpu_mask, cpu_mask, cpu_online_map);
286 /* Send the IPI. */
287 for_each_cpu_mask(i, cpu_mask)
289 ipi.vector |= vector;
290 REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
293 /* Wait for IPI to finish on other CPUS */
294 if (wait) {
295 for_each_cpu_mask(i, cpu_mask) {
296 int j;
297 for (j = 0 ; j < 1000; j++) {
298 ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
299 if (!ipi.vector)
300 break;
301 udelay(100);
304 /* Timeout? */
305 if (ipi.vector) {
306 printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
307 ret = -ETIMEDOUT;
308 dump_stack();
312 return ret;
316 * You must not call this function with disabled interrupts or from a
317 * hardware interrupt handler or from a bottom half handler.
319 int smp_call_function(void (*func)(void *info), void *info,
320 int nonatomic, int wait)
322 cpumask_t cpu_mask = CPU_MASK_ALL;
323 struct call_data_struct data;
324 int ret;
326 cpu_clear(smp_processor_id(), cpu_mask);
328 WARN_ON(irqs_disabled());
330 data.func = func;
331 data.info = info;
332 data.wait = wait;
334 spin_lock(&call_lock);
335 call_data = &data;
336 ret = send_ipi(IPI_CALL, wait, cpu_mask);
337 spin_unlock(&call_lock);
339 return ret;
342 irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
344 void (*func) (void *info) = call_data->func;
345 void *info = call_data->info;
346 reg_intr_vect_rw_ipi ipi;
348 ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
350 if (ipi.vector & IPI_CALL) {
351 func(info);
353 if (ipi.vector & IPI_FLUSH_TLB) {
354 if (flush_mm == FLUSH_ALL)
355 __flush_tlb_all();
356 else if (flush_vma == FLUSH_ALL)
357 __flush_tlb_mm(flush_mm);
358 else
359 __flush_tlb_page(flush_vma, flush_addr);
362 ipi.vector = 0;
363 REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
365 return IRQ_HANDLED;