use size_t where needed.
[midnight-commander.git] / src / regex.c
blobc7e603cd2c8318c0b9f90a260895e60dc8cf18be
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301 USA. */
23 /* AIX requires this to be the first thing in the file. */
24 #if defined _AIX && !defined REGEX_MALLOC
25 #pragma alloca
26 #endif
28 #undef _GNU_SOURCE
29 #define _GNU_SOURCE
31 #ifdef HAVE_CONFIG_H
32 # include <config.h>
33 #endif
35 #ifdef USE_INCLUDED_REGEX
36 #ifndef PARAMS
37 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
38 # define PARAMS(args) args
39 # else
40 # define PARAMS(args) ()
41 # endif /* GCC. */
42 #endif /* Not PARAMS. */
44 #ifndef INSIDE_RECURSION
46 # if defined STDC_HEADERS && !defined emacs
47 # include <stddef.h>
48 # else
49 /* We need this for `regex.h', and perhaps for the Emacs include files. */
50 # include <sys/types.h>
51 # endif
53 #ifndef HAVE_WCTYPE_H
54 #define HAVE_WCTYPE_H 0
55 #endif
57 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
59 /* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
61 # if defined _LIBC || (defined WIDE_CHAR_SUPPORT && WIDE_CHAR_SUPPORT)
62 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
63 # include <wchar.h>
64 # include <wctype.h>
65 # endif
67 # ifdef _LIBC
68 /* We have to keep the namespace clean. */
69 # define regfree(preg) __regfree (preg)
70 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
71 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
72 # define regerror(errcode, preg, errbuf, errbuf_size) \
73 __regerror(errcode, preg, errbuf, errbuf_size)
74 # define re_set_registers(bu, re, nu, st, en) \
75 __re_set_registers (bu, re, nu, st, en)
76 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
77 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
78 # define re_match(bufp, string, size, pos, regs) \
79 __re_match (bufp, string, size, pos, regs)
80 # define re_search(bufp, string, size, startpos, range, regs) \
81 __re_search (bufp, string, size, startpos, range, regs)
82 # define re_compile_pattern(pattern, length, bufp) \
83 __re_compile_pattern (pattern, length, bufp)
84 # define re_set_syntax(syntax) __re_set_syntax (syntax)
85 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
86 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
87 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
89 # define btowc __btowc
91 /* We are also using some library internals. */
92 # include <locale/localeinfo.h>
93 # include <locale/elem-hash.h>
94 # include <langinfo.h>
95 # include <locale/coll-lookup.h>
96 # endif
98 /* This is for other GNU distributions with internationalized messages. */
99 # if (defined HAVE_LIBINTL_H && HAVE_LIBINTL_H && defined ENABLE_NLS && ENABLE_NLS) || defined _LIBC
100 # include <libintl.h>
101 # ifdef _LIBC
102 # undef gettext
103 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
104 # endif
105 # else
106 # define gettext(msgid) (msgid)
107 # endif
109 # ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 # endif
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 # ifdef emacs
119 # include "lisp.h"
120 # include "buffer.h"
121 # include "syntax.h"
123 # else /* not emacs */
125 /* If we are not linking with Emacs proper,
126 we can't use the relocating allocator
127 even if config.h says that we can. */
128 # undef REL_ALLOC
130 # if defined STDC_HEADERS || defined _LIBC
131 # include <stdlib.h>
132 # else
133 char *malloc ();
134 char *realloc ();
135 # endif
137 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
138 If nothing else has been done, use the method below. */
139 # ifdef INHIBIT_STRING_HEADER
140 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
141 # if !defined bzero && !defined bcopy
142 # undef INHIBIT_STRING_HEADER
143 # endif
144 # endif
145 # endif
147 /* This is the normal way of making sure we have a bcopy and a bzero.
148 This is used in most programs--a few other programs avoid this
149 by defining INHIBIT_STRING_HEADER. */
150 # ifndef INHIBIT_STRING_HEADER
151 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
152 # include <string.h>
153 # ifndef bzero
154 # ifndef _LIBC
155 # define bzero(s, n) (memset (s, '\0', n), (s))
156 # else
157 # define bzero(s, n) __bzero (s, n)
158 # endif
159 # endif
160 # else
161 # include <strings.h>
162 # ifndef memcmp
163 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
164 # endif
165 # ifndef memcpy
166 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
167 # endif
168 # endif
169 # endif
171 /* Define the syntax stuff for \<, \>, etc. */
173 /* This must be nonzero for the wordchar and notwordchar pattern
174 commands in re_match_2. */
175 # ifndef Sword
176 # define Sword 1
177 # endif
179 # ifdef SWITCH_ENUM_BUG
180 # define SWITCH_ENUM_CAST(x) ((int)(x))
181 # else
182 # define SWITCH_ENUM_CAST(x) (x)
183 # endif
185 # endif /* not emacs */
187 # if defined _LIBC || (defined HAVE_LIMITS_H && HAVE_LIMITS_H)
188 # include <limits.h>
189 # endif
191 # ifndef MB_LEN_MAX
192 # define MB_LEN_MAX 1
193 # endif
195 /* Get the interface, including the syntax bits. */
196 # include "eregex.h"
198 /* isalpha etc. are used for the character classes. */
199 # include <ctype.h>
201 /* Jim Meyering writes:
203 "... Some ctype macros are valid only for character codes that
204 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
205 using /bin/cc or gcc but without giving an ansi option). So, all
206 ctype uses should be through macros like ISPRINT... If
207 STDC_HEADERS is defined, then autoconf has verified that the ctype
208 macros don't need to be guarded with references to isascii. ...
209 Defining isascii to 1 should let any compiler worth its salt
210 eliminate the && through constant folding."
211 Solaris defines some of these symbols so we must undefine them first. */
213 # undef ISASCII
214 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
215 # define ISASCII(c) 1
216 # else
217 # define ISASCII(c) isascii(c)
218 # endif
220 # ifdef isblank
221 # define ISBLANK(c) (ISASCII (c) && isblank (c))
222 # else
223 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
224 # endif
225 # ifdef isgraph
226 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
227 # else
228 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
229 # endif
231 # undef ISPRINT
232 # define ISPRINT(c) (ISASCII (c) && isprint (c))
233 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
234 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
235 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
236 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
237 # define ISLOWER(c) (ISASCII (c) && islower (c))
238 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
239 # define ISSPACE(c) (ISASCII (c) && isspace (c))
240 # define ISUPPER(c) (ISASCII (c) && isupper (c))
241 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243 # ifdef _tolower
244 # define TOLOWER(c) _tolower(c)
245 # else
246 # define TOLOWER(c) tolower(c)
247 # endif
249 # ifndef NULL
250 # define NULL (void *)0
251 # endif
253 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
254 since ours (we hope) works properly with all combinations of
255 machines, compilers, `char' and `unsigned char' argument types.
256 (Per Bothner suggested the basic approach.) */
257 # undef SIGN_EXTEND_CHAR
258 # if defined __STDC__ && __STDC__
259 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
260 # else /* not __STDC__ */
261 /* As in Harbison and Steele. */
262 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
263 # endif
265 # ifndef emacs
266 /* How many characters in the character set. */
267 # define CHAR_SET_SIZE 256
269 # ifdef SYNTAX_TABLE
271 extern char *re_syntax_table;
273 # else /* not SYNTAX_TABLE */
275 static char re_syntax_table[CHAR_SET_SIZE];
277 static void init_syntax_once PARAMS ((void));
279 static void
280 init_syntax_once ()
282 register int c;
283 static int done = 0;
285 if (done)
286 return;
287 bzero (re_syntax_table, sizeof re_syntax_table);
289 for (c = 0; c < CHAR_SET_SIZE; ++c)
290 if (ISALNUM (c))
291 re_syntax_table[c] = Sword;
293 re_syntax_table['_'] = Sword;
295 done = 1;
298 # endif /* not SYNTAX_TABLE */
300 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
302 # endif /* emacs */
304 /* Integer type for pointers. */
305 # if !defined _LIBC && !defined HAVE_UINTPTR_T
306 typedef unsigned long int uintptr_t;
307 # endif
309 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
310 use `alloca' instead of `malloc'. This is because using malloc in
311 re_search* or re_match* could cause memory leaks when C-g is used in
312 Emacs; also, malloc is slower and causes storage fragmentation. On
313 the other hand, malloc is more portable, and easier to debug.
315 Because we sometimes use alloca, some routines have to be macros,
316 not functions -- `alloca'-allocated space disappears at the end of the
317 function it is called in. */
319 # ifdef REGEX_MALLOC
321 # define REGEX_ALLOCATE malloc
322 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
323 # define REGEX_FREE free
325 # else /* not REGEX_MALLOC */
327 /* Emacs already defines alloca, sometimes. */
328 # ifndef alloca
330 /* Make alloca work the best possible way. */
331 # ifdef __GNUC__
332 # define alloca __builtin_alloca
333 # else /* not __GNUC__ */
334 # if defined HAVE_ALLOCA_H && HAVE_ALLOCA_H
335 # include <alloca.h>
336 # endif /* HAVE_ALLOCA_H */
337 # endif /* not __GNUC__ */
339 # endif /* not alloca */
341 # define REGEX_ALLOCATE alloca
343 /* Assumes a `char *destination' variable. */
344 # define REGEX_REALLOCATE(source, osize, nsize) \
345 (destination = (char *) alloca (nsize), \
346 memcpy (destination, source, osize))
348 /* No need to do anything to free, after alloca. */
349 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
351 # endif /* not REGEX_MALLOC */
353 /* Define how to allocate the failure stack. */
355 # if defined REL_ALLOC && defined REGEX_MALLOC
357 # define REGEX_ALLOCATE_STACK(size) \
358 r_alloc (&failure_stack_ptr, (size))
359 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
360 r_re_alloc (&failure_stack_ptr, (nsize))
361 # define REGEX_FREE_STACK(ptr) \
362 r_alloc_free (&failure_stack_ptr)
364 # else /* not using relocating allocator */
366 # ifdef REGEX_MALLOC
368 # define REGEX_ALLOCATE_STACK malloc
369 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
370 # define REGEX_FREE_STACK free
372 # else /* not REGEX_MALLOC */
374 # define REGEX_ALLOCATE_STACK alloca
376 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
377 REGEX_REALLOCATE (source, osize, nsize)
378 /* No need to explicitly free anything. */
379 # define REGEX_FREE_STACK(arg)
381 # endif /* not REGEX_MALLOC */
382 # endif /* not using relocating allocator */
385 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
386 `string1' or just past its end. This works if PTR is NULL, which is
387 a good thing. */
388 # define FIRST_STRING_P(ptr) \
389 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
391 /* (Re)Allocate N items of type T using malloc, or fail. */
392 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
393 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
394 # define RETALLOC_IF(addr, n, t) \
395 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
396 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
398 # define BYTEWIDTH 8 /* In bits. */
400 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
402 # undef MAX
403 # undef MIN
404 # define MAX(a, b) ((a) > (b) ? (a) : (b))
405 # define MIN(a, b) ((a) < (b) ? (a) : (b))
407 typedef char boolean;
408 # define false 0
409 # define true 1
411 static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
412 reg_syntax_t syntax,
413 struct re_pattern_buffer *bufp));
415 static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
416 const char *string1, int size1,
417 const char *string2, int size2,
418 int pos,
419 struct re_registers *regs,
420 int stop));
421 static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
422 const char *string1, int size1,
423 const char *string2, int size2,
424 int startpos, int range,
425 struct re_registers *regs, int stop));
426 static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
428 #ifdef MBS_SUPPORT
429 static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
430 reg_syntax_t syntax,
431 struct re_pattern_buffer *bufp));
434 static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
435 const char *cstring1, int csize1,
436 const char *cstring2, int csize2,
437 int pos,
438 struct re_registers *regs,
439 int stop,
440 wchar_t *string1, int size1,
441 wchar_t *string2, int size2,
442 int *mbs_offset1, int *mbs_offset2));
443 static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
444 const char *string1, int size1,
445 const char *string2, int size2,
446 int startpos, int range,
447 struct re_registers *regs, int stop));
448 static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
449 #endif
451 /* These are the command codes that appear in compiled regular
452 expressions. Some opcodes are followed by argument bytes. A
453 command code can specify any interpretation whatsoever for its
454 arguments. Zero bytes may appear in the compiled regular expression. */
456 typedef enum
458 no_op = 0,
460 /* Succeed right away--no more backtracking. */
461 succeed,
463 /* Followed by one byte giving n, then by n literal bytes. */
464 exactn,
466 # ifdef MBS_SUPPORT
467 /* Same as exactn, but contains binary data. */
468 exactn_bin,
469 # endif
471 /* Matches any (more or less) character. */
472 anychar,
474 /* Matches any one char belonging to specified set. First
475 following byte is number of bitmap bytes. Then come bytes
476 for a bitmap saying which chars are in. Bits in each byte
477 are ordered low-bit-first. A character is in the set if its
478 bit is 1. A character too large to have a bit in the map is
479 automatically not in the set. */
480 /* ifdef MBS_SUPPORT, following element is length of character
481 classes, length of collating symbols, length of equivalence
482 classes, length of character ranges, and length of characters.
483 Next, character class element, collating symbols elements,
484 equivalence class elements, range elements, and character
485 elements follow.
486 See regex_compile function. */
487 charset,
489 /* Same parameters as charset, but match any character that is
490 not one of those specified. */
491 charset_not,
493 /* Start remembering the text that is matched, for storing in a
494 register. Followed by one byte with the register number, in
495 the range 0 to one less than the pattern buffer's re_nsub
496 field. Then followed by one byte with the number of groups
497 inner to this one. (This last has to be part of the
498 start_memory only because we need it in the on_failure_jump
499 of re_match_2.) */
500 start_memory,
502 /* Stop remembering the text that is matched and store it in a
503 memory register. Followed by one byte with the register
504 number, in the range 0 to one less than `re_nsub' in the
505 pattern buffer, and one byte with the number of inner groups,
506 just like `start_memory'. (We need the number of inner
507 groups here because we don't have any easy way of finding the
508 corresponding start_memory when we're at a stop_memory.) */
509 stop_memory,
511 /* Match a duplicate of something remembered. Followed by one
512 byte containing the register number. */
513 duplicate,
515 /* Fail unless at beginning of line. */
516 begline,
518 /* Fail unless at end of line. */
519 endline,
521 /* Succeeds if at beginning of buffer (if emacs) or at beginning
522 of string to be matched (if not). */
523 begbuf,
525 /* Analogously, for end of buffer/string. */
526 endbuf,
528 /* Followed by two byte relative address to which to jump. */
529 jump,
531 /* Same as jump, but marks the end of an alternative. */
532 jump_past_alt,
534 /* Followed by two-byte relative address of place to resume at
535 in case of failure. */
536 /* ifdef MBS_SUPPORT, the size of address is 1. */
537 on_failure_jump,
539 /* Like on_failure_jump, but pushes a placeholder instead of the
540 current string position when executed. */
541 on_failure_keep_string_jump,
543 /* Throw away latest failure point and then jump to following
544 two-byte relative address. */
545 /* ifdef MBS_SUPPORT, the size of address is 1. */
546 pop_failure_jump,
548 /* Change to pop_failure_jump if know won't have to backtrack to
549 match; otherwise change to jump. This is used to jump
550 back to the beginning of a repeat. If what follows this jump
551 clearly won't match what the repeat does, such that we can be
552 sure that there is no use backtracking out of repetitions
553 already matched, then we change it to a pop_failure_jump.
554 Followed by two-byte address. */
555 /* ifdef MBS_SUPPORT, the size of address is 1. */
556 maybe_pop_jump,
558 /* Jump to following two-byte address, and push a dummy failure
559 point. This failure point will be thrown away if an attempt
560 is made to use it for a failure. A `+' construct makes this
561 before the first repeat. Also used as an intermediary kind
562 of jump when compiling an alternative. */
563 /* ifdef MBS_SUPPORT, the size of address is 1. */
564 dummy_failure_jump,
566 /* Push a dummy failure point and continue. Used at the end of
567 alternatives. */
568 push_dummy_failure,
570 /* Followed by two-byte relative address and two-byte number n.
571 After matching N times, jump to the address upon failure. */
572 /* ifdef MBS_SUPPORT, the size of address is 1. */
573 succeed_n,
575 /* Followed by two-byte relative address, and two-byte number n.
576 Jump to the address N times, then fail. */
577 /* ifdef MBS_SUPPORT, the size of address is 1. */
578 jump_n,
580 /* Set the following two-byte relative address to the
581 subsequent two-byte number. The address *includes* the two
582 bytes of number. */
583 /* ifdef MBS_SUPPORT, the size of address is 1. */
584 set_number_at,
586 wordchar, /* Matches any word-constituent character. */
587 notwordchar, /* Matches any char that is not a word-constituent. */
589 wordbeg, /* Succeeds if at word beginning. */
590 wordend, /* Succeeds if at word end. */
592 wordbound, /* Succeeds if at a word boundary. */
593 notwordbound /* Succeeds if not at a word boundary. */
595 # ifdef emacs
596 ,before_dot, /* Succeeds if before point. */
597 at_dot, /* Succeeds if at point. */
598 after_dot, /* Succeeds if after point. */
600 /* Matches any character whose syntax is specified. Followed by
601 a byte which contains a syntax code, e.g., Sword. */
602 syntaxspec,
604 /* Matches any character whose syntax is not that specified. */
605 notsyntaxspec
606 # endif /* emacs */
607 } re_opcode_t;
608 #endif /* not INSIDE_RECURSION */
611 #ifdef BYTE
612 # define CHAR_T char
613 # define UCHAR_T unsigned char
614 # define COMPILED_BUFFER_VAR bufp->buffer
615 # define OFFSET_ADDRESS_SIZE 2
616 # define PREFIX(name) byte_##name
617 # define ARG_PREFIX(name) name
618 # define PUT_CHAR(c) putchar (c)
619 #else
620 # ifdef WCHAR
621 # define CHAR_T wchar_t
622 # define UCHAR_T wchar_t
623 # define COMPILED_BUFFER_VAR wc_buffer
624 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
625 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
626 # define PREFIX(name) wcs_##name
627 # define ARG_PREFIX(name) c##name
628 /* Should we use wide stream?? */
629 # define PUT_CHAR(c) printf ("%C", c);
630 # define TRUE 1
631 # define FALSE 0
632 # else
633 # ifdef MBS_SUPPORT
634 # define WCHAR
635 # define INSIDE_RECURSION
636 # include "regex.c"
637 # undef INSIDE_RECURSION
638 # endif
639 # define BYTE
640 # define INSIDE_RECURSION
641 # include "regex.c"
642 # undef INSIDE_RECURSION
643 # endif
644 #endif
646 #ifdef INSIDE_RECURSION
647 /* Common operations on the compiled pattern. */
649 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
650 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
652 # ifdef WCHAR
653 # define STORE_NUMBER(destination, number) \
654 do { \
655 *(destination) = (UCHAR_T)(number); \
656 } while (0)
657 # else /* BYTE */
658 # define STORE_NUMBER(destination, number) \
659 do { \
660 (destination)[0] = (number) & 0377; \
661 (destination)[1] = (number) >> 8; \
662 } while (0)
663 # endif /* WCHAR */
665 /* Same as STORE_NUMBER, except increment DESTINATION to
666 the byte after where the number is stored. Therefore, DESTINATION
667 must be an lvalue. */
668 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
670 # define STORE_NUMBER_AND_INCR(destination, number) \
671 do { \
672 STORE_NUMBER (destination, number); \
673 (destination) += OFFSET_ADDRESS_SIZE; \
674 } while (0)
676 /* Put into DESTINATION a number stored in two contiguous bytes starting
677 at SOURCE. */
678 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
680 # ifdef WCHAR
681 # define EXTRACT_NUMBER(destination, source) \
682 do { \
683 (destination) = *(source); \
684 } while (0)
685 # else /* BYTE */
686 # define EXTRACT_NUMBER(destination, source) \
687 do { \
688 (destination) = *(source) & 0377; \
689 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
690 } while (0)
691 # endif
693 # ifdef DEBUG
694 static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
695 static void
696 PREFIX(extract_number) (dest, source)
697 int *dest;
698 UCHAR_T *source;
700 # ifdef WCHAR
701 *dest = *source;
702 # else /* BYTE */
703 int temp = SIGN_EXTEND_CHAR (*(source + 1));
704 *dest = *source & 0377;
705 *dest += temp << 8;
706 # endif
709 # ifndef EXTRACT_MACROS /* To debug the macros. */
710 # undef EXTRACT_NUMBER
711 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
712 # endif /* not EXTRACT_MACROS */
714 # endif /* DEBUG */
716 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
717 SOURCE must be an lvalue. */
719 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
720 do { \
721 EXTRACT_NUMBER (destination, source); \
722 (source) += OFFSET_ADDRESS_SIZE; \
723 } while (0)
725 # ifdef DEBUG
726 static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
727 UCHAR_T **source));
728 static void
729 PREFIX(extract_number_and_incr) (destination, source)
730 int *destination;
731 UCHAR_T **source;
733 PREFIX(extract_number) (destination, *source);
734 *source += OFFSET_ADDRESS_SIZE;
737 # ifndef EXTRACT_MACROS
738 # undef EXTRACT_NUMBER_AND_INCR
739 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
740 PREFIX(extract_number_and_incr) (&dest, &src)
741 # endif /* not EXTRACT_MACROS */
743 # endif /* DEBUG */
747 /* If DEBUG is defined, Regex prints many voluminous messages about what
748 it is doing (if the variable `debug' is nonzero). If linked with the
749 main program in `iregex.c', you can enter patterns and strings
750 interactively. And if linked with the main program in `main.c' and
751 the other test files, you can run the already-written tests. */
753 # ifdef DEBUG
755 # ifndef DEFINED_ONCE
757 /* We use standard I/O for debugging. */
758 # include <stdio.h>
760 /* It is useful to test things that ``must'' be true when debugging. */
761 # include <assert.h>
763 static int debug;
765 # define DEBUG_STATEMENT(e) e
766 # define DEBUG_PRINT1(x) if (debug) printf (x)
767 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
768 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
769 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
770 # endif /* not DEFINED_ONCE */
772 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
773 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
774 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
775 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
778 /* Print the fastmap in human-readable form. */
780 # ifndef DEFINED_ONCE
781 void
782 print_fastmap (fastmap)
783 char *fastmap;
785 unsigned was_a_range = 0;
786 unsigned i = 0;
788 while (i < (1 << BYTEWIDTH))
790 if (fastmap[i++])
792 was_a_range = 0;
793 putchar (i - 1);
794 while (i < (1 << BYTEWIDTH) && fastmap[i])
796 was_a_range = 1;
797 i++;
799 if (was_a_range)
801 printf ("-");
802 putchar (i - 1);
806 putchar ('\n');
808 # endif /* not DEFINED_ONCE */
811 /* Print a compiled pattern string in human-readable form, starting at
812 the START pointer into it and ending just before the pointer END. */
814 void
815 PREFIX(print_partial_compiled_pattern) (start, end)
816 UCHAR_T *start;
817 UCHAR_T *end;
819 int mcnt, mcnt2;
820 UCHAR_T *p1;
821 UCHAR_T *p = start;
822 UCHAR_T *pend = end;
824 if (start == NULL)
826 printf ("(null)\n");
827 return;
830 /* Loop over pattern commands. */
831 while (p < pend)
833 # ifdef _LIBC
834 printf ("%td:\t", p - start);
835 # else
836 printf ("%ld:\t", (long int) (p - start));
837 # endif
839 switch ((re_opcode_t) *p++)
841 case no_op:
842 printf ("/no_op");
843 break;
845 case exactn:
846 mcnt = *p++;
847 printf ("/exactn/%d", mcnt);
850 putchar ('/');
851 PUT_CHAR (*p++);
853 while (--mcnt);
854 break;
856 # ifdef MBS_SUPPORT
857 case exactn_bin:
858 mcnt = *p++;
859 printf ("/exactn_bin/%d", mcnt);
862 printf("/%lx", (long int) *p++);
864 while (--mcnt);
865 break;
866 # endif /* MBS_SUPPORT */
868 case start_memory:
869 mcnt = *p++;
870 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
871 break;
873 case stop_memory:
874 mcnt = *p++;
875 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
876 break;
878 case duplicate:
879 printf ("/duplicate/%ld", (long int) *p++);
880 break;
882 case anychar:
883 printf ("/anychar");
884 break;
886 case charset:
887 case charset_not:
889 # ifdef WCHAR
890 int i, length;
891 wchar_t *workp = p;
892 printf ("/charset [%s",
893 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
894 p += 5;
895 length = *workp++; /* the length of char_classes */
896 for (i=0 ; i<length ; i++)
897 printf("[:%lx:]", (long int) *p++);
898 length = *workp++; /* the length of collating_symbol */
899 for (i=0 ; i<length ;)
901 printf("[.");
902 while(*p != 0)
903 PUT_CHAR((i++,*p++));
904 i++,p++;
905 printf(".]");
907 length = *workp++; /* the length of equivalence_class */
908 for (i=0 ; i<length ;)
910 printf("[=");
911 while(*p != 0)
912 PUT_CHAR((i++,*p++));
913 i++,p++;
914 printf("=]");
916 length = *workp++; /* the length of char_range */
917 for (i=0 ; i<length ; i++)
919 wchar_t range_start = *p++;
920 wchar_t range_end = *p++;
921 printf("%C-%C", range_start, range_end);
923 length = *workp++; /* the length of char */
924 for (i=0 ; i<length ; i++)
925 printf("%C", *p++);
926 putchar (']');
927 # else
928 register int c, last = -100;
929 register int in_range = 0;
931 printf ("/charset [%s",
932 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
934 assert (p + *p < pend);
936 for (c = 0; c < 256; c++)
937 if (c / 8 < *p
938 && (p[1 + (c/8)] & (1 << (c % 8))))
940 /* Are we starting a range? */
941 if (last + 1 == c && ! in_range)
943 putchar ('-');
944 in_range = 1;
946 /* Have we broken a range? */
947 else if (last + 1 != c && in_range)
949 putchar (last);
950 in_range = 0;
953 if (! in_range)
954 putchar (c);
956 last = c;
959 if (in_range)
960 putchar (last);
962 putchar (']');
964 p += 1 + *p;
965 # endif /* WCHAR */
967 break;
969 case begline:
970 printf ("/begline");
971 break;
973 case endline:
974 printf ("/endline");
975 break;
977 case on_failure_jump:
978 PREFIX(extract_number_and_incr) (&mcnt, &p);
979 # ifdef _LIBC
980 printf ("/on_failure_jump to %td", p + mcnt - start);
981 # else
982 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
983 # endif
984 break;
986 case on_failure_keep_string_jump:
987 PREFIX(extract_number_and_incr) (&mcnt, &p);
988 # ifdef _LIBC
989 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
990 # else
991 printf ("/on_failure_keep_string_jump to %ld",
992 (long int) (p + mcnt - start));
993 # endif
994 break;
996 case dummy_failure_jump:
997 PREFIX(extract_number_and_incr) (&mcnt, &p);
998 # ifdef _LIBC
999 printf ("/dummy_failure_jump to %td", p + mcnt - start);
1000 # else
1001 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1002 # endif
1003 break;
1005 case push_dummy_failure:
1006 printf ("/push_dummy_failure");
1007 break;
1009 case maybe_pop_jump:
1010 PREFIX(extract_number_and_incr) (&mcnt, &p);
1011 # ifdef _LIBC
1012 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1013 # else
1014 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1015 # endif
1016 break;
1018 case pop_failure_jump:
1019 PREFIX(extract_number_and_incr) (&mcnt, &p);
1020 # ifdef _LIBC
1021 printf ("/pop_failure_jump to %td", p + mcnt - start);
1022 # else
1023 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1024 # endif
1025 break;
1027 case jump_past_alt:
1028 PREFIX(extract_number_and_incr) (&mcnt, &p);
1029 # ifdef _LIBC
1030 printf ("/jump_past_alt to %td", p + mcnt - start);
1031 # else
1032 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1033 # endif
1034 break;
1036 case jump:
1037 PREFIX(extract_number_and_incr) (&mcnt, &p);
1038 # ifdef _LIBC
1039 printf ("/jump to %td", p + mcnt - start);
1040 # else
1041 printf ("/jump to %ld", (long int) (p + mcnt - start));
1042 # endif
1043 break;
1045 case succeed_n:
1046 PREFIX(extract_number_and_incr) (&mcnt, &p);
1047 p1 = p + mcnt;
1048 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1049 # ifdef _LIBC
1050 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1051 # else
1052 printf ("/succeed_n to %ld, %d times",
1053 (long int) (p1 - start), mcnt2);
1054 # endif
1055 break;
1057 case jump_n:
1058 PREFIX(extract_number_and_incr) (&mcnt, &p);
1059 p1 = p + mcnt;
1060 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1061 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1062 break;
1064 case set_number_at:
1065 PREFIX(extract_number_and_incr) (&mcnt, &p);
1066 p1 = p + mcnt;
1067 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1068 # ifdef _LIBC
1069 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1070 # else
1071 printf ("/set_number_at location %ld to %d",
1072 (long int) (p1 - start), mcnt2);
1073 # endif
1074 break;
1076 case wordbound:
1077 printf ("/wordbound");
1078 break;
1080 case notwordbound:
1081 printf ("/notwordbound");
1082 break;
1084 case wordbeg:
1085 printf ("/wordbeg");
1086 break;
1088 case wordend:
1089 printf ("/wordend");
1090 break;
1092 # ifdef emacs
1093 case before_dot:
1094 printf ("/before_dot");
1095 break;
1097 case at_dot:
1098 printf ("/at_dot");
1099 break;
1101 case after_dot:
1102 printf ("/after_dot");
1103 break;
1105 case syntaxspec:
1106 printf ("/syntaxspec");
1107 mcnt = *p++;
1108 printf ("/%d", mcnt);
1109 break;
1111 case notsyntaxspec:
1112 printf ("/notsyntaxspec");
1113 mcnt = *p++;
1114 printf ("/%d", mcnt);
1115 break;
1116 # endif /* emacs */
1118 case wordchar:
1119 printf ("/wordchar");
1120 break;
1122 case notwordchar:
1123 printf ("/notwordchar");
1124 break;
1126 case begbuf:
1127 printf ("/begbuf");
1128 break;
1130 case endbuf:
1131 printf ("/endbuf");
1132 break;
1134 default:
1135 printf ("?%ld", (long int) *(p-1));
1138 putchar ('\n');
1141 # ifdef _LIBC
1142 printf ("%td:\tend of pattern.\n", p - start);
1143 # else
1144 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1145 # endif
1149 void
1150 PREFIX(print_compiled_pattern) (bufp)
1151 struct re_pattern_buffer *bufp;
1153 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1155 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1156 + bufp->used / sizeof(UCHAR_T));
1157 printf ("%ld bytes used/%ld bytes allocated.\n",
1158 bufp->used, bufp->allocated);
1160 if (bufp->fastmap_accurate && bufp->fastmap)
1162 printf ("fastmap: ");
1163 print_fastmap (bufp->fastmap);
1166 # ifdef _LIBC
1167 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1168 # else
1169 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1170 # endif
1171 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1172 printf ("can_be_null: %d\t", bufp->can_be_null);
1173 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1174 printf ("no_sub: %d\t", bufp->no_sub);
1175 printf ("not_bol: %d\t", bufp->not_bol);
1176 printf ("not_eol: %d\t", bufp->not_eol);
1177 printf ("syntax: %lx\n", bufp->syntax);
1178 /* Perhaps we should print the translate table? */
1182 void
1183 PREFIX(print_double_string) (where, string1, size1, string2, size2)
1184 const CHAR_T *where;
1185 const CHAR_T *string1;
1186 const CHAR_T *string2;
1187 int size1;
1188 int size2;
1190 int this_char;
1192 if (where == NULL)
1193 printf ("(null)");
1194 else
1196 int cnt;
1198 if (FIRST_STRING_P (where))
1200 for (this_char = where - string1; this_char < size1; this_char++)
1201 PUT_CHAR (string1[this_char]);
1203 where = string2;
1206 cnt = 0;
1207 for (this_char = where - string2; this_char < size2; this_char++)
1209 PUT_CHAR (string2[this_char]);
1210 if (++cnt > 100)
1212 fputs ("...", stdout);
1213 break;
1219 # ifndef DEFINED_ONCE
1220 void
1221 printchar (c)
1222 int c;
1224 putc (c, stderr);
1226 # endif
1228 # else /* not DEBUG */
1230 # ifndef DEFINED_ONCE
1231 # undef assert
1232 # define assert(e)
1234 # define DEBUG_STATEMENT(e)
1235 # define DEBUG_PRINT1(x)
1236 # define DEBUG_PRINT2(x1, x2)
1237 # define DEBUG_PRINT3(x1, x2, x3)
1238 # define DEBUG_PRINT4(x1, x2, x3, x4)
1239 # endif /* not DEFINED_ONCE */
1240 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1241 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1243 # endif /* not DEBUG */
1247 # ifdef WCHAR
1248 /* This convert a multibyte string to a wide character string.
1249 And write their correspondances to offset_buffer(see below)
1250 and write whether each wchar_t is binary data to is_binary.
1251 This assume invalid multibyte sequences as binary data.
1252 We assume offset_buffer and is_binary is already allocated
1253 enough space. */
1255 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1256 size_t len, int *offset_buffer,
1257 char *is_binary);
1258 static size_t
1259 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1260 CHAR_T *dest;
1261 const unsigned char* src;
1262 size_t len; /* the length of multibyte string. */
1264 /* It hold correspondances between src(char string) and
1265 dest(wchar_t string) for optimization.
1266 e.g. src = "xxxyzz"
1267 dest = {'X', 'Y', 'Z'}
1268 (each "xxx", "y" and "zz" represent one multibyte character
1269 corresponding to 'X', 'Y' and 'Z'.)
1270 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1271 = {0, 3, 4, 6}
1273 int *offset_buffer;
1274 char *is_binary;
1276 wchar_t *pdest = dest;
1277 const unsigned char *psrc = src;
1278 size_t wc_count = 0;
1280 mbstate_t mbs;
1281 int i, consumed;
1282 size_t mb_remain = len;
1283 size_t mb_count = 0;
1285 /* Initialize the conversion state. */
1286 memset (&mbs, 0, sizeof (mbstate_t));
1288 offset_buffer[0] = 0;
1289 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1290 psrc += consumed)
1292 #ifdef _LIBC
1293 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1294 #else
1295 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1296 #endif
1298 if (consumed <= 0)
1299 /* failed to convert. maybe src contains binary data.
1300 So we consume 1 byte manualy. */
1302 *pdest = *psrc;
1303 consumed = 1;
1304 is_binary[wc_count] = TRUE;
1306 else
1307 is_binary[wc_count] = FALSE;
1308 /* In sjis encoding, we use yen sign as escape character in
1309 place of reverse solidus. So we convert 0x5c(yen sign in
1310 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1311 solidus in UCS2). */
1312 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1313 *pdest = (wchar_t) *psrc;
1315 offset_buffer[wc_count + 1] = mb_count += consumed;
1318 /* Fill remain of the buffer with sentinel. */
1319 for (i = wc_count + 1 ; i <= len ; i++)
1320 offset_buffer[i] = mb_count + 1;
1322 return wc_count;
1325 # endif /* WCHAR */
1327 #else /* not INSIDE_RECURSION */
1329 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1330 also be assigned to arbitrarily: each pattern buffer stores its own
1331 syntax, so it can be changed between regex compilations. */
1332 /* This has no initializer because initialized variables in Emacs
1333 become read-only after dumping. */
1334 reg_syntax_t re_syntax_options;
1337 /* Specify the precise syntax of regexps for compilation. This provides
1338 for compatibility for various utilities which historically have
1339 different, incompatible syntaxes.
1341 The argument SYNTAX is a bit mask comprised of the various bits
1342 defined in regex.h. We return the old syntax. */
1344 reg_syntax_t
1345 re_set_syntax (syntax)
1346 reg_syntax_t syntax;
1348 reg_syntax_t ret = re_syntax_options;
1350 re_syntax_options = syntax;
1351 # ifdef DEBUG
1352 if (syntax & RE_DEBUG)
1353 debug = 1;
1354 else if (debug) /* was on but now is not */
1355 debug = 0;
1356 # endif /* DEBUG */
1357 return ret;
1359 # ifdef _LIBC
1360 weak_alias (__re_set_syntax, re_set_syntax)
1361 # endif
1363 /* This table gives an error message for each of the error codes listed
1364 in regex.h. Obviously the order here has to be same as there.
1365 POSIX doesn't require that we do anything for REG_NOERROR,
1366 but why not be nice? */
1368 static const char re_error_msgid[] =
1370 # define REG_NOERROR_IDX 0
1371 gettext_noop ("Success") /* REG_NOERROR */
1372 "\0"
1373 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1374 gettext_noop ("No match") /* REG_NOMATCH */
1375 "\0"
1376 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1377 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1378 "\0"
1379 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1380 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1381 "\0"
1382 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1383 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1384 "\0"
1385 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1386 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1387 "\0"
1388 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1389 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1390 "\0"
1391 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1392 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1393 "\0"
1394 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1395 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1396 "\0"
1397 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1398 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1399 "\0"
1400 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1401 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1402 "\0"
1403 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1404 gettext_noop ("Invalid range end") /* REG_ERANGE */
1405 "\0"
1406 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1407 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1408 "\0"
1409 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1410 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1411 "\0"
1412 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1413 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1414 "\0"
1415 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1416 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1417 "\0"
1418 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1419 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1422 static const size_t re_error_msgid_idx[] =
1424 REG_NOERROR_IDX,
1425 REG_NOMATCH_IDX,
1426 REG_BADPAT_IDX,
1427 REG_ECOLLATE_IDX,
1428 REG_ECTYPE_IDX,
1429 REG_EESCAPE_IDX,
1430 REG_ESUBREG_IDX,
1431 REG_EBRACK_IDX,
1432 REG_EPAREN_IDX,
1433 REG_EBRACE_IDX,
1434 REG_BADBR_IDX,
1435 REG_ERANGE_IDX,
1436 REG_ESPACE_IDX,
1437 REG_BADRPT_IDX,
1438 REG_EEND_IDX,
1439 REG_ESIZE_IDX,
1440 REG_ERPAREN_IDX
1443 #endif /* INSIDE_RECURSION */
1445 #ifndef DEFINED_ONCE
1446 /* Avoiding alloca during matching, to placate r_alloc. */
1448 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1449 searching and matching functions should not call alloca. On some
1450 systems, alloca is implemented in terms of malloc, and if we're
1451 using the relocating allocator routines, then malloc could cause a
1452 relocation, which might (if the strings being searched are in the
1453 ralloc heap) shift the data out from underneath the regexp
1454 routines.
1456 Here's another reason to avoid allocation: Emacs
1457 processes input from X in a signal handler; processing X input may
1458 call malloc; if input arrives while a matching routine is calling
1459 malloc, then we're scrod. But Emacs can't just block input while
1460 calling matching routines; then we don't notice interrupts when
1461 they come in. So, Emacs blocks input around all regexp calls
1462 except the matching calls, which it leaves unprotected, in the
1463 faith that they will not malloc. */
1465 /* Normally, this is fine. */
1466 # define MATCH_MAY_ALLOCATE
1468 /* When using GNU C, we are not REALLY using the C alloca, no matter
1469 what config.h may say. So don't take precautions for it. */
1470 # ifdef __GNUC__
1471 # undef C_ALLOCA
1472 # endif
1474 /* The match routines may not allocate if (1) they would do it with malloc
1475 and (2) it's not safe for them to use malloc.
1476 Note that if REL_ALLOC is defined, matching would not use malloc for the
1477 failure stack, but we would still use it for the register vectors;
1478 so REL_ALLOC should not affect this. */
1479 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1480 # undef MATCH_MAY_ALLOCATE
1481 # endif
1482 #endif /* not DEFINED_ONCE */
1484 #ifdef INSIDE_RECURSION
1485 /* Failure stack declarations and macros; both re_compile_fastmap and
1486 re_match_2 use a failure stack. These have to be macros because of
1487 REGEX_ALLOCATE_STACK. */
1490 /* Number of failure points for which to initially allocate space
1491 when matching. If this number is exceeded, we allocate more
1492 space, so it is not a hard limit. */
1493 # ifndef INIT_FAILURE_ALLOC
1494 # define INIT_FAILURE_ALLOC 5
1495 # endif
1497 /* Roughly the maximum number of failure points on the stack. Would be
1498 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1499 This is a variable only so users of regex can assign to it; we never
1500 change it ourselves. */
1502 # ifdef INT_IS_16BIT
1504 # ifndef DEFINED_ONCE
1505 # if defined MATCH_MAY_ALLOCATE
1506 /* 4400 was enough to cause a crash on Alpha OSF/1,
1507 whose default stack limit is 2mb. */
1508 long int re_max_failures = 4000;
1509 # else
1510 long int re_max_failures = 2000;
1511 # endif
1512 # endif
1514 union PREFIX(fail_stack_elt)
1516 UCHAR_T *pointer;
1517 long int integer;
1520 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1522 typedef struct
1524 PREFIX(fail_stack_elt_t) *stack;
1525 unsigned long int size;
1526 unsigned long int avail; /* Offset of next open position. */
1527 } PREFIX(fail_stack_type);
1529 # else /* not INT_IS_16BIT */
1531 # ifndef DEFINED_ONCE
1532 # if defined MATCH_MAY_ALLOCATE
1533 /* 4400 was enough to cause a crash on Alpha OSF/1,
1534 whose default stack limit is 2mb. */
1535 int re_max_failures = 4000;
1536 # else
1537 int re_max_failures = 2000;
1538 # endif
1539 # endif
1541 union PREFIX(fail_stack_elt)
1543 UCHAR_T *pointer;
1544 int integer;
1547 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1549 typedef struct
1551 PREFIX(fail_stack_elt_t) *stack;
1552 unsigned size;
1553 unsigned avail; /* Offset of next open position. */
1554 } PREFIX(fail_stack_type);
1556 # endif /* INT_IS_16BIT */
1558 # ifndef DEFINED_ONCE
1559 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1560 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1561 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1562 # endif
1565 /* Define macros to initialize and free the failure stack.
1566 Do `return -2' if the alloc fails. */
1568 # ifdef MATCH_MAY_ALLOCATE
1569 # define INIT_FAIL_STACK() \
1570 do { \
1571 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1572 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1574 if (fail_stack.stack == NULL) \
1575 return -2; \
1577 fail_stack.size = INIT_FAILURE_ALLOC; \
1578 fail_stack.avail = 0; \
1579 } while (0)
1581 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1582 # else
1583 # define INIT_FAIL_STACK() \
1584 do { \
1585 fail_stack.avail = 0; \
1586 } while (0)
1588 # define RESET_FAIL_STACK()
1589 # endif
1592 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1594 Return 1 if succeeds, and 0 if either ran out of memory
1595 allocating space for it or it was already too large.
1597 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1599 # define DOUBLE_FAIL_STACK(fail_stack) \
1600 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1601 ? 0 \
1602 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1603 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1604 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1605 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1607 (fail_stack).stack == NULL \
1608 ? 0 \
1609 : ((fail_stack).size <<= 1, \
1610 1)))
1613 /* Push pointer POINTER on FAIL_STACK.
1614 Return 1 if was able to do so and 0 if ran out of memory allocating
1615 space to do so. */
1616 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1617 ((FAIL_STACK_FULL () \
1618 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1619 ? 0 \
1620 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1623 /* Push a pointer value onto the failure stack.
1624 Assumes the variable `fail_stack'. Probably should only
1625 be called from within `PUSH_FAILURE_POINT'. */
1626 # define PUSH_FAILURE_POINTER(item) \
1627 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1629 /* This pushes an integer-valued item onto the failure stack.
1630 Assumes the variable `fail_stack'. Probably should only
1631 be called from within `PUSH_FAILURE_POINT'. */
1632 # define PUSH_FAILURE_INT(item) \
1633 fail_stack.stack[fail_stack.avail++].integer = (item)
1635 /* Push a fail_stack_elt_t value onto the failure stack.
1636 Assumes the variable `fail_stack'. Probably should only
1637 be called from within `PUSH_FAILURE_POINT'. */
1638 # define PUSH_FAILURE_ELT(item) \
1639 fail_stack.stack[fail_stack.avail++] = (item)
1641 /* These three POP... operations complement the three PUSH... operations.
1642 All assume that `fail_stack' is nonempty. */
1643 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1644 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1645 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1647 /* Used to omit pushing failure point id's when we're not debugging. */
1648 # ifdef DEBUG
1649 # define DEBUG_PUSH PUSH_FAILURE_INT
1650 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1651 # else
1652 # define DEBUG_PUSH(item)
1653 # define DEBUG_POP(item_addr)
1654 # endif
1657 /* Push the information about the state we will need
1658 if we ever fail back to it.
1660 Requires variables fail_stack, regstart, regend, reg_info, and
1661 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1662 be declared.
1664 Does `return FAILURE_CODE' if runs out of memory. */
1666 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1667 do { \
1668 char *destination; \
1669 /* Must be int, so when we don't save any registers, the arithmetic \
1670 of 0 + -1 isn't done as unsigned. */ \
1671 /* Can't be int, since there is not a shred of a guarantee that int \
1672 is wide enough to hold a value of something to which pointer can \
1673 be assigned */ \
1674 active_reg_t this_reg; \
1676 DEBUG_STATEMENT (failure_id++); \
1677 DEBUG_STATEMENT (nfailure_points_pushed++); \
1678 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1679 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1680 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1682 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1683 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1685 /* Ensure we have enough space allocated for what we will push. */ \
1686 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1688 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1689 return failure_code; \
1691 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1692 (fail_stack).size); \
1693 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1696 /* Push the info, starting with the registers. */ \
1697 DEBUG_PRINT1 ("\n"); \
1699 if (1) \
1700 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1701 this_reg++) \
1703 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1704 DEBUG_STATEMENT (num_regs_pushed++); \
1706 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1707 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1709 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1710 PUSH_FAILURE_POINTER (regend[this_reg]); \
1712 DEBUG_PRINT2 (" info: %p\n ", \
1713 reg_info[this_reg].word.pointer); \
1714 DEBUG_PRINT2 (" match_null=%d", \
1715 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1716 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1717 DEBUG_PRINT2 (" matched_something=%d", \
1718 MATCHED_SOMETHING (reg_info[this_reg])); \
1719 DEBUG_PRINT2 (" ever_matched=%d", \
1720 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1721 DEBUG_PRINT1 ("\n"); \
1722 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1725 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1726 PUSH_FAILURE_INT (lowest_active_reg); \
1728 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1729 PUSH_FAILURE_INT (highest_active_reg); \
1731 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1732 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1733 PUSH_FAILURE_POINTER (pattern_place); \
1735 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1736 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1737 size2); \
1738 DEBUG_PRINT1 ("'\n"); \
1739 PUSH_FAILURE_POINTER (string_place); \
1741 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1742 DEBUG_PUSH (failure_id); \
1743 } while (0)
1745 # ifndef DEFINED_ONCE
1746 /* This is the number of items that are pushed and popped on the stack
1747 for each register. */
1748 # define NUM_REG_ITEMS 3
1750 /* Individual items aside from the registers. */
1751 # ifdef DEBUG
1752 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1753 # else
1754 # define NUM_NONREG_ITEMS 4
1755 # endif
1757 /* We push at most this many items on the stack. */
1758 /* We used to use (num_regs - 1), which is the number of registers
1759 this regexp will save; but that was changed to 5
1760 to avoid stack overflow for a regexp with lots of parens. */
1761 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1763 /* We actually push this many items. */
1764 # define NUM_FAILURE_ITEMS \
1765 (((0 \
1766 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1767 * NUM_REG_ITEMS) \
1768 + NUM_NONREG_ITEMS)
1770 /* How many items can still be added to the stack without overflowing it. */
1771 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1772 # endif /* not DEFINED_ONCE */
1775 /* Pops what PUSH_FAIL_STACK pushes.
1777 We restore into the parameters, all of which should be lvalues:
1778 STR -- the saved data position.
1779 PAT -- the saved pattern position.
1780 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1781 REGSTART, REGEND -- arrays of string positions.
1782 REG_INFO -- array of information about each subexpression.
1784 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1785 `pend', `string1', `size1', `string2', and `size2'. */
1786 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1788 DEBUG_STATEMENT (unsigned failure_id;) \
1789 active_reg_t this_reg; \
1790 const UCHAR_T *string_temp; \
1792 assert (!FAIL_STACK_EMPTY ()); \
1794 /* Remove failure points and point to how many regs pushed. */ \
1795 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1796 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1797 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1799 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1801 DEBUG_POP (&failure_id); \
1802 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1804 /* If the saved string location is NULL, it came from an \
1805 on_failure_keep_string_jump opcode, and we want to throw away the \
1806 saved NULL, thus retaining our current position in the string. */ \
1807 string_temp = POP_FAILURE_POINTER (); \
1808 if (string_temp != NULL) \
1809 str = (const CHAR_T *) string_temp; \
1811 DEBUG_PRINT2 (" Popping string %p: `", str); \
1812 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1813 DEBUG_PRINT1 ("'\n"); \
1815 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1816 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1817 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1819 /* Restore register info. */ \
1820 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1821 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1823 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1824 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1826 if (1) \
1827 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1829 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1831 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1832 DEBUG_PRINT2 (" info: %p\n", \
1833 reg_info[this_reg].word.pointer); \
1835 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1836 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1838 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1839 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1841 else \
1843 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1845 reg_info[this_reg].word.integer = 0; \
1846 regend[this_reg] = 0; \
1847 regstart[this_reg] = 0; \
1849 highest_active_reg = high_reg; \
1852 set_regs_matched_done = 0; \
1853 DEBUG_STATEMENT (nfailure_points_popped++); \
1854 } /* POP_FAILURE_POINT */
1856 /* Structure for per-register (a.k.a. per-group) information.
1857 Other register information, such as the
1858 starting and ending positions (which are addresses), and the list of
1859 inner groups (which is a bits list) are maintained in separate
1860 variables.
1862 We are making a (strictly speaking) nonportable assumption here: that
1863 the compiler will pack our bit fields into something that fits into
1864 the type of `word', i.e., is something that fits into one item on the
1865 failure stack. */
1868 /* Declarations and macros for re_match_2. */
1870 typedef union
1872 PREFIX(fail_stack_elt_t) word;
1873 struct
1875 /* This field is one if this group can match the empty string,
1876 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1877 # define MATCH_NULL_UNSET_VALUE 3
1878 unsigned match_null_string_p : 2;
1879 unsigned is_active : 1;
1880 unsigned matched_something : 1;
1881 unsigned ever_matched_something : 1;
1882 } bits;
1883 } PREFIX(register_info_type);
1885 # ifndef DEFINED_ONCE
1886 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1887 # define IS_ACTIVE(R) ((R).bits.is_active)
1888 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1889 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1892 /* Call this when have matched a real character; it sets `matched' flags
1893 for the subexpressions which we are currently inside. Also records
1894 that those subexprs have matched. */
1895 # define SET_REGS_MATCHED() \
1896 do \
1898 if (!set_regs_matched_done) \
1900 active_reg_t r; \
1901 set_regs_matched_done = 1; \
1902 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1904 MATCHED_SOMETHING (reg_info[r]) \
1905 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1906 = 1; \
1910 while (0)
1911 # endif /* not DEFINED_ONCE */
1913 /* Registers are set to a sentinel when they haven't yet matched. */
1914 static CHAR_T PREFIX(reg_unset_dummy);
1915 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1916 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1918 /* Subroutine declarations and macros for regex_compile. */
1919 static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1920 static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1921 int arg1, int arg2));
1922 static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1923 int arg, UCHAR_T *end));
1924 static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1925 int arg1, int arg2, UCHAR_T *end));
1926 static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1927 const CHAR_T *p,
1928 reg_syntax_t syntax));
1929 static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1930 const CHAR_T *pend,
1931 reg_syntax_t syntax));
1932 # ifdef WCHAR
1933 static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1934 const CHAR_T **p_ptr,
1935 const CHAR_T *pend,
1936 char *translate,
1937 reg_syntax_t syntax,
1938 UCHAR_T *b,
1939 CHAR_T *char_set));
1940 static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1941 # else /* BYTE */
1942 static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1943 const char **p_ptr,
1944 const char *pend,
1945 char *translate,
1946 reg_syntax_t syntax,
1947 unsigned char *b));
1948 # endif /* WCHAR */
1950 /* Fetch the next character in the uncompiled pattern---translating it
1951 if necessary. Also cast from a signed character in the constant
1952 string passed to us by the user to an unsigned char that we can use
1953 as an array index (in, e.g., `translate'). */
1954 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1955 because it is impossible to allocate 4GB array for some encodings
1956 which have 4 byte character_set like UCS4. */
1957 # ifndef PATFETCH
1958 # ifdef WCHAR
1959 # define PATFETCH(c) \
1960 do {if (p == pend) return REG_EEND; \
1961 c = (UCHAR_T) *p++; \
1962 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1963 } while (0)
1964 # else /* BYTE */
1965 # define PATFETCH(c) \
1966 do {if (p == pend) return REG_EEND; \
1967 c = (unsigned char) *p++; \
1968 if (translate) c = (unsigned char) translate[c]; \
1969 } while (0)
1970 # endif /* WCHAR */
1971 # endif
1973 /* Fetch the next character in the uncompiled pattern, with no
1974 translation. */
1975 # define PATFETCH_RAW(c) \
1976 do {if (p == pend) return REG_EEND; \
1977 c = (UCHAR_T) *p++; \
1978 } while (0)
1980 /* Go backwards one character in the pattern. */
1981 # define PATUNFETCH p--
1984 /* If `translate' is non-null, return translate[D], else just D. We
1985 cast the subscript to translate because some data is declared as
1986 `char *', to avoid warnings when a string constant is passed. But
1987 when we use a character as a subscript we must make it unsigned. */
1988 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1989 because it is impossible to allocate 4GB array for some encodings
1990 which have 4 byte character_set like UCS4. */
1992 # ifndef TRANSLATE
1993 # ifdef WCHAR
1994 # define TRANSLATE(d) \
1995 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1996 ? (char) translate[(unsigned char) (d)] : (d))
1997 # else /* BYTE */
1998 # define TRANSLATE(d) \
1999 (translate ? (char) translate[(unsigned char) (d)] : (d))
2000 # endif /* WCHAR */
2001 # endif
2004 /* Macros for outputting the compiled pattern into `buffer'. */
2006 /* If the buffer isn't allocated when it comes in, use this. */
2007 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2009 /* Make sure we have at least N more bytes of space in buffer. */
2010 # ifdef WCHAR
2011 # define GET_BUFFER_SPACE(n) \
2012 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2013 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2014 EXTEND_BUFFER ()
2015 # else /* BYTE */
2016 # define GET_BUFFER_SPACE(n) \
2017 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2018 EXTEND_BUFFER ()
2019 # endif /* WCHAR */
2021 /* Make sure we have one more byte of buffer space and then add C to it. */
2022 # define BUF_PUSH(c) \
2023 do { \
2024 GET_BUFFER_SPACE (1); \
2025 *b++ = (UCHAR_T) (c); \
2026 } while (0)
2029 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2030 # define BUF_PUSH_2(c1, c2) \
2031 do { \
2032 GET_BUFFER_SPACE (2); \
2033 *b++ = (UCHAR_T) (c1); \
2034 *b++ = (UCHAR_T) (c2); \
2035 } while (0)
2038 /* As with BUF_PUSH_2, except for three bytes. */
2039 # define BUF_PUSH_3(c1, c2, c3) \
2040 do { \
2041 GET_BUFFER_SPACE (3); \
2042 *b++ = (UCHAR_T) (c1); \
2043 *b++ = (UCHAR_T) (c2); \
2044 *b++ = (UCHAR_T) (c3); \
2045 } while (0)
2047 /* Store a jump with opcode OP at LOC to location TO. We store a
2048 relative address offset by the three bytes the jump itself occupies. */
2049 # define STORE_JUMP(op, loc, to) \
2050 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2052 /* Likewise, for a two-argument jump. */
2053 # define STORE_JUMP2(op, loc, to, arg) \
2054 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2056 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2057 # define INSERT_JUMP(op, loc, to) \
2058 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2060 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2061 # define INSERT_JUMP2(op, loc, to, arg) \
2062 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2063 arg, b)
2065 /* This is not an arbitrary limit: the arguments which represent offsets
2066 into the pattern are two bytes long. So if 2^16 bytes turns out to
2067 be too small, many things would have to change. */
2068 /* Any other compiler which, like MSC, has allocation limit below 2^16
2069 bytes will have to use approach similar to what was done below for
2070 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2071 reallocating to 0 bytes. Such thing is not going to work too well.
2072 You have been warned!! */
2073 # ifndef DEFINED_ONCE
2074 # if defined _MSC_VER && !defined WIN32
2075 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2076 The REALLOC define eliminates a flurry of conversion warnings,
2077 but is not required. */
2078 # define MAX_BUF_SIZE 65500L
2079 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2080 # else
2081 # define MAX_BUF_SIZE (1L << 16)
2082 # define REALLOC(p,s) realloc ((p), (s))
2083 # endif
2085 /* Extend the buffer by twice its current size via realloc and
2086 reset the pointers that pointed into the old block to point to the
2087 correct places in the new one. If extending the buffer results in it
2088 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2089 # if defined __BOUNDED_POINTERS__ && __BOUNDED_POINTERS__
2090 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2091 # define MOVE_BUFFER_POINTER(P) \
2092 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2093 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2094 else \
2096 SET_HIGH_BOUND (b); \
2097 SET_HIGH_BOUND (begalt); \
2098 if (fixup_alt_jump) \
2099 SET_HIGH_BOUND (fixup_alt_jump); \
2100 if (laststart) \
2101 SET_HIGH_BOUND (laststart); \
2102 if (pending_exact) \
2103 SET_HIGH_BOUND (pending_exact); \
2105 # else
2106 # define MOVE_BUFFER_POINTER(P) (P) += incr
2107 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2108 # endif
2109 # endif /* not DEFINED_ONCE */
2111 # ifdef WCHAR
2112 # define EXTEND_BUFFER() \
2113 do { \
2114 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2115 int wchar_count; \
2116 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2117 return REG_ESIZE; \
2118 bufp->allocated <<= 1; \
2119 if (bufp->allocated > MAX_BUF_SIZE) \
2120 bufp->allocated = MAX_BUF_SIZE; \
2121 /* How many characters the new buffer can have? */ \
2122 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2123 if (wchar_count == 0) wchar_count = 1; \
2124 /* Truncate the buffer to CHAR_T align. */ \
2125 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2126 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2127 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2128 if (COMPILED_BUFFER_VAR == NULL) \
2129 return REG_ESPACE; \
2130 /* If the buffer moved, move all the pointers into it. */ \
2131 if (old_buffer != COMPILED_BUFFER_VAR) \
2133 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2134 MOVE_BUFFER_POINTER (b); \
2135 MOVE_BUFFER_POINTER (begalt); \
2136 if (fixup_alt_jump) \
2137 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2138 if (laststart) \
2139 MOVE_BUFFER_POINTER (laststart); \
2140 if (pending_exact) \
2141 MOVE_BUFFER_POINTER (pending_exact); \
2143 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2144 } while (0)
2145 # else /* BYTE */
2146 # define EXTEND_BUFFER() \
2147 do { \
2148 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2149 if (bufp->allocated == MAX_BUF_SIZE) \
2150 return REG_ESIZE; \
2151 bufp->allocated <<= 1; \
2152 if (bufp->allocated > MAX_BUF_SIZE) \
2153 bufp->allocated = MAX_BUF_SIZE; \
2154 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2155 bufp->allocated); \
2156 if (COMPILED_BUFFER_VAR == NULL) \
2157 return REG_ESPACE; \
2158 /* If the buffer moved, move all the pointers into it. */ \
2159 if (old_buffer != COMPILED_BUFFER_VAR) \
2161 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2162 MOVE_BUFFER_POINTER (b); \
2163 MOVE_BUFFER_POINTER (begalt); \
2164 if (fixup_alt_jump) \
2165 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2166 if (laststart) \
2167 MOVE_BUFFER_POINTER (laststart); \
2168 if (pending_exact) \
2169 MOVE_BUFFER_POINTER (pending_exact); \
2171 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2172 } while (0)
2173 # endif /* WCHAR */
2175 # ifndef DEFINED_ONCE
2176 /* Since we have one byte reserved for the register number argument to
2177 {start,stop}_memory, the maximum number of groups we can report
2178 things about is what fits in that byte. */
2179 # define MAX_REGNUM 255
2181 /* But patterns can have more than `MAX_REGNUM' registers. We just
2182 ignore the excess. */
2183 typedef unsigned regnum_t;
2186 /* Macros for the compile stack. */
2188 /* Since offsets can go either forwards or backwards, this type needs to
2189 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2190 /* int may be not enough when sizeof(int) == 2. */
2191 typedef long pattern_offset_t;
2193 typedef struct
2195 pattern_offset_t begalt_offset;
2196 pattern_offset_t fixup_alt_jump;
2197 pattern_offset_t inner_group_offset;
2198 pattern_offset_t laststart_offset;
2199 regnum_t regnum;
2200 } compile_stack_elt_t;
2203 typedef struct
2205 compile_stack_elt_t *stack;
2206 unsigned size;
2207 unsigned avail; /* Offset of next open position. */
2208 } compile_stack_type;
2211 # define INIT_COMPILE_STACK_SIZE 32
2213 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2214 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2216 /* The next available element. */
2217 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2219 # endif /* not DEFINED_ONCE */
2221 /* Set the bit for character C in a list. */
2222 # ifndef DEFINED_ONCE
2223 # define SET_LIST_BIT(c) \
2224 (b[((unsigned char) (c)) / BYTEWIDTH] \
2225 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2226 # endif /* DEFINED_ONCE */
2228 /* Get the next unsigned number in the uncompiled pattern. */
2229 # define GET_UNSIGNED_NUMBER(num) \
2231 while (p != pend) \
2233 PATFETCH (c); \
2234 if (c < '0' || c > '9') \
2235 break; \
2236 if (num <= RE_DUP_MAX) \
2238 if (num < 0) \
2239 num = 0; \
2240 num = num * 10 + c - '0'; \
2245 # ifndef DEFINED_ONCE
2246 # if defined _LIBC || (defined WIDE_CHAR_SUPPORT && WIDE_CHAR_SUPPORT)
2247 /* The GNU C library provides support for user-defined character classes
2248 and the functions from ISO C amendement 1. */
2249 # ifdef CHARCLASS_NAME_MAX
2250 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2251 # else
2252 /* This shouldn't happen but some implementation might still have this
2253 problem. Use a reasonable default value. */
2254 # define CHAR_CLASS_MAX_LENGTH 256
2255 # endif
2257 # ifdef _LIBC
2258 # define IS_CHAR_CLASS(string) __wctype (string)
2259 # else
2260 # define IS_CHAR_CLASS(string) wctype (string)
2261 # endif
2262 # else
2263 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2265 # define IS_CHAR_CLASS(string) \
2266 (STREQ (string, "alpha") || STREQ (string, "upper") \
2267 || STREQ (string, "lower") || STREQ (string, "digit") \
2268 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2269 || STREQ (string, "space") || STREQ (string, "print") \
2270 || STREQ (string, "punct") || STREQ (string, "graph") \
2271 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2272 # endif
2273 # endif /* DEFINED_ONCE */
2275 # ifndef MATCH_MAY_ALLOCATE
2277 /* If we cannot allocate large objects within re_match_2_internal,
2278 we make the fail stack and register vectors global.
2279 The fail stack, we grow to the maximum size when a regexp
2280 is compiled.
2281 The register vectors, we adjust in size each time we
2282 compile a regexp, according to the number of registers it needs. */
2284 static PREFIX(fail_stack_type) fail_stack;
2286 /* Size with which the following vectors are currently allocated.
2287 That is so we can make them bigger as needed,
2288 but never make them smaller. */
2289 # ifdef DEFINED_ONCE
2290 static int regs_allocated_size;
2292 static const char ** regstart, ** regend;
2293 static const char ** old_regstart, ** old_regend;
2294 static const char **best_regstart, **best_regend;
2295 static const char **reg_dummy;
2296 # endif /* DEFINED_ONCE */
2298 static PREFIX(register_info_type) *PREFIX(reg_info);
2299 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2301 /* Make the register vectors big enough for NUM_REGS registers,
2302 but don't make them smaller. */
2304 static void
2305 PREFIX(regex_grow_registers) (num_regs)
2306 int num_regs;
2308 if (num_regs > regs_allocated_size)
2310 RETALLOC_IF (regstart, num_regs, const char *);
2311 RETALLOC_IF (regend, num_regs, const char *);
2312 RETALLOC_IF (old_regstart, num_regs, const char *);
2313 RETALLOC_IF (old_regend, num_regs, const char *);
2314 RETALLOC_IF (best_regstart, num_regs, const char *);
2315 RETALLOC_IF (best_regend, num_regs, const char *);
2316 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2317 RETALLOC_IF (reg_dummy, num_regs, const char *);
2318 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2320 regs_allocated_size = num_regs;
2324 # endif /* not MATCH_MAY_ALLOCATE */
2326 # ifndef DEFINED_ONCE
2327 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2328 compile_stack,
2329 regnum_t regnum));
2330 # endif /* not DEFINED_ONCE */
2332 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2333 Returns one of error codes defined in `regex.h', or zero for success.
2335 Assumes the `allocated' (and perhaps `buffer') and `translate'
2336 fields are set in BUFP on entry.
2338 If it succeeds, results are put in BUFP (if it returns an error, the
2339 contents of BUFP are undefined):
2340 `buffer' is the compiled pattern;
2341 `syntax' is set to SYNTAX;
2342 `used' is set to the length of the compiled pattern;
2343 `fastmap_accurate' is zero;
2344 `re_nsub' is the number of subexpressions in PATTERN;
2345 `not_bol' and `not_eol' are zero;
2347 The `fastmap' and `newline_anchor' fields are neither
2348 examined nor set. */
2350 /* Return, freeing storage we allocated. */
2351 # ifdef WCHAR
2352 # define FREE_STACK_RETURN(value) \
2353 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2354 # else
2355 # define FREE_STACK_RETURN(value) \
2356 return (free (compile_stack.stack), value)
2357 # endif /* WCHAR */
2359 static reg_errcode_t
2360 PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2361 const char *ARG_PREFIX(pattern);
2362 size_t ARG_PREFIX(size);
2363 reg_syntax_t syntax;
2364 struct re_pattern_buffer *bufp;
2366 /* We fetch characters from PATTERN here. Even though PATTERN is
2367 `char *' (i.e., signed), we declare these variables as unsigned, so
2368 they can be reliably used as array indices. */
2369 register UCHAR_T c, c1;
2371 #ifdef WCHAR
2372 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2373 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2374 size_t size;
2375 /* offset buffer for optimization. See convert_mbs_to_wc. */
2376 int *mbs_offset = NULL;
2377 /* It hold whether each wchar_t is binary data or not. */
2378 char *is_binary = NULL;
2379 /* A flag whether exactn is handling binary data or not. */
2380 char is_exactn_bin = FALSE;
2381 #endif /* WCHAR */
2383 /* A random temporary spot in PATTERN. */
2384 const CHAR_T *p1;
2386 /* Points to the end of the buffer, where we should append. */
2387 register UCHAR_T *b;
2389 /* Keeps track of unclosed groups. */
2390 compile_stack_type compile_stack;
2392 /* Points to the current (ending) position in the pattern. */
2393 #ifdef WCHAR
2394 const CHAR_T *p;
2395 const CHAR_T *pend;
2396 #else /* BYTE */
2397 const CHAR_T *p = pattern;
2398 const CHAR_T *pend = pattern + size;
2399 #endif /* WCHAR */
2401 /* How to translate the characters in the pattern. */
2402 RE_TRANSLATE_TYPE translate = bufp->translate;
2404 /* Address of the count-byte of the most recently inserted `exactn'
2405 command. This makes it possible to tell if a new exact-match
2406 character can be added to that command or if the character requires
2407 a new `exactn' command. */
2408 UCHAR_T *pending_exact = 0;
2410 /* Address of start of the most recently finished expression.
2411 This tells, e.g., postfix * where to find the start of its
2412 operand. Reset at the beginning of groups and alternatives. */
2413 UCHAR_T *laststart = 0;
2415 /* Address of beginning of regexp, or inside of last group. */
2416 UCHAR_T *begalt;
2418 /* Address of the place where a forward jump should go to the end of
2419 the containing expression. Each alternative of an `or' -- except the
2420 last -- ends with a forward jump of this sort. */
2421 UCHAR_T *fixup_alt_jump = 0;
2423 /* Counts open-groups as they are encountered. Remembered for the
2424 matching close-group on the compile stack, so the same register
2425 number is put in the stop_memory as the start_memory. */
2426 regnum_t regnum = 0;
2428 #ifdef WCHAR
2429 /* Initialize the wchar_t PATTERN and offset_buffer. */
2430 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2431 mbs_offset = TALLOC(csize + 1, int);
2432 is_binary = TALLOC(csize + 1, char);
2433 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2435 free(pattern);
2436 free(mbs_offset);
2437 free(is_binary);
2438 return REG_ESPACE;
2440 pattern[csize] = L'\0'; /* sentinel */
2441 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2442 pend = p + size;
2443 if (size < 0)
2445 free(pattern);
2446 free(mbs_offset);
2447 free(is_binary);
2448 return REG_BADPAT;
2450 #endif
2452 #ifdef DEBUG
2453 DEBUG_PRINT1 ("\nCompiling pattern: ");
2454 if (debug)
2456 unsigned debug_count;
2458 for (debug_count = 0; debug_count < size; debug_count++)
2459 PUT_CHAR (pattern[debug_count]);
2460 putchar ('\n');
2462 #endif /* DEBUG */
2464 /* Initialize the compile stack. */
2465 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2466 if (compile_stack.stack == NULL)
2468 #ifdef WCHAR
2469 free(pattern);
2470 free(mbs_offset);
2471 free(is_binary);
2472 #endif
2473 return REG_ESPACE;
2476 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2477 compile_stack.avail = 0;
2479 /* Initialize the pattern buffer. */
2480 bufp->syntax = syntax;
2481 bufp->fastmap_accurate = 0;
2482 bufp->not_bol = bufp->not_eol = 0;
2484 /* Set `used' to zero, so that if we return an error, the pattern
2485 printer (for debugging) will think there's no pattern. We reset it
2486 at the end. */
2487 bufp->used = 0;
2489 /* Always count groups, whether or not bufp->no_sub is set. */
2490 bufp->re_nsub = 0;
2492 #if !defined emacs && !defined SYNTAX_TABLE
2493 /* Initialize the syntax table. */
2494 init_syntax_once ();
2495 #endif
2497 if (bufp->allocated == 0)
2499 if (bufp->buffer)
2500 { /* If zero allocated, but buffer is non-null, try to realloc
2501 enough space. This loses if buffer's address is bogus, but
2502 that is the user's responsibility. */
2503 #ifdef WCHAR
2504 /* Free bufp->buffer and allocate an array for wchar_t pattern
2505 buffer. */
2506 free(bufp->buffer);
2507 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2508 UCHAR_T);
2509 #else
2510 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2511 #endif /* WCHAR */
2513 else
2514 { /* Caller did not allocate a buffer. Do it for them. */
2515 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2516 UCHAR_T);
2519 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2520 #ifdef WCHAR
2521 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2522 #endif /* WCHAR */
2523 bufp->allocated = INIT_BUF_SIZE;
2525 #ifdef WCHAR
2526 else
2527 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2528 #endif
2530 begalt = b = COMPILED_BUFFER_VAR;
2532 /* Loop through the uncompiled pattern until we're at the end. */
2533 while (p != pend)
2535 PATFETCH (c);
2537 switch (c)
2539 case '^':
2541 if ( /* If at start of pattern, it's an operator. */
2542 p == pattern + 1
2543 /* If context independent, it's an operator. */
2544 || syntax & RE_CONTEXT_INDEP_ANCHORS
2545 /* Otherwise, depends on what's come before. */
2546 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2547 BUF_PUSH (begline);
2548 else
2549 goto normal_char;
2551 break;
2554 case '$':
2556 if ( /* If at end of pattern, it's an operator. */
2557 p == pend
2558 /* If context independent, it's an operator. */
2559 || syntax & RE_CONTEXT_INDEP_ANCHORS
2560 /* Otherwise, depends on what's next. */
2561 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2562 BUF_PUSH (endline);
2563 else
2564 goto normal_char;
2566 break;
2569 case '+':
2570 case '?':
2571 if ((syntax & RE_BK_PLUS_QM)
2572 || (syntax & RE_LIMITED_OPS))
2573 goto normal_char;
2574 handle_plus:
2575 case '*':
2576 /* If there is no previous pattern... */
2577 if (!laststart)
2579 if (syntax & RE_CONTEXT_INVALID_OPS)
2580 FREE_STACK_RETURN (REG_BADRPT);
2581 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2582 goto normal_char;
2586 /* Are we optimizing this jump? */
2587 boolean keep_string_p = false;
2589 /* 1 means zero (many) matches is allowed. */
2590 char zero_times_ok = 0, many_times_ok = 0;
2592 /* If there is a sequence of repetition chars, collapse it
2593 down to just one (the right one). We can't combine
2594 interval operators with these because of, e.g., `a{2}*',
2595 which should only match an even number of `a's. */
2597 for (;;)
2599 zero_times_ok |= c != '+';
2600 many_times_ok |= c != '?';
2602 if (p == pend)
2603 break;
2605 PATFETCH (c);
2607 if (c == '*'
2608 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2611 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2613 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2615 PATFETCH (c1);
2616 if (!(c1 == '+' || c1 == '?'))
2618 PATUNFETCH;
2619 PATUNFETCH;
2620 break;
2623 c = c1;
2625 else
2627 PATUNFETCH;
2628 break;
2631 /* If we get here, we found another repeat character. */
2634 /* Star, etc. applied to an empty pattern is equivalent
2635 to an empty pattern. */
2636 if (!laststart)
2637 break;
2639 /* Now we know whether or not zero matches is allowed
2640 and also whether or not two or more matches is allowed. */
2641 if (many_times_ok)
2642 { /* More than one repetition is allowed, so put in at the
2643 end a backward relative jump from `b' to before the next
2644 jump we're going to put in below (which jumps from
2645 laststart to after this jump).
2647 But if we are at the `*' in the exact sequence `.*\n',
2648 insert an unconditional jump backwards to the .,
2649 instead of the beginning of the loop. This way we only
2650 push a failure point once, instead of every time
2651 through the loop. */
2652 assert (p - 1 > pattern);
2654 /* Allocate the space for the jump. */
2655 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2657 /* We know we are not at the first character of the pattern,
2658 because laststart was nonzero. And we've already
2659 incremented `p', by the way, to be the character after
2660 the `*'. Do we have to do something analogous here
2661 for null bytes, because of RE_DOT_NOT_NULL? */
2662 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2663 && zero_times_ok
2664 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2665 && !(syntax & RE_DOT_NEWLINE))
2666 { /* We have .*\n. */
2667 STORE_JUMP (jump, b, laststart);
2668 keep_string_p = true;
2670 else
2671 /* Anything else. */
2672 STORE_JUMP (maybe_pop_jump, b, laststart -
2673 (1 + OFFSET_ADDRESS_SIZE));
2675 /* We've added more stuff to the buffer. */
2676 b += 1 + OFFSET_ADDRESS_SIZE;
2679 /* On failure, jump from laststart to b + 3, which will be the
2680 end of the buffer after this jump is inserted. */
2681 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2682 'b + 3'. */
2683 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2684 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2685 : on_failure_jump,
2686 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2687 pending_exact = 0;
2688 b += 1 + OFFSET_ADDRESS_SIZE;
2690 if (!zero_times_ok)
2692 /* At least one repetition is required, so insert a
2693 `dummy_failure_jump' before the initial
2694 `on_failure_jump' instruction of the loop. This
2695 effects a skip over that instruction the first time
2696 we hit that loop. */
2697 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2698 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2699 2 + 2 * OFFSET_ADDRESS_SIZE);
2700 b += 1 + OFFSET_ADDRESS_SIZE;
2703 break;
2706 case '.':
2707 laststart = b;
2708 BUF_PUSH (anychar);
2709 break;
2712 case '[':
2714 boolean had_char_class = false;
2715 #ifdef WCHAR
2716 CHAR_T range_start = 0xffffffff;
2717 #else
2718 unsigned int range_start = 0xffffffff;
2719 #endif
2720 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2722 #ifdef WCHAR
2723 /* We assume a charset(_not) structure as a wchar_t array.
2724 charset[0] = (re_opcode_t) charset(_not)
2725 charset[1] = l (= length of char_classes)
2726 charset[2] = m (= length of collating_symbols)
2727 charset[3] = n (= length of equivalence_classes)
2728 charset[4] = o (= length of char_ranges)
2729 charset[5] = p (= length of chars)
2731 charset[6] = char_class (wctype_t)
2732 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2734 charset[l+5] = char_class (wctype_t)
2736 charset[l+6] = collating_symbol (wchar_t)
2738 charset[l+m+5] = collating_symbol (wchar_t)
2739 ifdef _LIBC we use the index if
2740 _NL_COLLATE_SYMB_EXTRAMB instead of
2741 wchar_t string.
2743 charset[l+m+6] = equivalence_classes (wchar_t)
2745 charset[l+m+n+5] = equivalence_classes (wchar_t)
2746 ifdef _LIBC we use the index in
2747 _NL_COLLATE_WEIGHT instead of
2748 wchar_t string.
2750 charset[l+m+n+6] = range_start
2751 charset[l+m+n+7] = range_end
2753 charset[l+m+n+2o+4] = range_start
2754 charset[l+m+n+2o+5] = range_end
2755 ifdef _LIBC we use the value looked up
2756 in _NL_COLLATE_COLLSEQ instead of
2757 wchar_t character.
2759 charset[l+m+n+2o+6] = char
2761 charset[l+m+n+2o+p+5] = char
2765 /* We need at least 6 spaces: the opcode, the length of
2766 char_classes, the length of collating_symbols, the length of
2767 equivalence_classes, the length of char_ranges, the length of
2768 chars. */
2769 GET_BUFFER_SPACE (6);
2771 /* Save b as laststart. And We use laststart as the pointer
2772 to the first element of the charset here.
2773 In other words, laststart[i] indicates charset[i]. */
2774 laststart = b;
2776 /* We test `*p == '^' twice, instead of using an if
2777 statement, so we only need one BUF_PUSH. */
2778 BUF_PUSH (*p == '^' ? charset_not : charset);
2779 if (*p == '^')
2780 p++;
2782 /* Push the length of char_classes, the length of
2783 collating_symbols, the length of equivalence_classes, the
2784 length of char_ranges and the length of chars. */
2785 BUF_PUSH_3 (0, 0, 0);
2786 BUF_PUSH_2 (0, 0);
2788 /* Remember the first position in the bracket expression. */
2789 p1 = p;
2791 /* charset_not matches newline according to a syntax bit. */
2792 if ((re_opcode_t) b[-6] == charset_not
2793 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2795 BUF_PUSH('\n');
2796 laststart[5]++; /* Update the length of characters */
2799 /* Read in characters and ranges, setting map bits. */
2800 for (;;)
2802 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2804 PATFETCH (c);
2806 /* \ might escape characters inside [...] and [^...]. */
2807 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2809 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2811 PATFETCH (c1);
2812 BUF_PUSH(c1);
2813 laststart[5]++; /* Update the length of chars */
2814 range_start = c1;
2815 continue;
2818 /* Could be the end of the bracket expression. If it's
2819 not (i.e., when the bracket expression is `[]' so
2820 far), the ']' character bit gets set way below. */
2821 if (c == ']' && p != p1 + 1)
2822 break;
2824 /* Look ahead to see if it's a range when the last thing
2825 was a character class. */
2826 if (had_char_class && c == '-' && *p != ']')
2827 FREE_STACK_RETURN (REG_ERANGE);
2829 /* Look ahead to see if it's a range when the last thing
2830 was a character: if this is a hyphen not at the
2831 beginning or the end of a list, then it's the range
2832 operator. */
2833 if (c == '-'
2834 && !(p - 2 >= pattern && p[-2] == '[')
2835 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2836 && *p != ']')
2838 reg_errcode_t ret;
2839 /* Allocate the space for range_start and range_end. */
2840 GET_BUFFER_SPACE (2);
2841 /* Update the pointer to indicate end of buffer. */
2842 b += 2;
2843 ret = wcs_compile_range (range_start, &p, pend, translate,
2844 syntax, b, laststart);
2845 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2846 range_start = 0xffffffff;
2848 else if (p[0] == '-' && p[1] != ']')
2849 { /* This handles ranges made up of characters only. */
2850 reg_errcode_t ret;
2852 /* Move past the `-'. */
2853 PATFETCH (c1);
2854 /* Allocate the space for range_start and range_end. */
2855 GET_BUFFER_SPACE (2);
2856 /* Update the pointer to indicate end of buffer. */
2857 b += 2;
2858 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2859 laststart);
2860 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2861 range_start = 0xffffffff;
2864 /* See if we're at the beginning of a possible character
2865 class. */
2866 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2867 { /* Leave room for the null. */
2868 char str[CHAR_CLASS_MAX_LENGTH + 1];
2870 PATFETCH (c);
2871 c1 = 0;
2873 /* If pattern is `[[:'. */
2874 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2876 for (;;)
2878 PATFETCH (c);
2879 if ((c == ':' && *p == ']') || p == pend)
2880 break;
2881 if (c1 < CHAR_CLASS_MAX_LENGTH)
2882 str[c1++] = c;
2883 else
2884 /* This is in any case an invalid class name. */
2885 str[0] = '\0';
2887 str[c1] = '\0';
2889 /* If isn't a word bracketed by `[:' and `:]':
2890 undo the ending character, the letters, and leave
2891 the leading `:' and `[' (but store them as character). */
2892 if (c == ':' && *p == ']')
2894 wctype_t wt;
2895 uintptr_t alignedp;
2897 /* Query the character class as wctype_t. */
2898 wt = IS_CHAR_CLASS (str);
2899 if (wt == 0)
2900 FREE_STACK_RETURN (REG_ECTYPE);
2902 /* Throw away the ] at the end of the character
2903 class. */
2904 PATFETCH (c);
2906 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2908 /* Allocate the space for character class. */
2909 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2910 /* Update the pointer to indicate end of buffer. */
2911 b += CHAR_CLASS_SIZE;
2912 /* Move data which follow character classes
2913 not to violate the data. */
2914 insert_space(CHAR_CLASS_SIZE,
2915 laststart + 6 + laststart[1],
2916 b - 1);
2917 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2918 + __alignof__(wctype_t) - 1)
2919 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2920 /* Store the character class. */
2921 *((wctype_t*)alignedp) = wt;
2922 /* Update length of char_classes */
2923 laststart[1] += CHAR_CLASS_SIZE;
2925 had_char_class = true;
2927 else
2929 c1++;
2930 while (c1--)
2931 PATUNFETCH;
2932 BUF_PUSH ('[');
2933 BUF_PUSH (':');
2934 laststart[5] += 2; /* Update the length of characters */
2935 range_start = ':';
2936 had_char_class = false;
2939 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2940 || *p == '.'))
2942 CHAR_T str[128]; /* Should be large enough. */
2943 CHAR_T delim = *p; /* '=' or '.' */
2944 # ifdef _LIBC
2945 uint32_t nrules =
2946 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2947 # endif
2948 PATFETCH (c);
2949 c1 = 0;
2951 /* If pattern is `[[=' or '[[.'. */
2952 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2954 for (;;)
2956 PATFETCH (c);
2957 if ((c == delim && *p == ']') || p == pend)
2958 break;
2959 if (c1 < sizeof (str) - 1)
2960 str[c1++] = c;
2961 else
2962 /* This is in any case an invalid class name. */
2963 str[0] = '\0';
2965 str[c1] = '\0';
2967 if (c == delim && *p == ']' && str[0] != '\0')
2969 unsigned int i, offset;
2970 /* If we have no collation data we use the default
2971 collation in which each character is in a class
2972 by itself. It also means that ASCII is the
2973 character set and therefore we cannot have character
2974 with more than one byte in the multibyte
2975 representation. */
2977 /* If not defined _LIBC, we push the name and
2978 `\0' for the sake of matching performance. */
2979 int datasize = c1 + 1;
2981 # ifdef _LIBC
2982 int32_t idx = 0;
2983 if (nrules == 0)
2984 # endif
2986 if (c1 != 1)
2987 FREE_STACK_RETURN (REG_ECOLLATE);
2989 # ifdef _LIBC
2990 else
2992 const int32_t *table;
2993 const int32_t *weights;
2994 const int32_t *extra;
2995 const int32_t *indirect;
2996 wint_t *cp;
2998 /* This #include defines a local function! */
2999 # include <locale/weightwc.h>
3001 if(delim == '=')
3003 /* We push the index for equivalence class. */
3004 cp = (wint_t*)str;
3006 table = (const int32_t *)
3007 _NL_CURRENT (LC_COLLATE,
3008 _NL_COLLATE_TABLEWC);
3009 weights = (const int32_t *)
3010 _NL_CURRENT (LC_COLLATE,
3011 _NL_COLLATE_WEIGHTWC);
3012 extra = (const int32_t *)
3013 _NL_CURRENT (LC_COLLATE,
3014 _NL_COLLATE_EXTRAWC);
3015 indirect = (const int32_t *)
3016 _NL_CURRENT (LC_COLLATE,
3017 _NL_COLLATE_INDIRECTWC);
3019 idx = findidx ((const wint_t**)&cp);
3020 if (idx == 0 || cp < (wint_t*) str + c1)
3021 /* This is no valid character. */
3022 FREE_STACK_RETURN (REG_ECOLLATE);
3024 str[0] = (wchar_t)idx;
3026 else /* delim == '.' */
3028 /* We push collation sequence value
3029 for collating symbol. */
3030 int32_t table_size;
3031 const int32_t *symb_table;
3032 const unsigned char *extra;
3033 int32_t idx;
3034 int32_t elem;
3035 int32_t second;
3036 int32_t hash;
3037 char char_str[c1];
3039 /* We have to convert the name to a single-byte
3040 string. This is possible since the names
3041 consist of ASCII characters and the internal
3042 representation is UCS4. */
3043 for (i = 0; i < c1; ++i)
3044 char_str[i] = str[i];
3046 table_size =
3047 _NL_CURRENT_WORD (LC_COLLATE,
3048 _NL_COLLATE_SYMB_HASH_SIZEMB);
3049 symb_table = (const int32_t *)
3050 _NL_CURRENT (LC_COLLATE,
3051 _NL_COLLATE_SYMB_TABLEMB);
3052 extra = (const unsigned char *)
3053 _NL_CURRENT (LC_COLLATE,
3054 _NL_COLLATE_SYMB_EXTRAMB);
3056 /* Locate the character in the hashing table. */
3057 hash = elem_hash (char_str, c1);
3059 idx = 0;
3060 elem = hash % table_size;
3061 second = hash % (table_size - 2);
3062 while (symb_table[2 * elem] != 0)
3064 /* First compare the hashing value. */
3065 if (symb_table[2 * elem] == hash
3066 && c1 == extra[symb_table[2 * elem + 1]]
3067 && memcmp (char_str,
3068 &extra[symb_table[2 * elem + 1]
3069 + 1], c1) == 0)
3071 /* Yep, this is the entry. */
3072 idx = symb_table[2 * elem + 1];
3073 idx += 1 + extra[idx];
3074 break;
3077 /* Next entry. */
3078 elem += second;
3081 if (symb_table[2 * elem] != 0)
3083 /* Compute the index of the byte sequence
3084 in the table. */
3085 idx += 1 + extra[idx];
3086 /* Adjust for the alignment. */
3087 idx = (idx + 3) & ~3;
3089 str[0] = (wchar_t) idx + 4;
3091 else if (symb_table[2 * elem] == 0 && c1 == 1)
3093 /* No valid character. Match it as a
3094 single byte character. */
3095 had_char_class = false;
3096 BUF_PUSH(str[0]);
3097 /* Update the length of characters */
3098 laststart[5]++;
3099 range_start = str[0];
3101 /* Throw away the ] at the end of the
3102 collating symbol. */
3103 PATFETCH (c);
3104 /* exit from the switch block. */
3105 continue;
3107 else
3108 FREE_STACK_RETURN (REG_ECOLLATE);
3110 datasize = 1;
3112 # endif
3113 /* Throw away the ] at the end of the equivalence
3114 class (or collating symbol). */
3115 PATFETCH (c);
3117 /* Allocate the space for the equivalence class
3118 (or collating symbol) (and '\0' if needed). */
3119 GET_BUFFER_SPACE(datasize);
3120 /* Update the pointer to indicate end of buffer. */
3121 b += datasize;
3123 if (delim == '=')
3124 { /* equivalence class */
3125 /* Calculate the offset of char_ranges,
3126 which is next to equivalence_classes. */
3127 offset = laststart[1] + laststart[2]
3128 + laststart[3] +6;
3129 /* Insert space. */
3130 insert_space(datasize, laststart + offset, b - 1);
3132 /* Write the equivalence_class and \0. */
3133 for (i = 0 ; i < datasize ; i++)
3134 laststart[offset + i] = str[i];
3136 /* Update the length of equivalence_classes. */
3137 laststart[3] += datasize;
3138 had_char_class = true;
3140 else /* delim == '.' */
3141 { /* collating symbol */
3142 /* Calculate the offset of the equivalence_classes,
3143 which is next to collating_symbols. */
3144 offset = laststart[1] + laststart[2] + 6;
3145 /* Insert space and write the collationg_symbol
3146 and \0. */
3147 insert_space(datasize, laststart + offset, b-1);
3148 for (i = 0 ; i < datasize ; i++)
3149 laststart[offset + i] = str[i];
3151 /* In re_match_2_internal if range_start < -1, we
3152 assume -range_start is the offset of the
3153 collating symbol which is specified as
3154 the character of the range start. So we assign
3155 -(laststart[1] + laststart[2] + 6) to
3156 range_start. */
3157 range_start = -(laststart[1] + laststart[2] + 6);
3158 /* Update the length of collating_symbol. */
3159 laststart[2] += datasize;
3160 had_char_class = false;
3163 else
3165 c1++;
3166 while (c1--)
3167 PATUNFETCH;
3168 BUF_PUSH ('[');
3169 BUF_PUSH (delim);
3170 laststart[5] += 2; /* Update the length of characters */
3171 range_start = delim;
3172 had_char_class = false;
3175 else
3177 had_char_class = false;
3178 BUF_PUSH(c);
3179 laststart[5]++; /* Update the length of characters */
3180 range_start = c;
3184 #else /* BYTE */
3185 /* Ensure that we have enough space to push a charset: the
3186 opcode, the length count, and the bitset; 34 bytes in all. */
3187 GET_BUFFER_SPACE (34);
3189 laststart = b;
3191 /* We test `*p == '^' twice, instead of using an if
3192 statement, so we only need one BUF_PUSH. */
3193 BUF_PUSH (*p == '^' ? charset_not : charset);
3194 if (*p == '^')
3195 p++;
3197 /* Remember the first position in the bracket expression. */
3198 p1 = p;
3200 /* Push the number of bytes in the bitmap. */
3201 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3203 /* Clear the whole map. */
3204 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3206 /* charset_not matches newline according to a syntax bit. */
3207 if ((re_opcode_t) b[-2] == charset_not
3208 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3209 SET_LIST_BIT ('\n');
3211 /* Read in characters and ranges, setting map bits. */
3212 for (;;)
3214 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3216 PATFETCH (c);
3218 /* \ might escape characters inside [...] and [^...]. */
3219 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3221 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3223 PATFETCH (c1);
3224 SET_LIST_BIT (c1);
3225 range_start = c1;
3226 continue;
3229 /* Could be the end of the bracket expression. If it's
3230 not (i.e., when the bracket expression is `[]' so
3231 far), the ']' character bit gets set way below. */
3232 if (c == ']' && p != p1 + 1)
3233 break;
3235 /* Look ahead to see if it's a range when the last thing
3236 was a character class. */
3237 if (had_char_class && c == '-' && *p != ']')
3238 FREE_STACK_RETURN (REG_ERANGE);
3240 /* Look ahead to see if it's a range when the last thing
3241 was a character: if this is a hyphen not at the
3242 beginning or the end of a list, then it's the range
3243 operator. */
3244 if (c == '-'
3245 && !(p - 2 >= pattern && p[-2] == '[')
3246 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3247 && *p != ']')
3249 reg_errcode_t ret
3250 = byte_compile_range (range_start, &p, pend, translate,
3251 syntax, b);
3252 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3253 range_start = 0xffffffff;
3256 else if (p[0] == '-' && p[1] != ']')
3257 { /* This handles ranges made up of characters only. */
3258 reg_errcode_t ret;
3260 /* Move past the `-'. */
3261 PATFETCH (c1);
3263 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3264 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3265 range_start = 0xffffffff;
3268 /* See if we're at the beginning of a possible character
3269 class. */
3271 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3272 { /* Leave room for the null. */
3273 char str[CHAR_CLASS_MAX_LENGTH + 1];
3275 PATFETCH (c);
3276 c1 = 0;
3278 /* If pattern is `[[:'. */
3279 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3281 for (;;)
3283 PATFETCH (c);
3284 if ((c == ':' && *p == ']') || p == pend)
3285 break;
3286 if (c1 < CHAR_CLASS_MAX_LENGTH)
3287 str[c1++] = c;
3288 else
3289 /* This is in any case an invalid class name. */
3290 str[0] = '\0';
3292 str[c1] = '\0';
3294 /* If isn't a word bracketed by `[:' and `:]':
3295 undo the ending character, the letters, and leave
3296 the leading `:' and `[' (but set bits for them). */
3297 if (c == ':' && *p == ']')
3299 # if defined _LIBC || (defined WIDE_CHAR_SUPPORT && WIDE_CHAR_SUPPORT)
3300 boolean is_lower = STREQ (str, "lower");
3301 boolean is_upper = STREQ (str, "upper");
3302 wctype_t wt;
3303 int ch;
3305 wt = IS_CHAR_CLASS (str);
3306 if (wt == 0)
3307 FREE_STACK_RETURN (REG_ECTYPE);
3309 /* Throw away the ] at the end of the character
3310 class. */
3311 PATFETCH (c);
3313 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3315 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3317 # ifdef _LIBC
3318 if (__iswctype (__btowc (ch), wt))
3319 SET_LIST_BIT (ch);
3320 # else
3321 if (iswctype (btowc (ch), wt))
3322 SET_LIST_BIT (ch);
3323 # endif
3325 if (translate && (is_upper || is_lower)
3326 && (ISUPPER (ch) || ISLOWER (ch)))
3327 SET_LIST_BIT (ch);
3330 had_char_class = true;
3331 # else
3332 int ch;
3333 boolean is_alnum = STREQ (str, "alnum");
3334 boolean is_alpha = STREQ (str, "alpha");
3335 boolean is_blank = STREQ (str, "blank");
3336 boolean is_cntrl = STREQ (str, "cntrl");
3337 boolean is_digit = STREQ (str, "digit");
3338 boolean is_graph = STREQ (str, "graph");
3339 boolean is_lower = STREQ (str, "lower");
3340 boolean is_print = STREQ (str, "print");
3341 boolean is_punct = STREQ (str, "punct");
3342 boolean is_space = STREQ (str, "space");
3343 boolean is_upper = STREQ (str, "upper");
3344 boolean is_xdigit = STREQ (str, "xdigit");
3346 if (!IS_CHAR_CLASS (str))
3347 FREE_STACK_RETURN (REG_ECTYPE);
3349 /* Throw away the ] at the end of the character
3350 class. */
3351 PATFETCH (c);
3353 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3355 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3357 /* This was split into 3 if's to
3358 avoid an arbitrary limit in some compiler. */
3359 if ( (is_alnum && ISALNUM (ch))
3360 || (is_alpha && ISALPHA (ch))
3361 || (is_blank && ISBLANK (ch))
3362 || (is_cntrl && ISCNTRL (ch)))
3363 SET_LIST_BIT (ch);
3364 if ( (is_digit && ISDIGIT (ch))
3365 || (is_graph && ISGRAPH (ch))
3366 || (is_lower && ISLOWER (ch))
3367 || (is_print && ISPRINT (ch)))
3368 SET_LIST_BIT (ch);
3369 if ( (is_punct && ISPUNCT (ch))
3370 || (is_space && ISSPACE (ch))
3371 || (is_upper && ISUPPER (ch))
3372 || (is_xdigit && ISXDIGIT (ch)))
3373 SET_LIST_BIT (ch);
3374 if ( translate && (is_upper || is_lower)
3375 && (ISUPPER (ch) || ISLOWER (ch)))
3376 SET_LIST_BIT (ch);
3378 had_char_class = true;
3379 # endif /* libc || wctype.h */
3381 else
3383 c1++;
3384 while (c1--)
3385 PATUNFETCH;
3386 SET_LIST_BIT ('[');
3387 SET_LIST_BIT (':');
3388 range_start = ':';
3389 had_char_class = false;
3392 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3394 unsigned char str[MB_LEN_MAX + 1];
3395 # ifdef _LIBC
3396 uint32_t nrules =
3397 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3398 # endif
3400 PATFETCH (c);
3401 c1 = 0;
3403 /* If pattern is `[[='. */
3404 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3406 for (;;)
3408 PATFETCH (c);
3409 if ((c == '=' && *p == ']') || p == pend)
3410 break;
3411 if (c1 < MB_LEN_MAX)
3412 str[c1++] = c;
3413 else
3414 /* This is in any case an invalid class name. */
3415 str[0] = '\0';
3417 str[c1] = '\0';
3419 if (c == '=' && *p == ']' && str[0] != '\0')
3421 /* If we have no collation data we use the default
3422 collation in which each character is in a class
3423 by itself. It also means that ASCII is the
3424 character set and therefore we cannot have character
3425 with more than one byte in the multibyte
3426 representation. */
3427 # ifdef _LIBC
3428 if (nrules == 0)
3429 # endif
3431 if (c1 != 1)
3432 FREE_STACK_RETURN (REG_ECOLLATE);
3434 /* Throw away the ] at the end of the equivalence
3435 class. */
3436 PATFETCH (c);
3438 /* Set the bit for the character. */
3439 SET_LIST_BIT (str[0]);
3441 # ifdef _LIBC
3442 else
3444 /* Try to match the byte sequence in `str' against
3445 those known to the collate implementation.
3446 First find out whether the bytes in `str' are
3447 actually from exactly one character. */
3448 const int32_t *table;
3449 const unsigned char *weights;
3450 const unsigned char *extra;
3451 const int32_t *indirect;
3452 int32_t idx;
3453 const unsigned char *cp = str;
3454 int ch;
3456 /* This #include defines a local function! */
3457 # include <locale/weight.h>
3459 table = (const int32_t *)
3460 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3461 weights = (const unsigned char *)
3462 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3463 extra = (const unsigned char *)
3464 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3465 indirect = (const int32_t *)
3466 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3468 idx = findidx (&cp);
3469 if (idx == 0 || cp < str + c1)
3470 /* This is no valid character. */
3471 FREE_STACK_RETURN (REG_ECOLLATE);
3473 /* Throw away the ] at the end of the equivalence
3474 class. */
3475 PATFETCH (c);
3477 /* Now we have to go throught the whole table
3478 and find all characters which have the same
3479 first level weight.
3481 XXX Note that this is not entirely correct.
3482 we would have to match multibyte sequences
3483 but this is not possible with the current
3484 implementation. */
3485 for (ch = 1; ch < 256; ++ch)
3486 /* XXX This test would have to be changed if we
3487 would allow matching multibyte sequences. */
3488 if (table[ch] > 0)
3490 int32_t idx2 = table[ch];
3491 size_t len = weights[idx2];
3493 /* Test whether the lenghts match. */
3494 if (weights[idx] == len)
3496 /* They do. New compare the bytes of
3497 the weight. */
3498 size_t cnt = 0;
3500 while (cnt < len
3501 && (weights[idx + 1 + cnt]
3502 == weights[idx2 + 1 + cnt]))
3503 ++cnt;
3505 if (cnt == len)
3506 /* They match. Mark the character as
3507 acceptable. */
3508 SET_LIST_BIT (ch);
3512 # endif
3513 had_char_class = true;
3515 else
3517 c1++;
3518 while (c1--)
3519 PATUNFETCH;
3520 SET_LIST_BIT ('[');
3521 SET_LIST_BIT ('=');
3522 range_start = '=';
3523 had_char_class = false;
3526 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3528 unsigned char str[128]; /* Should be large enough. */
3529 # ifdef _LIBC
3530 uint32_t nrules =
3531 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3532 # endif
3534 PATFETCH (c);
3535 c1 = 0;
3537 /* If pattern is `[[.'. */
3538 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3540 for (;;)
3542 PATFETCH (c);
3543 if ((c == '.' && *p == ']') || p == pend)
3544 break;
3545 if (c1 < sizeof (str))
3546 str[c1++] = c;
3547 else
3548 /* This is in any case an invalid class name. */
3549 str[0] = '\0';
3551 str[c1] = '\0';
3553 if (c == '.' && *p == ']' && str[0] != '\0')
3555 /* If we have no collation data we use the default
3556 collation in which each character is the name
3557 for its own class which contains only the one
3558 character. It also means that ASCII is the
3559 character set and therefore we cannot have character
3560 with more than one byte in the multibyte
3561 representation. */
3562 # ifdef _LIBC
3563 if (nrules == 0)
3564 # endif
3566 if (c1 != 1)
3567 FREE_STACK_RETURN (REG_ECOLLATE);
3569 /* Throw away the ] at the end of the equivalence
3570 class. */
3571 PATFETCH (c);
3573 /* Set the bit for the character. */
3574 SET_LIST_BIT (str[0]);
3575 range_start = ((const unsigned char *) str)[0];
3577 # ifdef _LIBC
3578 else
3580 /* Try to match the byte sequence in `str' against
3581 those known to the collate implementation.
3582 First find out whether the bytes in `str' are
3583 actually from exactly one character. */
3584 int32_t table_size;
3585 const int32_t *symb_table;
3586 const unsigned char *extra;
3587 int32_t idx;
3588 int32_t elem;
3589 int32_t second;
3590 int32_t hash;
3592 table_size =
3593 _NL_CURRENT_WORD (LC_COLLATE,
3594 _NL_COLLATE_SYMB_HASH_SIZEMB);
3595 symb_table = (const int32_t *)
3596 _NL_CURRENT (LC_COLLATE,
3597 _NL_COLLATE_SYMB_TABLEMB);
3598 extra = (const unsigned char *)
3599 _NL_CURRENT (LC_COLLATE,
3600 _NL_COLLATE_SYMB_EXTRAMB);
3602 /* Locate the character in the hashing table. */
3603 hash = elem_hash (str, c1);
3605 idx = 0;
3606 elem = hash % table_size;
3607 second = hash % (table_size - 2);
3608 while (symb_table[2 * elem] != 0)
3610 /* First compare the hashing value. */
3611 if (symb_table[2 * elem] == hash
3612 && c1 == extra[symb_table[2 * elem + 1]]
3613 && memcmp (str,
3614 &extra[symb_table[2 * elem + 1]
3615 + 1],
3616 c1) == 0)
3618 /* Yep, this is the entry. */
3619 idx = symb_table[2 * elem + 1];
3620 idx += 1 + extra[idx];
3621 break;
3624 /* Next entry. */
3625 elem += second;
3628 if (symb_table[2 * elem] == 0)
3629 /* This is no valid character. */
3630 FREE_STACK_RETURN (REG_ECOLLATE);
3632 /* Throw away the ] at the end of the equivalence
3633 class. */
3634 PATFETCH (c);
3636 /* Now add the multibyte character(s) we found
3637 to the accept list.
3639 XXX Note that this is not entirely correct.
3640 we would have to match multibyte sequences
3641 but this is not possible with the current
3642 implementation. Also, we have to match
3643 collating symbols, which expand to more than
3644 one file, as a whole and not allow the
3645 individual bytes. */
3646 c1 = extra[idx++];
3647 if (c1 == 1)
3648 range_start = extra[idx];
3649 while (c1-- > 0)
3651 SET_LIST_BIT (extra[idx]);
3652 ++idx;
3655 # endif
3656 had_char_class = false;
3658 else
3660 c1++;
3661 while (c1--)
3662 PATUNFETCH;
3663 SET_LIST_BIT ('[');
3664 SET_LIST_BIT ('.');
3665 range_start = '.';
3666 had_char_class = false;
3669 else
3671 had_char_class = false;
3672 SET_LIST_BIT (c);
3673 range_start = c;
3677 /* Discard any (non)matching list bytes that are all 0 at the
3678 end of the map. Decrease the map-length byte too. */
3679 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3680 b[-1]--;
3681 b += b[-1];
3682 #endif /* WCHAR */
3684 break;
3687 case '(':
3688 if (syntax & RE_NO_BK_PARENS)
3689 goto handle_open;
3690 else
3691 goto normal_char;
3694 case ')':
3695 if (syntax & RE_NO_BK_PARENS)
3696 goto handle_close;
3697 else
3698 goto normal_char;
3701 case '\n':
3702 if (syntax & RE_NEWLINE_ALT)
3703 goto handle_alt;
3704 else
3705 goto normal_char;
3708 case '|':
3709 if (syntax & RE_NO_BK_VBAR)
3710 goto handle_alt;
3711 else
3712 goto normal_char;
3715 case '{':
3716 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3717 goto handle_interval;
3718 else
3719 goto normal_char;
3722 case '\\':
3723 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3725 /* Do not translate the character after the \, so that we can
3726 distinguish, e.g., \B from \b, even if we normally would
3727 translate, e.g., B to b. */
3728 PATFETCH_RAW (c);
3730 switch (c)
3732 case '(':
3733 if (syntax & RE_NO_BK_PARENS)
3734 goto normal_backslash;
3736 handle_open:
3737 bufp->re_nsub++;
3738 regnum++;
3740 if (COMPILE_STACK_FULL)
3742 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3743 compile_stack_elt_t);
3744 if (compile_stack.stack == NULL) return REG_ESPACE;
3746 compile_stack.size <<= 1;
3749 /* These are the values to restore when we hit end of this
3750 group. They are all relative offsets, so that if the
3751 whole pattern moves because of realloc, they will still
3752 be valid. */
3753 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3754 COMPILE_STACK_TOP.fixup_alt_jump
3755 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3756 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3757 COMPILE_STACK_TOP.regnum = regnum;
3759 /* We will eventually replace the 0 with the number of
3760 groups inner to this one. But do not push a
3761 start_memory for groups beyond the last one we can
3762 represent in the compiled pattern. */
3763 if (regnum <= MAX_REGNUM)
3765 COMPILE_STACK_TOP.inner_group_offset = b
3766 - COMPILED_BUFFER_VAR + 2;
3767 BUF_PUSH_3 (start_memory, regnum, 0);
3770 compile_stack.avail++;
3772 fixup_alt_jump = 0;
3773 laststart = 0;
3774 begalt = b;
3775 /* If we've reached MAX_REGNUM groups, then this open
3776 won't actually generate any code, so we'll have to
3777 clear pending_exact explicitly. */
3778 pending_exact = 0;
3779 break;
3782 case ')':
3783 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3785 if (COMPILE_STACK_EMPTY)
3787 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3788 goto normal_backslash;
3789 else
3790 FREE_STACK_RETURN (REG_ERPAREN);
3793 handle_close:
3794 if (fixup_alt_jump)
3795 { /* Push a dummy failure point at the end of the
3796 alternative for a possible future
3797 `pop_failure_jump' to pop. See comments at
3798 `push_dummy_failure' in `re_match_2'. */
3799 BUF_PUSH (push_dummy_failure);
3801 /* We allocated space for this jump when we assigned
3802 to `fixup_alt_jump', in the `handle_alt' case below. */
3803 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3806 /* See similar code for backslashed left paren above. */
3807 if (COMPILE_STACK_EMPTY)
3809 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3810 goto normal_char;
3811 else
3812 FREE_STACK_RETURN (REG_ERPAREN);
3815 /* Since we just checked for an empty stack above, this
3816 ``can't happen''. */
3817 assert (compile_stack.avail != 0);
3819 /* We don't just want to restore into `regnum', because
3820 later groups should continue to be numbered higher,
3821 as in `(ab)c(de)' -- the second group is #2. */
3822 regnum_t this_group_regnum;
3824 compile_stack.avail--;
3825 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3826 fixup_alt_jump
3827 = COMPILE_STACK_TOP.fixup_alt_jump
3828 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3829 : 0;
3830 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3831 this_group_regnum = COMPILE_STACK_TOP.regnum;
3832 /* If we've reached MAX_REGNUM groups, then this open
3833 won't actually generate any code, so we'll have to
3834 clear pending_exact explicitly. */
3835 pending_exact = 0;
3837 /* We're at the end of the group, so now we know how many
3838 groups were inside this one. */
3839 if (this_group_regnum <= MAX_REGNUM)
3841 UCHAR_T *inner_group_loc
3842 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3844 *inner_group_loc = regnum - this_group_regnum;
3845 BUF_PUSH_3 (stop_memory, this_group_regnum,
3846 regnum - this_group_regnum);
3849 break;
3852 case '|': /* `\|'. */
3853 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3854 goto normal_backslash;
3855 handle_alt:
3856 if (syntax & RE_LIMITED_OPS)
3857 goto normal_char;
3859 /* Insert before the previous alternative a jump which
3860 jumps to this alternative if the former fails. */
3861 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3862 INSERT_JUMP (on_failure_jump, begalt,
3863 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3864 pending_exact = 0;
3865 b += 1 + OFFSET_ADDRESS_SIZE;
3867 /* The alternative before this one has a jump after it
3868 which gets executed if it gets matched. Adjust that
3869 jump so it will jump to this alternative's analogous
3870 jump (put in below, which in turn will jump to the next
3871 (if any) alternative's such jump, etc.). The last such
3872 jump jumps to the correct final destination. A picture:
3873 _____ _____
3874 | | | |
3875 | v | v
3876 a | b | c
3878 If we are at `b', then fixup_alt_jump right now points to a
3879 three-byte space after `a'. We'll put in the jump, set
3880 fixup_alt_jump to right after `b', and leave behind three
3881 bytes which we'll fill in when we get to after `c'. */
3883 if (fixup_alt_jump)
3884 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3886 /* Mark and leave space for a jump after this alternative,
3887 to be filled in later either by next alternative or
3888 when know we're at the end of a series of alternatives. */
3889 fixup_alt_jump = b;
3890 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3891 b += 1 + OFFSET_ADDRESS_SIZE;
3893 laststart = 0;
3894 begalt = b;
3895 break;
3898 case '{':
3899 /* If \{ is a literal. */
3900 if (!(syntax & RE_INTERVALS)
3901 /* If we're at `\{' and it's not the open-interval
3902 operator. */
3903 || (syntax & RE_NO_BK_BRACES))
3904 goto normal_backslash;
3906 handle_interval:
3908 /* If got here, then the syntax allows intervals. */
3910 /* At least (most) this many matches must be made. */
3911 int lower_bound = -1, upper_bound = -1;
3913 /* Place in the uncompiled pattern (i.e., just after
3914 the '{') to go back to if the interval is invalid. */
3915 const CHAR_T *beg_interval = p;
3917 if (p == pend)
3918 goto invalid_interval;
3920 GET_UNSIGNED_NUMBER (lower_bound);
3922 if (c == ',')
3924 GET_UNSIGNED_NUMBER (upper_bound);
3925 if (upper_bound < 0)
3926 upper_bound = RE_DUP_MAX;
3928 else
3929 /* Interval such as `{1}' => match exactly once. */
3930 upper_bound = lower_bound;
3932 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3933 goto invalid_interval;
3935 if (!(syntax & RE_NO_BK_BRACES))
3937 if (c != '\\' || p == pend)
3938 goto invalid_interval;
3939 PATFETCH (c);
3942 if (c != '}')
3943 goto invalid_interval;
3945 /* If it's invalid to have no preceding re. */
3946 if (!laststart)
3948 if (syntax & RE_CONTEXT_INVALID_OPS
3949 && !(syntax & RE_INVALID_INTERVAL_ORD))
3950 FREE_STACK_RETURN (REG_BADRPT);
3951 else if (syntax & RE_CONTEXT_INDEP_OPS)
3952 laststart = b;
3953 else
3954 goto unfetch_interval;
3957 /* We just parsed a valid interval. */
3959 if (RE_DUP_MAX < upper_bound)
3960 FREE_STACK_RETURN (REG_BADBR);
3962 /* If the upper bound is zero, don't want to succeed at
3963 all; jump from `laststart' to `b + 3', which will be
3964 the end of the buffer after we insert the jump. */
3965 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3966 instead of 'b + 3'. */
3967 if (upper_bound == 0)
3969 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3970 INSERT_JUMP (jump, laststart, b + 1
3971 + OFFSET_ADDRESS_SIZE);
3972 b += 1 + OFFSET_ADDRESS_SIZE;
3975 /* Otherwise, we have a nontrivial interval. When
3976 we're all done, the pattern will look like:
3977 set_number_at <jump count> <upper bound>
3978 set_number_at <succeed_n count> <lower bound>
3979 succeed_n <after jump addr> <succeed_n count>
3980 <body of loop>
3981 jump_n <succeed_n addr> <jump count>
3982 (The upper bound and `jump_n' are omitted if
3983 `upper_bound' is 1, though.) */
3984 else
3985 { /* If the upper bound is > 1, we need to insert
3986 more at the end of the loop. */
3987 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3988 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3990 GET_BUFFER_SPACE (nbytes);
3992 /* Initialize lower bound of the `succeed_n', even
3993 though it will be set during matching by its
3994 attendant `set_number_at' (inserted next),
3995 because `re_compile_fastmap' needs to know.
3996 Jump to the `jump_n' we might insert below. */
3997 INSERT_JUMP2 (succeed_n, laststart,
3998 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3999 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
4000 , lower_bound);
4001 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4003 /* Code to initialize the lower bound. Insert
4004 before the `succeed_n'. The `5' is the last two
4005 bytes of this `set_number_at', plus 3 bytes of
4006 the following `succeed_n'. */
4007 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4008 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4009 of the following `succeed_n'. */
4010 PREFIX(insert_op2) (set_number_at, laststart, 1
4011 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4012 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4014 if (upper_bound > 1)
4015 { /* More than one repetition is allowed, so
4016 append a backward jump to the `succeed_n'
4017 that starts this interval.
4019 When we've reached this during matching,
4020 we'll have matched the interval once, so
4021 jump back only `upper_bound - 1' times. */
4022 STORE_JUMP2 (jump_n, b, laststart
4023 + 2 * OFFSET_ADDRESS_SIZE + 1,
4024 upper_bound - 1);
4025 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4027 /* The location we want to set is the second
4028 parameter of the `jump_n'; that is `b-2' as
4029 an absolute address. `laststart' will be
4030 the `set_number_at' we're about to insert;
4031 `laststart+3' the number to set, the source
4032 for the relative address. But we are
4033 inserting into the middle of the pattern --
4034 so everything is getting moved up by 5.
4035 Conclusion: (b - 2) - (laststart + 3) + 5,
4036 i.e., b - laststart.
4038 We insert this at the beginning of the loop
4039 so that if we fail during matching, we'll
4040 reinitialize the bounds. */
4041 PREFIX(insert_op2) (set_number_at, laststart,
4042 b - laststart,
4043 upper_bound - 1, b);
4044 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4047 pending_exact = 0;
4048 break;
4050 invalid_interval:
4051 if (!(syntax & RE_INVALID_INTERVAL_ORD))
4052 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4053 unfetch_interval:
4054 /* Match the characters as literals. */
4055 p = beg_interval;
4056 c = '{';
4057 if (syntax & RE_NO_BK_BRACES)
4058 goto normal_char;
4059 else
4060 goto normal_backslash;
4063 #ifdef emacs
4064 /* There is no way to specify the before_dot and after_dot
4065 operators. rms says this is ok. --karl */
4066 case '=':
4067 BUF_PUSH (at_dot);
4068 break;
4070 case 's':
4071 laststart = b;
4072 PATFETCH (c);
4073 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4074 break;
4076 case 'S':
4077 laststart = b;
4078 PATFETCH (c);
4079 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4080 break;
4081 #endif /* emacs */
4084 case 'w':
4085 if (syntax & RE_NO_GNU_OPS)
4086 goto normal_char;
4087 laststart = b;
4088 BUF_PUSH (wordchar);
4089 break;
4092 case 'W':
4093 if (syntax & RE_NO_GNU_OPS)
4094 goto normal_char;
4095 laststart = b;
4096 BUF_PUSH (notwordchar);
4097 break;
4100 case '<':
4101 if (syntax & RE_NO_GNU_OPS)
4102 goto normal_char;
4103 BUF_PUSH (wordbeg);
4104 break;
4106 case '>':
4107 if (syntax & RE_NO_GNU_OPS)
4108 goto normal_char;
4109 BUF_PUSH (wordend);
4110 break;
4112 case 'b':
4113 if (syntax & RE_NO_GNU_OPS)
4114 goto normal_char;
4115 BUF_PUSH (wordbound);
4116 break;
4118 case 'B':
4119 if (syntax & RE_NO_GNU_OPS)
4120 goto normal_char;
4121 BUF_PUSH (notwordbound);
4122 break;
4124 case '`':
4125 if (syntax & RE_NO_GNU_OPS)
4126 goto normal_char;
4127 BUF_PUSH (begbuf);
4128 break;
4130 case '\'':
4131 if (syntax & RE_NO_GNU_OPS)
4132 goto normal_char;
4133 BUF_PUSH (endbuf);
4134 break;
4136 case '1': case '2': case '3': case '4': case '5':
4137 case '6': case '7': case '8': case '9':
4138 if (syntax & RE_NO_BK_REFS)
4139 goto normal_char;
4141 c1 = c - '0';
4143 if (c1 > regnum)
4144 FREE_STACK_RETURN (REG_ESUBREG);
4146 /* Can't back reference to a subexpression if inside of it. */
4147 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4148 goto normal_char;
4150 laststart = b;
4151 BUF_PUSH_2 (duplicate, c1);
4152 break;
4155 case '+':
4156 case '?':
4157 if (syntax & RE_BK_PLUS_QM)
4158 goto handle_plus;
4159 else
4160 goto normal_backslash;
4162 default:
4163 normal_backslash:
4164 /* You might think it would be useful for \ to mean
4165 not to translate; but if we don't translate it
4166 it will never match anything. */
4167 c = TRANSLATE (c);
4168 goto normal_char;
4170 break;
4173 default:
4174 /* Expects the character in `c'. */
4175 normal_char:
4176 /* If no exactn currently being built. */
4177 if (!pending_exact
4178 #ifdef WCHAR
4179 /* If last exactn handle binary(or character) and
4180 new exactn handle character(or binary). */
4181 || is_exactn_bin != is_binary[p - 1 - pattern]
4182 #endif /* WCHAR */
4184 /* If last exactn not at current position. */
4185 || pending_exact + *pending_exact + 1 != b
4187 /* We have only one byte following the exactn for the count. */
4188 || *pending_exact == (1 << BYTEWIDTH) - 1
4190 /* If followed by a repetition operator. */
4191 || *p == '*' || *p == '^'
4192 || ((syntax & RE_BK_PLUS_QM)
4193 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4194 : (*p == '+' || *p == '?'))
4195 || ((syntax & RE_INTERVALS)
4196 && ((syntax & RE_NO_BK_BRACES)
4197 ? *p == '{'
4198 : (p[0] == '\\' && p[1] == '{'))))
4200 /* Start building a new exactn. */
4202 laststart = b;
4204 #ifdef WCHAR
4205 /* Is this exactn binary data or character? */
4206 is_exactn_bin = is_binary[p - 1 - pattern];
4207 if (is_exactn_bin)
4208 BUF_PUSH_2 (exactn_bin, 0);
4209 else
4210 BUF_PUSH_2 (exactn, 0);
4211 #else
4212 BUF_PUSH_2 (exactn, 0);
4213 #endif /* WCHAR */
4214 pending_exact = b - 1;
4217 BUF_PUSH (c);
4218 (*pending_exact)++;
4219 break;
4220 } /* switch (c) */
4221 } /* while p != pend */
4224 /* Through the pattern now. */
4226 if (fixup_alt_jump)
4227 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4229 if (!COMPILE_STACK_EMPTY)
4230 FREE_STACK_RETURN (REG_EPAREN);
4232 /* If we don't want backtracking, force success
4233 the first time we reach the end of the compiled pattern. */
4234 if (syntax & RE_NO_POSIX_BACKTRACKING)
4235 BUF_PUSH (succeed);
4237 #ifdef WCHAR
4238 free (pattern);
4239 free (mbs_offset);
4240 free (is_binary);
4241 #endif
4242 free (compile_stack.stack);
4244 /* We have succeeded; set the length of the buffer. */
4245 #ifdef WCHAR
4246 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4247 #else
4248 bufp->used = b - bufp->buffer;
4249 #endif
4251 #ifdef DEBUG
4252 if (debug)
4254 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4255 PREFIX(print_compiled_pattern) (bufp);
4257 #endif /* DEBUG */
4259 #ifndef MATCH_MAY_ALLOCATE
4260 /* Initialize the failure stack to the largest possible stack. This
4261 isn't necessary unless we're trying to avoid calling alloca in
4262 the search and match routines. */
4264 int num_regs = bufp->re_nsub + 1;
4266 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4267 is strictly greater than re_max_failures, the largest possible stack
4268 is 2 * re_max_failures failure points. */
4269 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4271 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4273 # ifdef emacs
4274 if (! fail_stack.stack)
4275 fail_stack.stack
4276 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4277 * sizeof (PREFIX(fail_stack_elt_t)));
4278 else
4279 fail_stack.stack
4280 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4281 (fail_stack.size
4282 * sizeof (PREFIX(fail_stack_elt_t))));
4283 # else /* not emacs */
4284 if (! fail_stack.stack)
4285 fail_stack.stack
4286 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4287 * sizeof (PREFIX(fail_stack_elt_t)));
4288 else
4289 fail_stack.stack
4290 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4291 (fail_stack.size
4292 * sizeof (PREFIX(fail_stack_elt_t))));
4293 # endif /* not emacs */
4296 PREFIX(regex_grow_registers) (num_regs);
4298 #endif /* not MATCH_MAY_ALLOCATE */
4300 return REG_NOERROR;
4301 } /* regex_compile */
4303 /* Subroutines for `regex_compile'. */
4305 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4306 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4308 static void
4309 PREFIX(store_op1) (op, loc, arg)
4310 re_opcode_t op;
4311 UCHAR_T *loc;
4312 int arg;
4314 *loc = (UCHAR_T) op;
4315 STORE_NUMBER (loc + 1, arg);
4319 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4320 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4322 static void
4323 PREFIX(store_op2) (op, loc, arg1, arg2)
4324 re_opcode_t op;
4325 UCHAR_T *loc;
4326 int arg1, arg2;
4328 *loc = (UCHAR_T) op;
4329 STORE_NUMBER (loc + 1, arg1);
4330 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4334 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4335 for OP followed by two-byte integer parameter ARG. */
4336 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4338 static void
4339 PREFIX(insert_op1) (op, loc, arg, end)
4340 re_opcode_t op;
4341 UCHAR_T *loc;
4342 int arg;
4343 UCHAR_T *end;
4345 register UCHAR_T *pfrom = end;
4346 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4348 while (pfrom != loc)
4349 *--pto = *--pfrom;
4351 PREFIX(store_op1) (op, loc, arg);
4355 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4356 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4358 static void
4359 PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4360 re_opcode_t op;
4361 UCHAR_T *loc;
4362 int arg1, arg2;
4363 UCHAR_T *end;
4365 register UCHAR_T *pfrom = end;
4366 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4368 while (pfrom != loc)
4369 *--pto = *--pfrom;
4371 PREFIX(store_op2) (op, loc, arg1, arg2);
4375 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4376 after an alternative or a begin-subexpression. We assume there is at
4377 least one character before the ^. */
4379 static boolean
4380 PREFIX(at_begline_loc_p) (pattern, p, syntax)
4381 const CHAR_T *pattern, *p;
4382 reg_syntax_t syntax;
4384 const CHAR_T *prev = p - 2;
4385 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4387 return
4388 /* After a subexpression? */
4389 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4390 /* After an alternative? */
4391 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4395 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4396 at least one character after the $, i.e., `P < PEND'. */
4398 static boolean
4399 PREFIX(at_endline_loc_p) (p, pend, syntax)
4400 const CHAR_T *p, *pend;
4401 reg_syntax_t syntax;
4403 const CHAR_T *next = p;
4404 boolean next_backslash = *next == '\\';
4405 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4407 return
4408 /* Before a subexpression? */
4409 (syntax & RE_NO_BK_PARENS ? *next == ')'
4410 : next_backslash && next_next && *next_next == ')')
4411 /* Before an alternative? */
4412 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4413 : next_backslash && next_next && *next_next == '|');
4416 #else /* not INSIDE_RECURSION */
4418 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4419 false if it's not. */
4421 static boolean
4422 group_in_compile_stack (compile_stack, regnum)
4423 compile_stack_type compile_stack;
4424 regnum_t regnum;
4426 int this_element;
4428 for (this_element = compile_stack.avail - 1;
4429 this_element >= 0;
4430 this_element--)
4431 if (compile_stack.stack[this_element].regnum == regnum)
4432 return true;
4434 return false;
4436 #endif /* not INSIDE_RECURSION */
4438 #ifdef INSIDE_RECURSION
4440 #ifdef WCHAR
4441 /* This insert space, which size is "num", into the pattern at "loc".
4442 "end" must point the end of the allocated buffer. */
4443 static void
4444 insert_space (num, loc, end)
4445 int num;
4446 CHAR_T *loc;
4447 CHAR_T *end;
4449 register CHAR_T *pto = end;
4450 register CHAR_T *pfrom = end - num;
4452 while (pfrom >= loc)
4453 *pto-- = *pfrom--;
4455 #endif /* WCHAR */
4457 #ifdef WCHAR
4458 static reg_errcode_t
4459 wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4460 char_set)
4461 CHAR_T range_start_char;
4462 const CHAR_T **p_ptr, *pend;
4463 CHAR_T *char_set, *b;
4464 RE_TRANSLATE_TYPE translate;
4465 reg_syntax_t syntax;
4467 const CHAR_T *p = *p_ptr;
4468 CHAR_T range_start, range_end;
4469 reg_errcode_t ret;
4470 # ifdef _LIBC
4471 uint32_t nrules;
4472 uint32_t start_val, end_val;
4473 # endif
4474 if (p == pend)
4475 return REG_ERANGE;
4477 # ifdef _LIBC
4478 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4479 if (nrules != 0)
4481 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4482 _NL_COLLATE_COLLSEQWC);
4483 const unsigned char *extra = (const unsigned char *)
4484 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4486 if (range_start_char < -1)
4488 /* range_start is a collating symbol. */
4489 int32_t *wextra;
4490 /* Retreive the index and get collation sequence value. */
4491 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4492 start_val = wextra[1 + *wextra];
4494 else
4495 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4497 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4499 /* Report an error if the range is empty and the syntax prohibits
4500 this. */
4501 ret = ((syntax & RE_NO_EMPTY_RANGES)
4502 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4504 /* Insert space to the end of the char_ranges. */
4505 insert_space(2, b - char_set[5] - 2, b - 1);
4506 *(b - char_set[5] - 2) = (wchar_t)start_val;
4507 *(b - char_set[5] - 1) = (wchar_t)end_val;
4508 char_set[4]++; /* ranges_index */
4510 else
4511 # endif
4513 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4514 range_start_char;
4515 range_end = TRANSLATE (p[0]);
4516 /* Report an error if the range is empty and the syntax prohibits
4517 this. */
4518 ret = ((syntax & RE_NO_EMPTY_RANGES)
4519 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4521 /* Insert space to the end of the char_ranges. */
4522 insert_space(2, b - char_set[5] - 2, b - 1);
4523 *(b - char_set[5] - 2) = range_start;
4524 *(b - char_set[5] - 1) = range_end;
4525 char_set[4]++; /* ranges_index */
4527 /* Have to increment the pointer into the pattern string, so the
4528 caller isn't still at the ending character. */
4529 (*p_ptr)++;
4531 return ret;
4533 #else /* BYTE */
4534 /* Read the ending character of a range (in a bracket expression) from the
4535 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4536 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4537 Then we set the translation of all bits between the starting and
4538 ending characters (inclusive) in the compiled pattern B.
4540 Return an error code.
4542 We use these short variable names so we can use the same macros as
4543 `regex_compile' itself. */
4545 static reg_errcode_t
4546 byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4547 unsigned int range_start_char;
4548 const char **p_ptr, *pend;
4549 RE_TRANSLATE_TYPE translate;
4550 reg_syntax_t syntax;
4551 unsigned char *b;
4553 unsigned this_char;
4554 const char *p = *p_ptr;
4555 reg_errcode_t ret;
4556 # if defined _LIBC && _LIBC
4557 const unsigned char *collseq;
4558 unsigned int start_colseq;
4559 unsigned int end_colseq;
4560 # else
4561 unsigned end_char;
4562 # endif
4564 if (p == pend)
4565 return REG_ERANGE;
4567 /* Have to increment the pointer into the pattern string, so the
4568 caller isn't still at the ending character. */
4569 (*p_ptr)++;
4571 /* Report an error if the range is empty and the syntax prohibits this. */
4572 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4574 # if defined _LIBC && _LIBC
4575 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4576 _NL_COLLATE_COLLSEQMB);
4578 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4579 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4580 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4582 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4584 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4586 SET_LIST_BIT (TRANSLATE (this_char));
4587 ret = REG_NOERROR;
4590 # else
4591 /* Here we see why `this_char' has to be larger than an `unsigned
4592 char' -- we would otherwise go into an infinite loop, since all
4593 characters <= 0xff. */
4594 range_start_char = TRANSLATE (range_start_char);
4595 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4596 and some compilers cast it to int implicitly, so following for_loop
4597 may fall to (almost) infinite loop.
4598 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4599 To avoid this, we cast p[0] to unsigned int and truncate it. */
4600 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4602 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4604 SET_LIST_BIT (TRANSLATE (this_char));
4605 ret = REG_NOERROR;
4607 # endif
4609 return ret;
4611 #endif /* WCHAR */
4613 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4614 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4615 characters can start a string that matches the pattern. This fastmap
4616 is used by re_search to skip quickly over impossible starting points.
4618 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4619 area as BUFP->fastmap.
4621 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4622 the pattern buffer.
4624 Returns 0 if we succeed, -2 if an internal error. */
4626 #ifdef WCHAR
4627 /* local function for re_compile_fastmap.
4628 truncate wchar_t character to char. */
4629 static unsigned char truncate_wchar (CHAR_T c);
4631 static unsigned char
4632 truncate_wchar (c)
4633 CHAR_T c;
4635 unsigned char buf[MB_CUR_MAX];
4636 mbstate_t state;
4637 int retval;
4638 memset (&state, '\0', sizeof (state));
4639 # ifdef _LIBC
4640 retval = __wcrtomb (buf, c, &state);
4641 # else
4642 retval = wcrtomb (buf, c, &state);
4643 # endif
4644 return retval > 0 ? buf[0] : (unsigned char) c;
4646 #endif /* WCHAR */
4648 static int
4649 PREFIX(re_compile_fastmap) (bufp)
4650 struct re_pattern_buffer *bufp;
4652 int j, k;
4653 #ifdef MATCH_MAY_ALLOCATE
4654 PREFIX(fail_stack_type) fail_stack;
4655 #endif
4656 #ifndef REGEX_MALLOC
4657 char *destination;
4658 #endif
4660 register char *fastmap = bufp->fastmap;
4662 #ifdef WCHAR
4663 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4664 pattern to (char*) in regex_compile. */
4665 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4666 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4667 #else /* BYTE */
4668 UCHAR_T *pattern = bufp->buffer;
4669 register UCHAR_T *pend = pattern + bufp->used;
4670 #endif /* WCHAR */
4671 UCHAR_T *p = pattern;
4673 #ifdef REL_ALLOC
4674 /* This holds the pointer to the failure stack, when
4675 it is allocated relocatably. */
4676 fail_stack_elt_t *failure_stack_ptr;
4677 #endif
4679 /* Assume that each path through the pattern can be null until
4680 proven otherwise. We set this false at the bottom of switch
4681 statement, to which we get only if a particular path doesn't
4682 match the empty string. */
4683 boolean path_can_be_null = true;
4685 /* We aren't doing a `succeed_n' to begin with. */
4686 boolean succeed_n_p = false;
4688 assert (fastmap != NULL && p != NULL);
4690 INIT_FAIL_STACK ();
4691 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4692 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4693 bufp->can_be_null = 0;
4695 while (1)
4697 if (p == pend || *p == succeed)
4699 /* We have reached the (effective) end of pattern. */
4700 if (!FAIL_STACK_EMPTY ())
4702 bufp->can_be_null |= path_can_be_null;
4704 /* Reset for next path. */
4705 path_can_be_null = true;
4707 p = fail_stack.stack[--fail_stack.avail].pointer;
4709 continue;
4711 else
4712 break;
4715 /* We should never be about to go beyond the end of the pattern. */
4716 assert (p < pend);
4718 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4721 /* I guess the idea here is to simply not bother with a fastmap
4722 if a backreference is used, since it's too hard to figure out
4723 the fastmap for the corresponding group. Setting
4724 `can_be_null' stops `re_search_2' from using the fastmap, so
4725 that is all we do. */
4726 case duplicate:
4727 bufp->can_be_null = 1;
4728 goto done;
4731 /* Following are the cases which match a character. These end
4732 with `break'. */
4734 #ifdef WCHAR
4735 case exactn:
4736 fastmap[truncate_wchar(p[1])] = 1;
4737 break;
4738 #else /* BYTE */
4739 case exactn:
4740 fastmap[p[1]] = 1;
4741 break;
4742 #endif /* WCHAR */
4743 #ifdef MBS_SUPPORT
4744 case exactn_bin:
4745 fastmap[p[1]] = 1;
4746 break;
4747 #endif
4749 #ifdef WCHAR
4750 /* It is hard to distinguish fastmap from (multi byte) characters
4751 which depends on current locale. */
4752 case charset:
4753 case charset_not:
4754 case wordchar:
4755 case notwordchar:
4756 bufp->can_be_null = 1;
4757 goto done;
4758 #else /* BYTE */
4759 case charset:
4760 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4761 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4762 fastmap[j] = 1;
4763 break;
4766 case charset_not:
4767 /* Chars beyond end of map must be allowed. */
4768 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4769 fastmap[j] = 1;
4771 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4772 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4773 fastmap[j] = 1;
4774 break;
4777 case wordchar:
4778 for (j = 0; j < (1 << BYTEWIDTH); j++)
4779 if (SYNTAX (j) == Sword)
4780 fastmap[j] = 1;
4781 break;
4784 case notwordchar:
4785 for (j = 0; j < (1 << BYTEWIDTH); j++)
4786 if (SYNTAX (j) != Sword)
4787 fastmap[j] = 1;
4788 break;
4789 #endif /* WCHAR */
4791 case anychar:
4793 int fastmap_newline = fastmap['\n'];
4795 /* `.' matches anything ... */
4796 for (j = 0; j < (1 << BYTEWIDTH); j++)
4797 fastmap[j] = 1;
4799 /* ... except perhaps newline. */
4800 if (!(bufp->syntax & RE_DOT_NEWLINE))
4801 fastmap['\n'] = fastmap_newline;
4803 /* Return if we have already set `can_be_null'; if we have,
4804 then the fastmap is irrelevant. Something's wrong here. */
4805 else if (bufp->can_be_null)
4806 goto done;
4808 /* Otherwise, have to check alternative paths. */
4809 break;
4812 #ifdef emacs
4813 case syntaxspec:
4814 k = *p++;
4815 for (j = 0; j < (1 << BYTEWIDTH); j++)
4816 if (SYNTAX (j) == (enum syntaxcode) k)
4817 fastmap[j] = 1;
4818 break;
4821 case notsyntaxspec:
4822 k = *p++;
4823 for (j = 0; j < (1 << BYTEWIDTH); j++)
4824 if (SYNTAX (j) != (enum syntaxcode) k)
4825 fastmap[j] = 1;
4826 break;
4829 /* All cases after this match the empty string. These end with
4830 `continue'. */
4833 case before_dot:
4834 case at_dot:
4835 case after_dot:
4836 continue;
4837 #endif /* emacs */
4840 case no_op:
4841 case begline:
4842 case endline:
4843 case begbuf:
4844 case endbuf:
4845 case wordbound:
4846 case notwordbound:
4847 case wordbeg:
4848 case wordend:
4849 case push_dummy_failure:
4850 continue;
4853 case jump_n:
4854 case pop_failure_jump:
4855 case maybe_pop_jump:
4856 case jump:
4857 case jump_past_alt:
4858 case dummy_failure_jump:
4859 EXTRACT_NUMBER_AND_INCR (j, p);
4860 p += j;
4861 if (j > 0)
4862 continue;
4864 /* Jump backward implies we just went through the body of a
4865 loop and matched nothing. Opcode jumped to should be
4866 `on_failure_jump' or `succeed_n'. Just treat it like an
4867 ordinary jump. For a * loop, it has pushed its failure
4868 point already; if so, discard that as redundant. */
4869 if ((re_opcode_t) *p != on_failure_jump
4870 && (re_opcode_t) *p != succeed_n)
4871 continue;
4873 p++;
4874 EXTRACT_NUMBER_AND_INCR (j, p);
4875 p += j;
4877 /* If what's on the stack is where we are now, pop it. */
4878 if (!FAIL_STACK_EMPTY ()
4879 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4880 fail_stack.avail--;
4882 continue;
4885 case on_failure_jump:
4886 case on_failure_keep_string_jump:
4887 handle_on_failure_jump:
4888 EXTRACT_NUMBER_AND_INCR (j, p);
4890 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4891 end of the pattern. We don't want to push such a point,
4892 since when we restore it above, entering the switch will
4893 increment `p' past the end of the pattern. We don't need
4894 to push such a point since we obviously won't find any more
4895 fastmap entries beyond `pend'. Such a pattern can match
4896 the null string, though. */
4897 if (p + j < pend)
4899 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4901 RESET_FAIL_STACK ();
4902 return -2;
4905 else
4906 bufp->can_be_null = 1;
4908 if (succeed_n_p)
4910 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4911 succeed_n_p = false;
4914 continue;
4917 case succeed_n:
4918 /* Get to the number of times to succeed. */
4919 p += OFFSET_ADDRESS_SIZE;
4921 /* Increment p past the n for when k != 0. */
4922 EXTRACT_NUMBER_AND_INCR (k, p);
4923 if (k == 0)
4925 p -= 2 * OFFSET_ADDRESS_SIZE;
4926 succeed_n_p = true; /* Spaghetti code alert. */
4927 goto handle_on_failure_jump;
4929 continue;
4932 case set_number_at:
4933 p += 2 * OFFSET_ADDRESS_SIZE;
4934 continue;
4937 case start_memory:
4938 case stop_memory:
4939 p += 2;
4940 continue;
4943 default:
4944 abort (); /* We have listed all the cases. */
4945 } /* switch *p++ */
4947 /* Getting here means we have found the possible starting
4948 characters for one path of the pattern -- and that the empty
4949 string does not match. We need not follow this path further.
4950 Instead, look at the next alternative (remembered on the
4951 stack), or quit if no more. The test at the top of the loop
4952 does these things. */
4953 path_can_be_null = false;
4954 p = pend;
4955 } /* while p */
4957 /* Set `can_be_null' for the last path (also the first path, if the
4958 pattern is empty). */
4959 bufp->can_be_null |= path_can_be_null;
4961 done:
4962 RESET_FAIL_STACK ();
4963 return 0;
4966 #else /* not INSIDE_RECURSION */
4969 re_compile_fastmap (bufp)
4970 struct re_pattern_buffer *bufp;
4972 # ifdef MBS_SUPPORT
4973 if (MB_CUR_MAX != 1)
4974 return wcs_re_compile_fastmap(bufp);
4975 else
4976 # endif
4977 return byte_re_compile_fastmap(bufp);
4978 } /* re_compile_fastmap */
4979 #ifdef _LIBC
4980 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4981 #endif
4984 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4985 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4986 this memory for recording register information. STARTS and ENDS
4987 must be allocated using the malloc library routine, and must each
4988 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4990 If NUM_REGS == 0, then subsequent matches should allocate their own
4991 register data.
4993 Unless this function is called, the first search or match using
4994 PATTERN_BUFFER will allocate its own register data, without
4995 freeing the old data. */
4997 void
4998 re_set_registers (bufp, regs, num_regs, starts, ends)
4999 struct re_pattern_buffer *bufp;
5000 struct re_registers *regs;
5001 unsigned num_regs;
5002 regoff_t *starts, *ends;
5004 if (num_regs)
5006 bufp->regs_allocated = REGS_REALLOCATE;
5007 regs->num_regs = num_regs;
5008 regs->start = starts;
5009 regs->end = ends;
5011 else
5013 bufp->regs_allocated = REGS_UNALLOCATED;
5014 regs->num_regs = 0;
5015 regs->start = regs->end = (regoff_t *) 0;
5018 #ifdef _LIBC
5019 weak_alias (__re_set_registers, re_set_registers)
5020 #endif
5022 /* Searching routines. */
5024 /* Like re_search_2, below, but only one string is specified, and
5025 doesn't let you say where to stop matching. */
5028 re_search (bufp, string, size, startpos, range, regs)
5029 struct re_pattern_buffer *bufp;
5030 const char *string;
5031 int size, startpos, range;
5032 struct re_registers *regs;
5034 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5035 regs, size);
5037 #ifdef _LIBC
5038 weak_alias (__re_search, re_search)
5039 #endif
5042 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5043 virtual concatenation of STRING1 and STRING2, starting first at index
5044 STARTPOS, then at STARTPOS + 1, and so on.
5046 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5048 RANGE is how far to scan while trying to match. RANGE = 0 means try
5049 only at STARTPOS; in general, the last start tried is STARTPOS +
5050 RANGE.
5052 In REGS, return the indices of the virtual concatenation of STRING1
5053 and STRING2 that matched the entire BUFP->buffer and its contained
5054 subexpressions.
5056 Do not consider matching one past the index STOP in the virtual
5057 concatenation of STRING1 and STRING2.
5059 We return either the position in the strings at which the match was
5060 found, -1 if no match, or -2 if error (such as failure
5061 stack overflow). */
5064 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5065 struct re_pattern_buffer *bufp;
5066 const char *string1, *string2;
5067 int size1, size2;
5068 int startpos;
5069 int range;
5070 struct re_registers *regs;
5071 int stop;
5073 # ifdef MBS_SUPPORT
5074 if (MB_CUR_MAX != 1)
5075 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5076 range, regs, stop);
5077 else
5078 # endif
5079 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5080 range, regs, stop);
5081 } /* re_search_2 */
5082 #ifdef _LIBC
5083 weak_alias (__re_search_2, re_search_2)
5084 #endif
5086 #endif /* not INSIDE_RECURSION */
5088 #ifdef INSIDE_RECURSION
5090 #ifdef MATCH_MAY_ALLOCATE
5091 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5092 #else
5093 # define FREE_VAR(var) if (var) free (var); var = NULL
5094 #endif
5096 #ifdef WCHAR
5097 # define MAX_ALLOCA_SIZE 2000
5099 # define FREE_WCS_BUFFERS() \
5100 do { \
5101 if (size1 > MAX_ALLOCA_SIZE) \
5103 free (wcs_string1); \
5104 free (mbs_offset1); \
5106 else \
5108 FREE_VAR (wcs_string1); \
5109 FREE_VAR (mbs_offset1); \
5111 if (size2 > MAX_ALLOCA_SIZE) \
5113 free (wcs_string2); \
5114 free (mbs_offset2); \
5116 else \
5118 FREE_VAR (wcs_string2); \
5119 FREE_VAR (mbs_offset2); \
5121 } while (0)
5123 #endif
5126 static int
5127 PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5128 regs, stop)
5129 struct re_pattern_buffer *bufp;
5130 const char *string1, *string2;
5131 int size1, size2;
5132 int startpos;
5133 int range;
5134 struct re_registers *regs;
5135 int stop;
5137 int val;
5138 register char *fastmap = bufp->fastmap;
5139 register RE_TRANSLATE_TYPE translate = bufp->translate;
5140 int total_size = size1 + size2;
5141 int endpos = startpos + range;
5142 #ifdef WCHAR
5143 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5144 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5145 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5146 int wcs_size1 = 0, wcs_size2 = 0;
5147 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5148 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5149 /* They hold whether each wchar_t is binary data or not. */
5150 char *is_binary = NULL;
5151 #endif /* WCHAR */
5153 /* Check for out-of-range STARTPOS. */
5154 if (startpos < 0 || startpos > total_size)
5155 return -1;
5157 /* Fix up RANGE if it might eventually take us outside
5158 the virtual concatenation of STRING1 and STRING2.
5159 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5160 if (endpos < 0)
5161 range = 0 - startpos;
5162 else if (endpos > total_size)
5163 range = total_size - startpos;
5165 /* If the search isn't to be a backwards one, don't waste time in a
5166 search for a pattern that must be anchored. */
5167 if (bufp->used > 0 && range > 0
5168 && ((re_opcode_t) bufp->buffer[0] == begbuf
5169 /* `begline' is like `begbuf' if it cannot match at newlines. */
5170 || ((re_opcode_t) bufp->buffer[0] == begline
5171 && !bufp->newline_anchor)))
5173 if (startpos > 0)
5174 return -1;
5175 else
5176 range = 1;
5179 #ifdef emacs
5180 /* In a forward search for something that starts with \=.
5181 don't keep searching past point. */
5182 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5184 range = PT - startpos;
5185 if (range <= 0)
5186 return -1;
5188 #endif /* emacs */
5190 /* Update the fastmap now if not correct already. */
5191 if (fastmap && !bufp->fastmap_accurate)
5192 if (re_compile_fastmap (bufp) == -2)
5193 return -2;
5195 #ifdef WCHAR
5196 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5197 fill them with converted string. */
5198 if (size1 != 0)
5200 if (size1 > MAX_ALLOCA_SIZE)
5202 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5203 mbs_offset1 = TALLOC (size1 + 1, int);
5204 is_binary = TALLOC (size1 + 1, char);
5206 else
5208 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5209 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5210 is_binary = REGEX_TALLOC (size1 + 1, char);
5212 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5214 if (size1 > MAX_ALLOCA_SIZE)
5216 free (wcs_string1);
5217 free (mbs_offset1);
5218 free (is_binary);
5220 else
5222 FREE_VAR (wcs_string1);
5223 FREE_VAR (mbs_offset1);
5224 FREE_VAR (is_binary);
5226 return -2;
5228 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5229 mbs_offset1, is_binary);
5230 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5231 if (size1 > MAX_ALLOCA_SIZE)
5232 free (is_binary);
5233 else
5234 FREE_VAR (is_binary);
5236 if (size2 != 0)
5238 if (size2 > MAX_ALLOCA_SIZE)
5240 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5241 mbs_offset2 = TALLOC (size2 + 1, int);
5242 is_binary = TALLOC (size2 + 1, char);
5244 else
5246 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5247 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5248 is_binary = REGEX_TALLOC (size2 + 1, char);
5250 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5252 FREE_WCS_BUFFERS ();
5253 if (size2 > MAX_ALLOCA_SIZE)
5254 free (is_binary);
5255 else
5256 FREE_VAR (is_binary);
5257 return -2;
5259 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5260 mbs_offset2, is_binary);
5261 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5262 if (size2 > MAX_ALLOCA_SIZE)
5263 free (is_binary);
5264 else
5265 FREE_VAR (is_binary);
5267 #endif /* WCHAR */
5270 /* Loop through the string, looking for a place to start matching. */
5271 for (;;)
5273 /* If a fastmap is supplied, skip quickly over characters that
5274 cannot be the start of a match. If the pattern can match the
5275 null string, however, we don't need to skip characters; we want
5276 the first null string. */
5277 if (fastmap && startpos < total_size && !bufp->can_be_null)
5279 if (range > 0) /* Searching forwards. */
5281 register const char *d;
5282 register int lim = 0;
5283 int irange = range;
5285 if (startpos < size1 && startpos + range >= size1)
5286 lim = range - (size1 - startpos);
5288 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5290 /* Written out as an if-else to avoid testing `translate'
5291 inside the loop. */
5292 if (translate)
5293 while (range > lim
5294 && !fastmap[(unsigned char)
5295 translate[(unsigned char) *d++]])
5296 range--;
5297 else
5298 while (range > lim && !fastmap[(unsigned char) *d++])
5299 range--;
5301 startpos += irange - range;
5303 else /* Searching backwards. */
5305 register CHAR_T c = (size1 == 0 || startpos >= size1
5306 ? string2[startpos - size1]
5307 : string1[startpos]);
5309 if (!fastmap[(unsigned char) TRANSLATE (c)])
5310 goto advance;
5314 /* If can't match the null string, and that's all we have left, fail. */
5315 if (range >= 0 && startpos == total_size && fastmap
5316 && !bufp->can_be_null)
5318 #ifdef WCHAR
5319 FREE_WCS_BUFFERS ();
5320 #endif
5321 return -1;
5324 #ifdef WCHAR
5325 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5326 size2, startpos, regs, stop,
5327 wcs_string1, wcs_size1,
5328 wcs_string2, wcs_size2,
5329 mbs_offset1, mbs_offset2);
5330 #else /* BYTE */
5331 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5332 size2, startpos, regs, stop);
5333 #endif /* BYTE */
5335 #ifndef REGEX_MALLOC
5336 # ifdef C_ALLOCA
5337 alloca (0);
5338 # endif
5339 #endif
5341 if (val >= 0)
5343 #ifdef WCHAR
5344 FREE_WCS_BUFFERS ();
5345 #endif
5346 return startpos;
5349 if (val == -2)
5351 #ifdef WCHAR
5352 FREE_WCS_BUFFERS ();
5353 #endif
5354 return -2;
5357 advance:
5358 if (!range)
5359 break;
5360 else if (range > 0)
5362 range--;
5363 startpos++;
5365 else
5367 range++;
5368 startpos--;
5371 #ifdef WCHAR
5372 FREE_WCS_BUFFERS ();
5373 #endif
5374 return -1;
5377 #ifdef WCHAR
5378 /* This converts PTR, a pointer into one of the search wchar_t strings
5379 `string1' and `string2' into an multibyte string offset from the
5380 beginning of that string. We use mbs_offset to optimize.
5381 See convert_mbs_to_wcs. */
5382 # define POINTER_TO_OFFSET(ptr) \
5383 (FIRST_STRING_P (ptr) \
5384 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5385 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5386 + csize1)))
5387 #else /* BYTE */
5388 /* This converts PTR, a pointer into one of the search strings `string1'
5389 and `string2' into an offset from the beginning of that string. */
5390 # define POINTER_TO_OFFSET(ptr) \
5391 (FIRST_STRING_P (ptr) \
5392 ? ((regoff_t) ((ptr) - string1)) \
5393 : ((regoff_t) ((ptr) - string2 + size1)))
5394 #endif /* WCHAR */
5396 /* Macros for dealing with the split strings in re_match_2. */
5398 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5400 /* Call before fetching a character with *d. This switches over to
5401 string2 if necessary. */
5402 #define PREFETCH() \
5403 while (d == dend) \
5405 /* End of string2 => fail. */ \
5406 if (dend == end_match_2) \
5407 goto fail; \
5408 /* End of string1 => advance to string2. */ \
5409 d = string2; \
5410 dend = end_match_2; \
5413 /* Test if at very beginning or at very end of the virtual concatenation
5414 of `string1' and `string2'. If only one string, it's `string2'. */
5415 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5416 #define AT_STRINGS_END(d) ((d) == end2)
5419 /* Test if D points to a character which is word-constituent. We have
5420 two special cases to check for: if past the end of string1, look at
5421 the first character in string2; and if before the beginning of
5422 string2, look at the last character in string1. */
5423 #ifdef WCHAR
5424 /* Use internationalized API instead of SYNTAX. */
5425 # define WORDCHAR_P(d) \
5426 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5427 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5428 || ((d) == end1 ? *string2 \
5429 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5430 #else /* BYTE */
5431 # define WORDCHAR_P(d) \
5432 (SYNTAX ((d) == end1 ? *string2 \
5433 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5434 == Sword)
5435 #endif /* WCHAR */
5437 /* Disabled due to a compiler bug -- see comment at case wordbound */
5438 #if 0
5439 /* Test if the character before D and the one at D differ with respect
5440 to being word-constituent. */
5441 #define AT_WORD_BOUNDARY(d) \
5442 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5443 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5444 #endif
5446 /* Free everything we malloc. */
5447 #ifdef MATCH_MAY_ALLOCATE
5448 # ifdef WCHAR
5449 # define FREE_VARIABLES() \
5450 do { \
5451 REGEX_FREE_STACK (fail_stack.stack); \
5452 FREE_VAR (regstart); \
5453 FREE_VAR (regend); \
5454 FREE_VAR (old_regstart); \
5455 FREE_VAR (old_regend); \
5456 FREE_VAR (best_regstart); \
5457 FREE_VAR (best_regend); \
5458 FREE_VAR (reg_info); \
5459 FREE_VAR (reg_dummy); \
5460 FREE_VAR (reg_info_dummy); \
5461 if (!cant_free_wcs_buf) \
5463 FREE_VAR (string1); \
5464 FREE_VAR (string2); \
5465 FREE_VAR (mbs_offset1); \
5466 FREE_VAR (mbs_offset2); \
5468 } while (0)
5469 # else /* BYTE */
5470 # define FREE_VARIABLES() \
5471 do { \
5472 REGEX_FREE_STACK (fail_stack.stack); \
5473 FREE_VAR (regstart); \
5474 FREE_VAR (regend); \
5475 FREE_VAR (old_regstart); \
5476 FREE_VAR (old_regend); \
5477 FREE_VAR (best_regstart); \
5478 FREE_VAR (best_regend); \
5479 FREE_VAR (reg_info); \
5480 FREE_VAR (reg_dummy); \
5481 FREE_VAR (reg_info_dummy); \
5482 } while (0)
5483 # endif /* WCHAR */
5484 #else
5485 # ifdef WCHAR
5486 # define FREE_VARIABLES() \
5487 do { \
5488 if (!cant_free_wcs_buf) \
5490 FREE_VAR (string1); \
5491 FREE_VAR (string2); \
5492 FREE_VAR (mbs_offset1); \
5493 FREE_VAR (mbs_offset2); \
5495 } while (0)
5496 # else /* BYTE */
5497 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5498 # endif /* WCHAR */
5499 #endif /* not MATCH_MAY_ALLOCATE */
5501 /* These values must meet several constraints. They must not be valid
5502 register values; since we have a limit of 255 registers (because
5503 we use only one byte in the pattern for the register number), we can
5504 use numbers larger than 255. They must differ by 1, because of
5505 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5506 be larger than the value for the highest register, so we do not try
5507 to actually save any registers when none are active. */
5508 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5509 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5511 #else /* not INSIDE_RECURSION */
5512 /* Matching routines. */
5514 #ifndef emacs /* Emacs never uses this. */
5515 /* re_match is like re_match_2 except it takes only a single string. */
5518 re_match (bufp, string, size, pos, regs)
5519 struct re_pattern_buffer *bufp;
5520 const char *string;
5521 int size, pos;
5522 struct re_registers *regs;
5524 int result;
5525 # ifdef MBS_SUPPORT
5526 if (MB_CUR_MAX != 1)
5527 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5528 pos, regs, size,
5529 NULL, 0, NULL, 0, NULL, NULL);
5530 else
5531 # endif
5532 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5533 pos, regs, size);
5534 # ifndef REGEX_MALLOC
5535 # ifdef C_ALLOCA
5536 alloca (0);
5537 # endif
5538 # endif
5539 return result;
5541 # ifdef _LIBC
5542 weak_alias (__re_match, re_match)
5543 # endif
5544 #endif /* not emacs */
5546 #endif /* not INSIDE_RECURSION */
5548 #ifdef INSIDE_RECURSION
5549 static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5550 UCHAR_T *end,
5551 PREFIX(register_info_type) *reg_info));
5552 static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5553 UCHAR_T *end,
5554 PREFIX(register_info_type) *reg_info));
5555 static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5556 UCHAR_T *end,
5557 PREFIX(register_info_type) *reg_info));
5558 static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5559 int len, char *translate));
5560 #else /* not INSIDE_RECURSION */
5562 /* re_match_2 matches the compiled pattern in BUFP against the
5563 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5564 and SIZE2, respectively). We start matching at POS, and stop
5565 matching at STOP.
5567 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5568 store offsets for the substring each group matched in REGS. See the
5569 documentation for exactly how many groups we fill.
5571 We return -1 if no match, -2 if an internal error (such as the
5572 failure stack overflowing). Otherwise, we return the length of the
5573 matched substring. */
5576 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5577 struct re_pattern_buffer *bufp;
5578 const char *string1, *string2;
5579 int size1, size2;
5580 int pos;
5581 struct re_registers *regs;
5582 int stop;
5584 int result;
5585 # ifdef MBS_SUPPORT
5586 if (MB_CUR_MAX != 1)
5587 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5588 pos, regs, stop,
5589 NULL, 0, NULL, 0, NULL, NULL);
5590 else
5591 # endif
5592 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5593 pos, regs, stop);
5595 #ifndef REGEX_MALLOC
5596 # ifdef C_ALLOCA
5597 alloca (0);
5598 # endif
5599 #endif
5600 return result;
5602 #ifdef _LIBC
5603 weak_alias (__re_match_2, re_match_2)
5604 #endif
5606 #endif /* not INSIDE_RECURSION */
5608 #ifdef INSIDE_RECURSION
5610 #ifdef WCHAR
5611 static int count_mbs_length PARAMS ((int *, int));
5613 /* This check the substring (from 0, to length) of the multibyte string,
5614 to which offset_buffer correspond. And count how many wchar_t_characters
5615 the substring occupy. We use offset_buffer to optimization.
5616 See convert_mbs_to_wcs. */
5618 static int
5619 count_mbs_length(offset_buffer, length)
5620 int *offset_buffer;
5621 int length;
5623 int upper, lower;
5625 /* Check whether the size is valid. */
5626 if (length < 0)
5627 return -1;
5629 if (offset_buffer == NULL)
5630 return 0;
5632 /* If there are no multibyte character, offset_buffer[i] == i.
5633 Optmize for this case. */
5634 if (offset_buffer[length] == length)
5635 return length;
5637 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5638 upper = length;
5639 lower = 0;
5641 while (true)
5643 int middle = (lower + upper) / 2;
5644 if (middle == lower || middle == upper)
5645 break;
5646 if (offset_buffer[middle] > length)
5647 upper = middle;
5648 else if (offset_buffer[middle] < length)
5649 lower = middle;
5650 else
5651 return middle;
5654 return -1;
5656 #endif /* WCHAR */
5658 /* This is a separate function so that we can force an alloca cleanup
5659 afterwards. */
5660 #ifdef WCHAR
5661 static int
5662 wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5663 regs, stop, string1, size1, string2, size2,
5664 mbs_offset1, mbs_offset2)
5665 struct re_pattern_buffer *bufp;
5666 const char *cstring1, *cstring2;
5667 int csize1, csize2;
5668 int pos;
5669 struct re_registers *regs;
5670 int stop;
5671 /* string1 == string2 == NULL means string1/2, size1/2 and
5672 mbs_offset1/2 need seting up in this function. */
5673 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5674 wchar_t *string1, *string2;
5675 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5676 int size1, size2;
5677 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5678 int *mbs_offset1, *mbs_offset2;
5679 #else /* BYTE */
5680 static int
5681 byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5682 regs, stop)
5683 struct re_pattern_buffer *bufp;
5684 const char *string1, *string2;
5685 int size1, size2;
5686 int pos;
5687 struct re_registers *regs;
5688 int stop;
5689 #endif /* BYTE */
5691 /* General temporaries. */
5692 int mcnt;
5693 UCHAR_T *p1;
5694 #ifdef WCHAR
5695 /* They hold whether each wchar_t is binary data or not. */
5696 char *is_binary = NULL;
5697 /* If true, we can't free string1/2, mbs_offset1/2. */
5698 int cant_free_wcs_buf = 1;
5699 #endif /* WCHAR */
5701 /* Just past the end of the corresponding string. */
5702 const CHAR_T *end1, *end2;
5704 /* Pointers into string1 and string2, just past the last characters in
5705 each to consider matching. */
5706 const CHAR_T *end_match_1, *end_match_2;
5708 /* Where we are in the data, and the end of the current string. */
5709 const CHAR_T *d, *dend;
5711 /* Where we are in the pattern, and the end of the pattern. */
5712 #ifdef WCHAR
5713 UCHAR_T *pattern, *p;
5714 register UCHAR_T *pend;
5715 #else /* BYTE */
5716 UCHAR_T *p = bufp->buffer;
5717 register UCHAR_T *pend = p + bufp->used;
5718 #endif /* WCHAR */
5720 /* Mark the opcode just after a start_memory, so we can test for an
5721 empty subpattern when we get to the stop_memory. */
5722 UCHAR_T *just_past_start_mem = 0;
5724 /* We use this to map every character in the string. */
5725 RE_TRANSLATE_TYPE translate = bufp->translate;
5727 /* Failure point stack. Each place that can handle a failure further
5728 down the line pushes a failure point on this stack. It consists of
5729 restart, regend, and reg_info for all registers corresponding to
5730 the subexpressions we're currently inside, plus the number of such
5731 registers, and, finally, two char *'s. The first char * is where
5732 to resume scanning the pattern; the second one is where to resume
5733 scanning the strings. If the latter is zero, the failure point is
5734 a ``dummy''; if a failure happens and the failure point is a dummy,
5735 it gets discarded and the next next one is tried. */
5736 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5737 PREFIX(fail_stack_type) fail_stack;
5738 #endif
5739 #ifdef DEBUG
5740 static unsigned failure_id;
5741 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5742 #endif
5744 #ifdef REL_ALLOC
5745 /* This holds the pointer to the failure stack, when
5746 it is allocated relocatably. */
5747 fail_stack_elt_t *failure_stack_ptr;
5748 #endif
5750 /* We fill all the registers internally, independent of what we
5751 return, for use in backreferences. The number here includes
5752 an element for register zero. */
5753 size_t num_regs = bufp->re_nsub + 1;
5755 /* The currently active registers. */
5756 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5757 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5759 /* Information on the contents of registers. These are pointers into
5760 the input strings; they record just what was matched (on this
5761 attempt) by a subexpression part of the pattern, that is, the
5762 regnum-th regstart pointer points to where in the pattern we began
5763 matching and the regnum-th regend points to right after where we
5764 stopped matching the regnum-th subexpression. (The zeroth register
5765 keeps track of what the whole pattern matches.) */
5766 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5767 const CHAR_T **regstart, **regend;
5768 #endif
5770 /* If a group that's operated upon by a repetition operator fails to
5771 match anything, then the register for its start will need to be
5772 restored because it will have been set to wherever in the string we
5773 are when we last see its open-group operator. Similarly for a
5774 register's end. */
5775 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5776 const CHAR_T **old_regstart, **old_regend;
5777 #endif
5779 /* The is_active field of reg_info helps us keep track of which (possibly
5780 nested) subexpressions we are currently in. The matched_something
5781 field of reg_info[reg_num] helps us tell whether or not we have
5782 matched any of the pattern so far this time through the reg_num-th
5783 subexpression. These two fields get reset each time through any
5784 loop their register is in. */
5785 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5786 PREFIX(register_info_type) *reg_info;
5787 #endif
5789 /* The following record the register info as found in the above
5790 variables when we find a match better than any we've seen before.
5791 This happens as we backtrack through the failure points, which in
5792 turn happens only if we have not yet matched the entire string. */
5793 unsigned best_regs_set = false;
5794 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5795 const CHAR_T **best_regstart, **best_regend;
5796 #endif
5798 /* Logically, this is `best_regend[0]'. But we don't want to have to
5799 allocate space for that if we're not allocating space for anything
5800 else (see below). Also, we never need info about register 0 for
5801 any of the other register vectors, and it seems rather a kludge to
5802 treat `best_regend' differently than the rest. So we keep track of
5803 the end of the best match so far in a separate variable. We
5804 initialize this to NULL so that when we backtrack the first time
5805 and need to test it, it's not garbage. */
5806 const CHAR_T *match_end = NULL;
5808 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5809 int set_regs_matched_done = 0;
5811 /* Used when we pop values we don't care about. */
5812 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5813 const CHAR_T **reg_dummy;
5814 PREFIX(register_info_type) *reg_info_dummy;
5815 #endif
5817 #ifdef DEBUG
5818 /* Counts the total number of registers pushed. */
5819 unsigned num_regs_pushed = 0;
5820 #endif
5822 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5824 INIT_FAIL_STACK ();
5826 #ifdef MATCH_MAY_ALLOCATE
5827 /* Do not bother to initialize all the register variables if there are
5828 no groups in the pattern, as it takes a fair amount of time. If
5829 there are groups, we include space for register 0 (the whole
5830 pattern), even though we never use it, since it simplifies the
5831 array indexing. We should fix this. */
5832 if (bufp->re_nsub)
5834 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5835 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5836 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5837 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5838 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5839 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5840 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5841 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5842 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5844 if (!(regstart && regend && old_regstart && old_regend && reg_info
5845 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5847 FREE_VARIABLES ();
5848 return -2;
5851 else
5853 /* We must initialize all our variables to NULL, so that
5854 `FREE_VARIABLES' doesn't try to free them. */
5855 regstart = regend = old_regstart = old_regend = best_regstart
5856 = best_regend = reg_dummy = NULL;
5857 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5859 #endif /* MATCH_MAY_ALLOCATE */
5861 /* The starting position is bogus. */
5862 #ifdef WCHAR
5863 if (pos < 0 || pos > csize1 + csize2)
5864 #else /* BYTE */
5865 if (pos < 0 || pos > size1 + size2)
5866 #endif
5868 FREE_VARIABLES ();
5869 return -1;
5872 #ifdef WCHAR
5873 /* Allocate wchar_t array for string1 and string2 and
5874 fill them with converted string. */
5875 if (string1 == NULL && string2 == NULL)
5877 /* We need seting up buffers here. */
5879 /* We must free wcs buffers in this function. */
5880 cant_free_wcs_buf = 0;
5882 if (csize1 != 0)
5884 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5885 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5886 is_binary = REGEX_TALLOC (csize1 + 1, char);
5887 if (!string1 || !mbs_offset1 || !is_binary)
5889 FREE_VAR (string1);
5890 FREE_VAR (mbs_offset1);
5891 FREE_VAR (is_binary);
5892 return -2;
5895 if (csize2 != 0)
5897 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5898 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5899 is_binary = REGEX_TALLOC (csize2 + 1, char);
5900 if (!string2 || !mbs_offset2 || !is_binary)
5902 FREE_VAR (string1);
5903 FREE_VAR (mbs_offset1);
5904 FREE_VAR (string2);
5905 FREE_VAR (mbs_offset2);
5906 FREE_VAR (is_binary);
5907 return -2;
5909 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5910 mbs_offset2, is_binary);
5911 string2[size2] = L'\0'; /* for a sentinel */
5912 FREE_VAR (is_binary);
5916 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5917 pattern to (char*) in regex_compile. */
5918 p = pattern = (CHAR_T*)bufp->buffer;
5919 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5921 #endif /* WCHAR */
5923 /* Initialize subexpression text positions to -1 to mark ones that no
5924 start_memory/stop_memory has been seen for. Also initialize the
5925 register information struct. */
5926 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5928 regstart[mcnt] = regend[mcnt]
5929 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5931 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5932 IS_ACTIVE (reg_info[mcnt]) = 0;
5933 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5934 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5937 /* We move `string1' into `string2' if the latter's empty -- but not if
5938 `string1' is null. */
5939 if (size2 == 0 && string1 != NULL)
5941 string2 = string1;
5942 size2 = size1;
5943 string1 = 0;
5944 size1 = 0;
5945 #ifdef WCHAR
5946 mbs_offset2 = mbs_offset1;
5947 csize2 = csize1;
5948 mbs_offset1 = NULL;
5949 csize1 = 0;
5950 #endif
5952 end1 = string1 + size1;
5953 end2 = string2 + size2;
5955 /* Compute where to stop matching, within the two strings. */
5956 #ifdef WCHAR
5957 if (stop <= csize1)
5959 mcnt = count_mbs_length(mbs_offset1, stop);
5960 end_match_1 = string1 + mcnt;
5961 end_match_2 = string2;
5963 else
5965 if (stop > csize1 + csize2)
5966 stop = csize1 + csize2;
5967 end_match_1 = end1;
5968 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5969 end_match_2 = string2 + mcnt;
5971 if (mcnt < 0)
5972 { /* count_mbs_length return error. */
5973 FREE_VARIABLES ();
5974 return -1;
5976 #else
5977 if (stop <= size1)
5979 end_match_1 = string1 + stop;
5980 end_match_2 = string2;
5982 else
5984 end_match_1 = end1;
5985 end_match_2 = string2 + stop - size1;
5987 #endif /* WCHAR */
5989 /* `p' scans through the pattern as `d' scans through the data.
5990 `dend' is the end of the input string that `d' points within. `d'
5991 is advanced into the following input string whenever necessary, but
5992 this happens before fetching; therefore, at the beginning of the
5993 loop, `d' can be pointing at the end of a string, but it cannot
5994 equal `string2'. */
5995 #ifdef WCHAR
5996 if (size1 > 0 && pos <= csize1)
5998 mcnt = count_mbs_length(mbs_offset1, pos);
5999 d = string1 + mcnt;
6000 dend = end_match_1;
6002 else
6004 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6005 d = string2 + mcnt;
6006 dend = end_match_2;
6009 if (mcnt < 0)
6010 { /* count_mbs_length return error. */
6011 FREE_VARIABLES ();
6012 return -1;
6014 #else
6015 if (size1 > 0 && pos <= size1)
6017 d = string1 + pos;
6018 dend = end_match_1;
6020 else
6022 d = string2 + pos - size1;
6023 dend = end_match_2;
6025 #endif /* WCHAR */
6027 DEBUG_PRINT1 ("The compiled pattern is:\n");
6028 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6029 DEBUG_PRINT1 ("The string to match is: `");
6030 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6031 DEBUG_PRINT1 ("'\n");
6033 /* This loops over pattern commands. It exits by returning from the
6034 function if the match is complete, or it drops through if the match
6035 fails at this starting point in the input data. */
6036 for (;;)
6038 #ifdef _LIBC
6039 DEBUG_PRINT2 ("\n%p: ", p);
6040 #else
6041 DEBUG_PRINT2 ("\n0x%x: ", p);
6042 #endif
6044 if (p == pend)
6045 { /* End of pattern means we might have succeeded. */
6046 DEBUG_PRINT1 ("end of pattern ... ");
6048 /* If we haven't matched the entire string, and we want the
6049 longest match, try backtracking. */
6050 if (d != end_match_2)
6052 /* 1 if this match ends in the same string (string1 or string2)
6053 as the best previous match. */
6054 boolean same_str_p = (FIRST_STRING_P (match_end)
6055 == MATCHING_IN_FIRST_STRING);
6056 /* 1 if this match is the best seen so far. */
6057 boolean best_match_p;
6059 /* AIX compiler got confused when this was combined
6060 with the previous declaration. */
6061 if (same_str_p)
6062 best_match_p = d > match_end;
6063 else
6064 best_match_p = !MATCHING_IN_FIRST_STRING;
6066 DEBUG_PRINT1 ("backtracking.\n");
6068 if (!FAIL_STACK_EMPTY ())
6069 { /* More failure points to try. */
6071 /* If exceeds best match so far, save it. */
6072 if (!best_regs_set || best_match_p)
6074 best_regs_set = true;
6075 match_end = d;
6077 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6079 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6081 best_regstart[mcnt] = regstart[mcnt];
6082 best_regend[mcnt] = regend[mcnt];
6085 goto fail;
6088 /* If no failure points, don't restore garbage. And if
6089 last match is real best match, don't restore second
6090 best one. */
6091 else if (best_regs_set && !best_match_p)
6093 restore_best_regs:
6094 /* Restore best match. It may happen that `dend ==
6095 end_match_1' while the restored d is in string2.
6096 For example, the pattern `x.*y.*z' against the
6097 strings `x-' and `y-z-', if the two strings are
6098 not consecutive in memory. */
6099 DEBUG_PRINT1 ("Restoring best registers.\n");
6101 d = match_end;
6102 dend = ((d >= string1 && d <= end1)
6103 ? end_match_1 : end_match_2);
6105 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6107 regstart[mcnt] = best_regstart[mcnt];
6108 regend[mcnt] = best_regend[mcnt];
6111 } /* d != end_match_2 */
6113 succeed_label:
6114 DEBUG_PRINT1 ("Accepting match.\n");
6115 /* If caller wants register contents data back, do it. */
6116 if (regs && !bufp->no_sub)
6118 /* Have the register data arrays been allocated? */
6119 if (bufp->regs_allocated == REGS_UNALLOCATED)
6120 { /* No. So allocate them with malloc. We need one
6121 extra element beyond `num_regs' for the `-1' marker
6122 GNU code uses. */
6123 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6124 regs->start = TALLOC (regs->num_regs, regoff_t);
6125 regs->end = TALLOC (regs->num_regs, regoff_t);
6126 if (regs->start == NULL || regs->end == NULL)
6128 FREE_VARIABLES ();
6129 return -2;
6131 bufp->regs_allocated = REGS_REALLOCATE;
6133 else if (bufp->regs_allocated == REGS_REALLOCATE)
6134 { /* Yes. If we need more elements than were already
6135 allocated, reallocate them. If we need fewer, just
6136 leave it alone. */
6137 if (regs->num_regs < num_regs + 1)
6139 regs->num_regs = num_regs + 1;
6140 RETALLOC (regs->start, regs->num_regs, regoff_t);
6141 RETALLOC (regs->end, regs->num_regs, regoff_t);
6142 if (regs->start == NULL || regs->end == NULL)
6144 FREE_VARIABLES ();
6145 return -2;
6149 else
6151 /* These braces fend off a "empty body in an else-statement"
6152 warning under GCC when assert expands to nothing. */
6153 assert (bufp->regs_allocated == REGS_FIXED);
6156 /* Convert the pointer data in `regstart' and `regend' to
6157 indices. Register zero has to be set differently,
6158 since we haven't kept track of any info for it. */
6159 if (regs->num_regs > 0)
6161 regs->start[0] = pos;
6162 #ifdef WCHAR
6163 if (MATCHING_IN_FIRST_STRING)
6164 regs->end[0] = mbs_offset1 != NULL ?
6165 mbs_offset1[d-string1] : 0;
6166 else
6167 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6168 mbs_offset2[d-string2] : 0);
6169 #else
6170 regs->end[0] = (MATCHING_IN_FIRST_STRING
6171 ? ((regoff_t) (d - string1))
6172 : ((regoff_t) (d - string2 + size1)));
6173 #endif /* WCHAR */
6176 /* Go through the first `min (num_regs, regs->num_regs)'
6177 registers, since that is all we initialized. */
6178 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6179 mcnt++)
6181 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6182 regs->start[mcnt] = regs->end[mcnt] = -1;
6183 else
6185 regs->start[mcnt]
6186 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6187 regs->end[mcnt]
6188 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6192 /* If the regs structure we return has more elements than
6193 were in the pattern, set the extra elements to -1. If
6194 we (re)allocated the registers, this is the case,
6195 because we always allocate enough to have at least one
6196 -1 at the end. */
6197 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6198 regs->start[mcnt] = regs->end[mcnt] = -1;
6199 } /* regs && !bufp->no_sub */
6201 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6202 nfailure_points_pushed, nfailure_points_popped,
6203 nfailure_points_pushed - nfailure_points_popped);
6204 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6206 #ifdef WCHAR
6207 if (MATCHING_IN_FIRST_STRING)
6208 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6209 else
6210 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6211 csize1;
6212 mcnt -= pos;
6213 #else
6214 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6215 ? string1
6216 : string2 - size1);
6217 #endif /* WCHAR */
6219 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6221 FREE_VARIABLES ();
6222 return mcnt;
6225 /* Otherwise match next pattern command. */
6226 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6228 /* Ignore these. Used to ignore the n of succeed_n's which
6229 currently have n == 0. */
6230 case no_op:
6231 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6232 break;
6234 case succeed:
6235 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6236 goto succeed_label;
6238 /* Match the next n pattern characters exactly. The following
6239 byte in the pattern defines n, and the n bytes after that
6240 are the characters to match. */
6241 case exactn:
6242 #ifdef MBS_SUPPORT
6243 case exactn_bin:
6244 #endif
6245 mcnt = *p++;
6246 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6248 /* This is written out as an if-else so we don't waste time
6249 testing `translate' inside the loop. */
6250 if (translate)
6254 PREFETCH ();
6255 #ifdef WCHAR
6256 if (*d <= 0xff)
6258 if ((UCHAR_T) translate[(unsigned char) *d++]
6259 != (UCHAR_T) *p++)
6260 goto fail;
6262 else
6264 if (*d++ != (CHAR_T) *p++)
6265 goto fail;
6267 #else
6268 if ((UCHAR_T) translate[(unsigned char) *d++]
6269 != (UCHAR_T) *p++)
6270 goto fail;
6271 #endif /* WCHAR */
6273 while (--mcnt);
6275 else
6279 PREFETCH ();
6280 if (*d++ != (CHAR_T) *p++) goto fail;
6282 while (--mcnt);
6284 SET_REGS_MATCHED ();
6285 break;
6288 /* Match any character except possibly a newline or a null. */
6289 case anychar:
6290 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6292 PREFETCH ();
6294 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6295 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6296 goto fail;
6298 SET_REGS_MATCHED ();
6299 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6300 d++;
6301 break;
6304 case charset:
6305 case charset_not:
6307 register UCHAR_T c;
6308 #ifdef WCHAR
6309 unsigned int i, char_class_length, coll_symbol_length,
6310 equiv_class_length, ranges_length, chars_length, length;
6311 CHAR_T *workp, *workp2, *charset_top;
6312 #define WORK_BUFFER_SIZE 128
6313 CHAR_T str_buf[WORK_BUFFER_SIZE];
6314 # ifdef _LIBC
6315 uint32_t nrules;
6316 # endif /* _LIBC */
6317 #endif /* WCHAR */
6318 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6320 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6321 PREFETCH ();
6322 c = TRANSLATE (*d); /* The character to match. */
6323 #ifdef WCHAR
6324 # ifdef _LIBC
6325 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6326 # endif /* _LIBC */
6327 charset_top = p - 1;
6328 char_class_length = *p++;
6329 coll_symbol_length = *p++;
6330 equiv_class_length = *p++;
6331 ranges_length = *p++;
6332 chars_length = *p++;
6333 /* p points charset[6], so the address of the next instruction
6334 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6335 where l=length of char_classes, m=length of collating_symbol,
6336 n=equivalence_class, o=length of char_range,
6337 p'=length of character. */
6338 workp = p;
6339 /* Update p to indicate the next instruction. */
6340 p += char_class_length + coll_symbol_length+ equiv_class_length +
6341 2*ranges_length + chars_length;
6343 /* match with char_class? */
6344 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6346 wctype_t wctype;
6347 uintptr_t alignedp = ((uintptr_t)workp
6348 + __alignof__(wctype_t) - 1)
6349 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6350 wctype = *((wctype_t*)alignedp);
6351 workp += CHAR_CLASS_SIZE;
6352 # ifdef _LIBC
6353 if (__iswctype((wint_t)c, wctype))
6354 goto char_set_matched;
6355 # else
6356 if (iswctype((wint_t)c, wctype))
6357 goto char_set_matched;
6358 # endif
6361 /* match with collating_symbol? */
6362 # ifdef _LIBC
6363 if (nrules != 0)
6365 const unsigned char *extra = (const unsigned char *)
6366 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6368 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6369 workp++)
6371 int32_t *wextra;
6372 wextra = (int32_t*)(extra + *workp++);
6373 for (i = 0; i < *wextra; ++i)
6374 if (TRANSLATE(d[i]) != wextra[1 + i])
6375 break;
6377 if (i == *wextra)
6379 /* Update d, however d will be incremented at
6380 char_set_matched:, we decrement d here. */
6381 d += i - 1;
6382 goto char_set_matched;
6386 else /* (nrules == 0) */
6387 # endif
6388 /* If we can't look up collation data, we use wcscoll
6389 instead. */
6391 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6393 const CHAR_T *backup_d = d, *backup_dend = dend;
6394 # ifdef _LIBC
6395 length = __wcslen (workp);
6396 # else
6397 length = wcslen (workp);
6398 # endif
6400 /* If wcscoll(the collating symbol, whole string) > 0,
6401 any substring of the string never match with the
6402 collating symbol. */
6403 # ifdef _LIBC
6404 if (__wcscoll (workp, d) > 0)
6405 # else
6406 if (wcscoll (workp, d) > 0)
6407 # endif
6409 workp += length + 1;
6410 continue;
6413 /* First, we compare the collating symbol with
6414 the first character of the string.
6415 If it don't match, we add the next character to
6416 the compare buffer in turn. */
6417 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6419 int match;
6420 if (d == dend)
6422 if (dend == end_match_2)
6423 break;
6424 d = string2;
6425 dend = end_match_2;
6428 /* add next character to the compare buffer. */
6429 str_buf[i] = TRANSLATE(*d);
6430 str_buf[i+1] = '\0';
6432 # ifdef _LIBC
6433 match = __wcscoll (workp, str_buf);
6434 # else
6435 match = wcscoll (workp, str_buf);
6436 # endif
6437 if (match == 0)
6438 goto char_set_matched;
6440 if (match < 0)
6441 /* (str_buf > workp) indicate (str_buf + X > workp),
6442 because for all X (str_buf + X > str_buf).
6443 So we don't need continue this loop. */
6444 break;
6446 /* Otherwise(str_buf < workp),
6447 (str_buf+next_character) may equals (workp).
6448 So we continue this loop. */
6450 /* not matched */
6451 d = backup_d;
6452 dend = backup_dend;
6453 workp += length + 1;
6456 /* match with equivalence_class? */
6457 # ifdef _LIBC
6458 if (nrules != 0)
6460 const CHAR_T *backup_d = d, *backup_dend = dend;
6461 /* Try to match the equivalence class against
6462 those known to the collate implementation. */
6463 const int32_t *table;
6464 const int32_t *weights;
6465 const int32_t *extra;
6466 const int32_t *indirect;
6467 int32_t idx, idx2;
6468 wint_t *cp;
6469 size_t len;
6471 /* This #include defines a local function! */
6472 # include <locale/weightwc.h>
6474 table = (const int32_t *)
6475 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6476 weights = (const wint_t *)
6477 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6478 extra = (const wint_t *)
6479 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6480 indirect = (const int32_t *)
6481 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6483 /* Write 1 collating element to str_buf, and
6484 get its index. */
6485 idx2 = 0;
6487 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6489 cp = (wint_t*)str_buf;
6490 if (d == dend)
6492 if (dend == end_match_2)
6493 break;
6494 d = string2;
6495 dend = end_match_2;
6497 str_buf[i] = TRANSLATE(*(d+i));
6498 str_buf[i+1] = '\0'; /* sentinel */
6499 idx2 = findidx ((const wint_t**)&cp);
6502 /* Update d, however d will be incremented at
6503 char_set_matched:, we decrement d here. */
6504 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6505 if (d >= dend)
6507 if (dend == end_match_2)
6508 d = dend;
6509 else
6511 d = string2;
6512 dend = end_match_2;
6516 len = weights[idx2];
6518 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6519 workp++)
6521 idx = (int32_t)*workp;
6522 /* We already checked idx != 0 in regex_compile. */
6524 if (idx2 != 0 && len == weights[idx])
6526 int cnt = 0;
6527 while (cnt < len && (weights[idx + 1 + cnt]
6528 == weights[idx2 + 1 + cnt]))
6529 ++cnt;
6531 if (cnt == len)
6532 goto char_set_matched;
6535 /* not matched */
6536 d = backup_d;
6537 dend = backup_dend;
6539 else /* (nrules == 0) */
6540 # endif
6541 /* If we can't look up collation data, we use wcscoll
6542 instead. */
6544 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6546 const CHAR_T *backup_d = d, *backup_dend = dend;
6547 # ifdef _LIBC
6548 length = __wcslen (workp);
6549 # else
6550 length = wcslen (workp);
6551 # endif
6553 /* If wcscoll(the collating symbol, whole string) > 0,
6554 any substring of the string never match with the
6555 collating symbol. */
6556 # ifdef _LIBC
6557 if (__wcscoll (workp, d) > 0)
6558 # else
6559 if (wcscoll (workp, d) > 0)
6560 # endif
6562 workp += length + 1;
6563 break;
6566 /* First, we compare the equivalence class with
6567 the first character of the string.
6568 If it don't match, we add the next character to
6569 the compare buffer in turn. */
6570 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6572 int match;
6573 if (d == dend)
6575 if (dend == end_match_2)
6576 break;
6577 d = string2;
6578 dend = end_match_2;
6581 /* add next character to the compare buffer. */
6582 str_buf[i] = TRANSLATE(*d);
6583 str_buf[i+1] = '\0';
6585 # ifdef _LIBC
6586 match = __wcscoll (workp, str_buf);
6587 # else
6588 match = wcscoll (workp, str_buf);
6589 # endif
6591 if (match == 0)
6592 goto char_set_matched;
6594 if (match < 0)
6595 /* (str_buf > workp) indicate (str_buf + X > workp),
6596 because for all X (str_buf + X > str_buf).
6597 So we don't need continue this loop. */
6598 break;
6600 /* Otherwise(str_buf < workp),
6601 (str_buf+next_character) may equals (workp).
6602 So we continue this loop. */
6604 /* not matched */
6605 d = backup_d;
6606 dend = backup_dend;
6607 workp += length + 1;
6611 /* match with char_range? */
6612 # ifdef _LIBC
6613 if (nrules != 0)
6615 uint32_t collseqval;
6616 const char *collseq = (const char *)
6617 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6619 collseqval = collseq_table_lookup (collseq, c);
6621 for (; workp < p - chars_length ;)
6623 uint32_t start_val, end_val;
6625 /* We already compute the collation sequence value
6626 of the characters (or collating symbols). */
6627 start_val = (uint32_t) *workp++; /* range_start */
6628 end_val = (uint32_t) *workp++; /* range_end */
6630 if (start_val <= collseqval && collseqval <= end_val)
6631 goto char_set_matched;
6634 else
6635 # endif
6637 /* We set range_start_char at str_buf[0], range_end_char
6638 at str_buf[4], and compared char at str_buf[2]. */
6639 str_buf[1] = 0;
6640 str_buf[2] = c;
6641 str_buf[3] = 0;
6642 str_buf[5] = 0;
6643 for (; workp < p - chars_length ;)
6645 wchar_t *range_start_char, *range_end_char;
6647 /* match if (range_start_char <= c <= range_end_char). */
6649 /* If range_start(or end) < 0, we assume -range_start(end)
6650 is the offset of the collating symbol which is specified
6651 as the character of the range start(end). */
6653 /* range_start */
6654 if (*workp < 0)
6655 range_start_char = charset_top - (*workp++);
6656 else
6658 str_buf[0] = *workp++;
6659 range_start_char = str_buf;
6662 /* range_end */
6663 if (*workp < 0)
6664 range_end_char = charset_top - (*workp++);
6665 else
6667 str_buf[4] = *workp++;
6668 range_end_char = str_buf + 4;
6671 # ifdef _LIBC
6672 if (__wcscoll (range_start_char, str_buf+2) <= 0
6673 && __wcscoll (str_buf+2, range_end_char) <= 0)
6674 # else
6675 if (wcscoll (range_start_char, str_buf+2) <= 0
6676 && wcscoll (str_buf+2, range_end_char) <= 0)
6677 # endif
6678 goto char_set_matched;
6682 /* match with char? */
6683 for (; workp < p ; workp++)
6684 if (c == *workp)
6685 goto char_set_matched;
6687 not = !not;
6689 char_set_matched:
6690 if (not) goto fail;
6691 #else
6692 /* Cast to `unsigned' instead of `unsigned char' in case the
6693 bit list is a full 32 bytes long. */
6694 if (c < (unsigned) (*p * BYTEWIDTH)
6695 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6696 not = !not;
6698 p += 1 + *p;
6700 if (!not) goto fail;
6701 #undef WORK_BUFFER_SIZE
6702 #endif /* WCHAR */
6703 SET_REGS_MATCHED ();
6704 d++;
6705 break;
6709 /* The beginning of a group is represented by start_memory.
6710 The arguments are the register number in the next byte, and the
6711 number of groups inner to this one in the next. The text
6712 matched within the group is recorded (in the internal
6713 registers data structure) under the register number. */
6714 case start_memory:
6715 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6716 (long int) *p, (long int) p[1]);
6718 /* Find out if this group can match the empty string. */
6719 p1 = p; /* To send to group_match_null_string_p. */
6721 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6722 REG_MATCH_NULL_STRING_P (reg_info[*p])
6723 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6725 /* Save the position in the string where we were the last time
6726 we were at this open-group operator in case the group is
6727 operated upon by a repetition operator, e.g., with `(a*)*b'
6728 against `ab'; then we want to ignore where we are now in
6729 the string in case this attempt to match fails. */
6730 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6731 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6732 : regstart[*p];
6733 DEBUG_PRINT2 (" old_regstart: %d\n",
6734 POINTER_TO_OFFSET (old_regstart[*p]));
6736 regstart[*p] = d;
6737 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6739 IS_ACTIVE (reg_info[*p]) = 1;
6740 MATCHED_SOMETHING (reg_info[*p]) = 0;
6742 /* Clear this whenever we change the register activity status. */
6743 set_regs_matched_done = 0;
6745 /* This is the new highest active register. */
6746 highest_active_reg = *p;
6748 /* If nothing was active before, this is the new lowest active
6749 register. */
6750 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6751 lowest_active_reg = *p;
6753 /* Move past the register number and inner group count. */
6754 p += 2;
6755 just_past_start_mem = p;
6757 break;
6760 /* The stop_memory opcode represents the end of a group. Its
6761 arguments are the same as start_memory's: the register
6762 number, and the number of inner groups. */
6763 case stop_memory:
6764 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6765 (long int) *p, (long int) p[1]);
6767 /* We need to save the string position the last time we were at
6768 this close-group operator in case the group is operated
6769 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6770 against `aba'; then we want to ignore where we are now in
6771 the string in case this attempt to match fails. */
6772 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6773 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6774 : regend[*p];
6775 DEBUG_PRINT2 (" old_regend: %d\n",
6776 POINTER_TO_OFFSET (old_regend[*p]));
6778 regend[*p] = d;
6779 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6781 /* This register isn't active anymore. */
6782 IS_ACTIVE (reg_info[*p]) = 0;
6784 /* Clear this whenever we change the register activity status. */
6785 set_regs_matched_done = 0;
6787 /* If this was the only register active, nothing is active
6788 anymore. */
6789 if (lowest_active_reg == highest_active_reg)
6791 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6792 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6794 else
6795 { /* We must scan for the new highest active register, since
6796 it isn't necessarily one less than now: consider
6797 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6798 new highest active register is 1. */
6799 UCHAR_T r = *p - 1;
6800 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6801 r--;
6803 /* If we end up at register zero, that means that we saved
6804 the registers as the result of an `on_failure_jump', not
6805 a `start_memory', and we jumped to past the innermost
6806 `stop_memory'. For example, in ((.)*) we save
6807 registers 1 and 2 as a result of the *, but when we pop
6808 back to the second ), we are at the stop_memory 1.
6809 Thus, nothing is active. */
6810 if (r == 0)
6812 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6813 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6815 else
6816 highest_active_reg = r;
6819 /* If just failed to match something this time around with a
6820 group that's operated on by a repetition operator, try to
6821 force exit from the ``loop'', and restore the register
6822 information for this group that we had before trying this
6823 last match. */
6824 if ((!MATCHED_SOMETHING (reg_info[*p])
6825 || just_past_start_mem == p - 1)
6826 && (p + 2) < pend)
6828 boolean is_a_jump_n = false;
6830 p1 = p + 2;
6831 mcnt = 0;
6832 switch ((re_opcode_t) *p1++)
6834 case jump_n:
6835 is_a_jump_n = true;
6836 case pop_failure_jump:
6837 case maybe_pop_jump:
6838 case jump:
6839 case dummy_failure_jump:
6840 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6841 if (is_a_jump_n)
6842 p1 += OFFSET_ADDRESS_SIZE;
6843 break;
6845 default:
6846 /* do nothing */ ;
6848 p1 += mcnt;
6850 /* If the next operation is a jump backwards in the pattern
6851 to an on_failure_jump right before the start_memory
6852 corresponding to this stop_memory, exit from the loop
6853 by forcing a failure after pushing on the stack the
6854 on_failure_jump's jump in the pattern, and d. */
6855 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6856 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6857 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6859 /* If this group ever matched anything, then restore
6860 what its registers were before trying this last
6861 failed match, e.g., with `(a*)*b' against `ab' for
6862 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6863 against `aba' for regend[3].
6865 Also restore the registers for inner groups for,
6866 e.g., `((a*)(b*))*' against `aba' (register 3 would
6867 otherwise get trashed). */
6869 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6871 unsigned r;
6873 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6875 /* Restore this and inner groups' (if any) registers. */
6876 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6877 r++)
6879 regstart[r] = old_regstart[r];
6881 /* xx why this test? */
6882 if (old_regend[r] >= regstart[r])
6883 regend[r] = old_regend[r];
6886 p1++;
6887 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6888 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6890 goto fail;
6894 /* Move past the register number and the inner group count. */
6895 p += 2;
6896 break;
6899 /* \<digit> has been turned into a `duplicate' command which is
6900 followed by the numeric value of <digit> as the register number. */
6901 case duplicate:
6903 register const CHAR_T *d2, *dend2;
6904 int regno = *p++; /* Get which register to match against. */
6905 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6907 /* Can't back reference a group which we've never matched. */
6908 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6909 goto fail;
6911 /* Where in input to try to start matching. */
6912 d2 = regstart[regno];
6914 /* Where to stop matching; if both the place to start and
6915 the place to stop matching are in the same string, then
6916 set to the place to stop, otherwise, for now have to use
6917 the end of the first string. */
6919 dend2 = ((FIRST_STRING_P (regstart[regno])
6920 == FIRST_STRING_P (regend[regno]))
6921 ? regend[regno] : end_match_1);
6922 for (;;)
6924 /* If necessary, advance to next segment in register
6925 contents. */
6926 while (d2 == dend2)
6928 if (dend2 == end_match_2) break;
6929 if (dend2 == regend[regno]) break;
6931 /* End of string1 => advance to string2. */
6932 d2 = string2;
6933 dend2 = regend[regno];
6935 /* At end of register contents => success */
6936 if (d2 == dend2) break;
6938 /* If necessary, advance to next segment in data. */
6939 PREFETCH ();
6941 /* How many characters left in this segment to match. */
6942 mcnt = dend - d;
6944 /* Want how many consecutive characters we can match in
6945 one shot, so, if necessary, adjust the count. */
6946 if (mcnt > dend2 - d2)
6947 mcnt = dend2 - d2;
6949 /* Compare that many; failure if mismatch, else move
6950 past them. */
6951 if (translate
6952 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6953 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6954 goto fail;
6955 d += mcnt, d2 += mcnt;
6957 /* Do this because we've match some characters. */
6958 SET_REGS_MATCHED ();
6961 break;
6964 /* begline matches the empty string at the beginning of the string
6965 (unless `not_bol' is set in `bufp'), and, if
6966 `newline_anchor' is set, after newlines. */
6967 case begline:
6968 DEBUG_PRINT1 ("EXECUTING begline.\n");
6970 if (AT_STRINGS_BEG (d))
6972 if (!bufp->not_bol) break;
6974 else if (d[-1] == '\n' && bufp->newline_anchor)
6976 break;
6978 /* In all other cases, we fail. */
6979 goto fail;
6982 /* endline is the dual of begline. */
6983 case endline:
6984 DEBUG_PRINT1 ("EXECUTING endline.\n");
6986 if (AT_STRINGS_END (d))
6988 if (!bufp->not_eol) break;
6991 /* We have to ``prefetch'' the next character. */
6992 else if ((d == end1 ? *string2 : *d) == '\n'
6993 && bufp->newline_anchor)
6995 break;
6997 goto fail;
7000 /* Match at the very beginning of the data. */
7001 case begbuf:
7002 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7003 if (AT_STRINGS_BEG (d))
7004 break;
7005 goto fail;
7008 /* Match at the very end of the data. */
7009 case endbuf:
7010 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7011 if (AT_STRINGS_END (d))
7012 break;
7013 goto fail;
7016 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7017 pushes NULL as the value for the string on the stack. Then
7018 `pop_failure_point' will keep the current value for the
7019 string, instead of restoring it. To see why, consider
7020 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7021 then the . fails against the \n. But the next thing we want
7022 to do is match the \n against the \n; if we restored the
7023 string value, we would be back at the foo.
7025 Because this is used only in specific cases, we don't need to
7026 check all the things that `on_failure_jump' does, to make
7027 sure the right things get saved on the stack. Hence we don't
7028 share its code. The only reason to push anything on the
7029 stack at all is that otherwise we would have to change
7030 `anychar's code to do something besides goto fail in this
7031 case; that seems worse than this. */
7032 case on_failure_keep_string_jump:
7033 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7035 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7036 #ifdef _LIBC
7037 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7038 #else
7039 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7040 #endif
7042 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7043 break;
7046 /* Uses of on_failure_jump:
7048 Each alternative starts with an on_failure_jump that points
7049 to the beginning of the next alternative. Each alternative
7050 except the last ends with a jump that in effect jumps past
7051 the rest of the alternatives. (They really jump to the
7052 ending jump of the following alternative, because tensioning
7053 these jumps is a hassle.)
7055 Repeats start with an on_failure_jump that points past both
7056 the repetition text and either the following jump or
7057 pop_failure_jump back to this on_failure_jump. */
7058 case on_failure_jump:
7059 on_failure:
7060 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7062 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7063 #ifdef _LIBC
7064 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7065 #else
7066 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7067 #endif
7069 /* If this on_failure_jump comes right before a group (i.e.,
7070 the original * applied to a group), save the information
7071 for that group and all inner ones, so that if we fail back
7072 to this point, the group's information will be correct.
7073 For example, in \(a*\)*\1, we need the preceding group,
7074 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7076 /* We can't use `p' to check ahead because we push
7077 a failure point to `p + mcnt' after we do this. */
7078 p1 = p;
7080 /* We need to skip no_op's before we look for the
7081 start_memory in case this on_failure_jump is happening as
7082 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7083 against aba. */
7084 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7085 p1++;
7087 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7089 /* We have a new highest active register now. This will
7090 get reset at the start_memory we are about to get to,
7091 but we will have saved all the registers relevant to
7092 this repetition op, as described above. */
7093 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7094 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7095 lowest_active_reg = *(p1 + 1);
7098 DEBUG_PRINT1 (":\n");
7099 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7100 break;
7103 /* A smart repeat ends with `maybe_pop_jump'.
7104 We change it to either `pop_failure_jump' or `jump'. */
7105 case maybe_pop_jump:
7106 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7107 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7109 register UCHAR_T *p2 = p;
7111 /* Compare the beginning of the repeat with what in the
7112 pattern follows its end. If we can establish that there
7113 is nothing that they would both match, i.e., that we
7114 would have to backtrack because of (as in, e.g., `a*a')
7115 then we can change to pop_failure_jump, because we'll
7116 never have to backtrack.
7118 This is not true in the case of alternatives: in
7119 `(a|ab)*' we do need to backtrack to the `ab' alternative
7120 (e.g., if the string was `ab'). But instead of trying to
7121 detect that here, the alternative has put on a dummy
7122 failure point which is what we will end up popping. */
7124 /* Skip over open/close-group commands.
7125 If what follows this loop is a ...+ construct,
7126 look at what begins its body, since we will have to
7127 match at least one of that. */
7128 while (1)
7130 if (p2 + 2 < pend
7131 && ((re_opcode_t) *p2 == stop_memory
7132 || (re_opcode_t) *p2 == start_memory))
7133 p2 += 3;
7134 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7135 && (re_opcode_t) *p2 == dummy_failure_jump)
7136 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7137 else
7138 break;
7141 p1 = p + mcnt;
7142 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7143 to the `maybe_finalize_jump' of this case. Examine what
7144 follows. */
7146 /* If we're at the end of the pattern, we can change. */
7147 if (p2 == pend)
7149 /* Consider what happens when matching ":\(.*\)"
7150 against ":/". I don't really understand this code
7151 yet. */
7152 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7153 pop_failure_jump;
7154 DEBUG_PRINT1
7155 (" End of pattern: change to `pop_failure_jump'.\n");
7158 else if ((re_opcode_t) *p2 == exactn
7159 #ifdef MBS_SUPPORT
7160 || (re_opcode_t) *p2 == exactn_bin
7161 #endif
7162 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7164 register UCHAR_T c
7165 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7167 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7168 #ifdef MBS_SUPPORT
7169 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7170 #endif
7171 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7173 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7174 pop_failure_jump;
7175 #ifdef WCHAR
7176 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7177 (wint_t) c,
7178 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7179 #else
7180 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7181 (char) c,
7182 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7183 #endif
7186 #ifndef WCHAR
7187 else if ((re_opcode_t) p1[3] == charset
7188 || (re_opcode_t) p1[3] == charset_not)
7190 int not = (re_opcode_t) p1[3] == charset_not;
7192 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7193 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7194 not = !not;
7196 /* `not' is equal to 1 if c would match, which means
7197 that we can't change to pop_failure_jump. */
7198 if (!not)
7200 p[-3] = (unsigned char) pop_failure_jump;
7201 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7204 #endif /* not WCHAR */
7206 #ifndef WCHAR
7207 else if ((re_opcode_t) *p2 == charset)
7209 /* We win if the first character of the loop is not part
7210 of the charset. */
7211 if ((re_opcode_t) p1[3] == exactn
7212 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7213 && (p2[2 + p1[5] / BYTEWIDTH]
7214 & (1 << (p1[5] % BYTEWIDTH)))))
7216 p[-3] = (unsigned char) pop_failure_jump;
7217 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7220 else if ((re_opcode_t) p1[3] == charset_not)
7222 int idx;
7223 /* We win if the charset_not inside the loop
7224 lists every character listed in the charset after. */
7225 for (idx = 0; idx < (int) p2[1]; idx++)
7226 if (! (p2[2 + idx] == 0
7227 || (idx < (int) p1[4]
7228 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7229 break;
7231 if (idx == p2[1])
7233 p[-3] = (unsigned char) pop_failure_jump;
7234 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7237 else if ((re_opcode_t) p1[3] == charset)
7239 int idx;
7240 /* We win if the charset inside the loop
7241 has no overlap with the one after the loop. */
7242 for (idx = 0;
7243 idx < (int) p2[1] && idx < (int) p1[4];
7244 idx++)
7245 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7246 break;
7248 if (idx == p2[1] || idx == p1[4])
7250 p[-3] = (unsigned char) pop_failure_jump;
7251 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7255 #endif /* not WCHAR */
7257 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7258 if ((re_opcode_t) p[-1] != pop_failure_jump)
7260 p[-1] = (UCHAR_T) jump;
7261 DEBUG_PRINT1 (" Match => jump.\n");
7262 goto unconditional_jump;
7264 /* Note fall through. */
7267 /* The end of a simple repeat has a pop_failure_jump back to
7268 its matching on_failure_jump, where the latter will push a
7269 failure point. The pop_failure_jump takes off failure
7270 points put on by this pop_failure_jump's matching
7271 on_failure_jump; we got through the pattern to here from the
7272 matching on_failure_jump, so didn't fail. */
7273 case pop_failure_jump:
7275 /* We need to pass separate storage for the lowest and
7276 highest registers, even though we don't care about the
7277 actual values. Otherwise, we will restore only one
7278 register from the stack, since lowest will == highest in
7279 `pop_failure_point'. */
7280 active_reg_t dummy_low_reg, dummy_high_reg;
7281 UCHAR_T *pdummy = NULL;
7282 const CHAR_T *sdummy = NULL;
7284 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7285 POP_FAILURE_POINT (sdummy, pdummy,
7286 dummy_low_reg, dummy_high_reg,
7287 reg_dummy, reg_dummy, reg_info_dummy);
7289 /* Note fall through. */
7291 unconditional_jump:
7292 #ifdef _LIBC
7293 DEBUG_PRINT2 ("\n%p: ", p);
7294 #else
7295 DEBUG_PRINT2 ("\n0x%x: ", p);
7296 #endif
7297 /* Note fall through. */
7299 /* Unconditionally jump (without popping any failure points). */
7300 case jump:
7301 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7302 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7303 p += mcnt; /* Do the jump. */
7304 #ifdef _LIBC
7305 DEBUG_PRINT2 ("(to %p).\n", p);
7306 #else
7307 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7308 #endif
7309 break;
7312 /* We need this opcode so we can detect where alternatives end
7313 in `group_match_null_string_p' et al. */
7314 case jump_past_alt:
7315 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7316 goto unconditional_jump;
7319 /* Normally, the on_failure_jump pushes a failure point, which
7320 then gets popped at pop_failure_jump. We will end up at
7321 pop_failure_jump, also, and with a pattern of, say, `a+', we
7322 are skipping over the on_failure_jump, so we have to push
7323 something meaningless for pop_failure_jump to pop. */
7324 case dummy_failure_jump:
7325 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7326 /* It doesn't matter what we push for the string here. What
7327 the code at `fail' tests is the value for the pattern. */
7328 PUSH_FAILURE_POINT (NULL, NULL, -2);
7329 goto unconditional_jump;
7332 /* At the end of an alternative, we need to push a dummy failure
7333 point in case we are followed by a `pop_failure_jump', because
7334 we don't want the failure point for the alternative to be
7335 popped. For example, matching `(a|ab)*' against `aab'
7336 requires that we match the `ab' alternative. */
7337 case push_dummy_failure:
7338 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7339 /* See comments just above at `dummy_failure_jump' about the
7340 two zeroes. */
7341 PUSH_FAILURE_POINT (NULL, NULL, -2);
7342 break;
7344 /* Have to succeed matching what follows at least n times.
7345 After that, handle like `on_failure_jump'. */
7346 case succeed_n:
7347 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7348 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7350 assert (mcnt >= 0);
7351 /* Originally, this is how many times we HAVE to succeed. */
7352 if (mcnt > 0)
7354 mcnt--;
7355 p += OFFSET_ADDRESS_SIZE;
7356 STORE_NUMBER_AND_INCR (p, mcnt);
7357 #ifdef _LIBC
7358 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7359 , mcnt);
7360 #else
7361 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7362 , mcnt);
7363 #endif
7365 else if (mcnt == 0)
7367 #ifdef _LIBC
7368 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7369 p + OFFSET_ADDRESS_SIZE);
7370 #else
7371 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7372 p + OFFSET_ADDRESS_SIZE);
7373 #endif /* _LIBC */
7375 #ifdef WCHAR
7376 p[1] = (UCHAR_T) no_op;
7377 #else
7378 p[2] = (UCHAR_T) no_op;
7379 p[3] = (UCHAR_T) no_op;
7380 #endif /* WCHAR */
7381 goto on_failure;
7383 break;
7385 case jump_n:
7386 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7387 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7389 /* Originally, this is how many times we CAN jump. */
7390 if (mcnt)
7392 mcnt--;
7393 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7395 #ifdef _LIBC
7396 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7397 mcnt);
7398 #else
7399 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7400 mcnt);
7401 #endif /* _LIBC */
7402 goto unconditional_jump;
7404 /* If don't have to jump any more, skip over the rest of command. */
7405 else
7406 p += 2 * OFFSET_ADDRESS_SIZE;
7407 break;
7409 case set_number_at:
7411 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7413 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7414 p1 = p + mcnt;
7415 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7416 #ifdef _LIBC
7417 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7418 #else
7419 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7420 #endif
7421 STORE_NUMBER (p1, mcnt);
7422 break;
7425 #if 0
7426 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7427 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7428 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7429 macro and introducing temporary variables works around the bug. */
7431 case wordbound:
7432 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7433 if (AT_WORD_BOUNDARY (d))
7434 break;
7435 goto fail;
7437 case notwordbound:
7438 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7439 if (AT_WORD_BOUNDARY (d))
7440 goto fail;
7441 break;
7442 #else
7443 case wordbound:
7445 boolean prevchar, thischar;
7447 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7448 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7449 break;
7451 prevchar = WORDCHAR_P (d - 1);
7452 thischar = WORDCHAR_P (d);
7453 if (prevchar != thischar)
7454 break;
7455 goto fail;
7458 case notwordbound:
7460 boolean prevchar, thischar;
7462 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7463 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7464 goto fail;
7466 prevchar = WORDCHAR_P (d - 1);
7467 thischar = WORDCHAR_P (d);
7468 if (prevchar != thischar)
7469 goto fail;
7470 break;
7472 #endif
7474 case wordbeg:
7475 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7476 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7477 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7478 break;
7479 goto fail;
7481 case wordend:
7482 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7483 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7484 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7485 break;
7486 goto fail;
7488 #ifdef emacs
7489 case before_dot:
7490 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7491 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7492 goto fail;
7493 break;
7495 case at_dot:
7496 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7497 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7498 goto fail;
7499 break;
7501 case after_dot:
7502 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7503 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7504 goto fail;
7505 break;
7507 case syntaxspec:
7508 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7509 mcnt = *p++;
7510 goto matchsyntax;
7512 case wordchar:
7513 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7514 mcnt = (int) Sword;
7515 matchsyntax:
7516 PREFETCH ();
7517 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7518 d++;
7519 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7520 goto fail;
7521 SET_REGS_MATCHED ();
7522 break;
7524 case notsyntaxspec:
7525 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7526 mcnt = *p++;
7527 goto matchnotsyntax;
7529 case notwordchar:
7530 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7531 mcnt = (int) Sword;
7532 matchnotsyntax:
7533 PREFETCH ();
7534 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7535 d++;
7536 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7537 goto fail;
7538 SET_REGS_MATCHED ();
7539 break;
7541 #else /* not emacs */
7542 case wordchar:
7543 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7544 PREFETCH ();
7545 if (!WORDCHAR_P (d))
7546 goto fail;
7547 SET_REGS_MATCHED ();
7548 d++;
7549 break;
7551 case notwordchar:
7552 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7553 PREFETCH ();
7554 if (WORDCHAR_P (d))
7555 goto fail;
7556 SET_REGS_MATCHED ();
7557 d++;
7558 break;
7559 #endif /* not emacs */
7561 default:
7562 abort ();
7564 continue; /* Successfully executed one pattern command; keep going. */
7567 /* We goto here if a matching operation fails. */
7568 fail:
7569 if (!FAIL_STACK_EMPTY ())
7570 { /* A restart point is known. Restore to that state. */
7571 DEBUG_PRINT1 ("\nFAIL:\n");
7572 POP_FAILURE_POINT (d, p,
7573 lowest_active_reg, highest_active_reg,
7574 regstart, regend, reg_info);
7576 /* If this failure point is a dummy, try the next one. */
7577 if (!p)
7578 goto fail;
7580 /* If we failed to the end of the pattern, don't examine *p. */
7581 assert (p <= pend);
7582 if (p < pend)
7584 boolean is_a_jump_n = false;
7586 /* If failed to a backwards jump that's part of a repetition
7587 loop, need to pop this failure point and use the next one. */
7588 switch ((re_opcode_t) *p)
7590 case jump_n:
7591 is_a_jump_n = true;
7592 case maybe_pop_jump:
7593 case pop_failure_jump:
7594 case jump:
7595 p1 = p + 1;
7596 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7597 p1 += mcnt;
7599 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7600 || (!is_a_jump_n
7601 && (re_opcode_t) *p1 == on_failure_jump))
7602 goto fail;
7603 break;
7604 default:
7605 /* do nothing */ ;
7609 if (d >= string1 && d <= end1)
7610 dend = end_match_1;
7612 else
7613 break; /* Matching at this starting point really fails. */
7614 } /* for (;;) */
7616 if (best_regs_set)
7617 goto restore_best_regs;
7619 FREE_VARIABLES ();
7621 return -1; /* Failure to match. */
7622 } /* re_match_2 */
7624 /* Subroutine definitions for re_match_2. */
7627 /* We are passed P pointing to a register number after a start_memory.
7629 Return true if the pattern up to the corresponding stop_memory can
7630 match the empty string, and false otherwise.
7632 If we find the matching stop_memory, sets P to point to one past its number.
7633 Otherwise, sets P to an undefined byte less than or equal to END.
7635 We don't handle duplicates properly (yet). */
7637 static boolean
7638 PREFIX(group_match_null_string_p) (p, end, reg_info)
7639 UCHAR_T **p, *end;
7640 PREFIX(register_info_type) *reg_info;
7642 int mcnt;
7643 /* Point to after the args to the start_memory. */
7644 UCHAR_T *p1 = *p + 2;
7646 while (p1 < end)
7648 /* Skip over opcodes that can match nothing, and return true or
7649 false, as appropriate, when we get to one that can't, or to the
7650 matching stop_memory. */
7652 switch ((re_opcode_t) *p1)
7654 /* Could be either a loop or a series of alternatives. */
7655 case on_failure_jump:
7656 p1++;
7657 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7659 /* If the next operation is not a jump backwards in the
7660 pattern. */
7662 if (mcnt >= 0)
7664 /* Go through the on_failure_jumps of the alternatives,
7665 seeing if any of the alternatives cannot match nothing.
7666 The last alternative starts with only a jump,
7667 whereas the rest start with on_failure_jump and end
7668 with a jump, e.g., here is the pattern for `a|b|c':
7670 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7671 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7672 /exactn/1/c
7674 So, we have to first go through the first (n-1)
7675 alternatives and then deal with the last one separately. */
7678 /* Deal with the first (n-1) alternatives, which start
7679 with an on_failure_jump (see above) that jumps to right
7680 past a jump_past_alt. */
7682 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7683 jump_past_alt)
7685 /* `mcnt' holds how many bytes long the alternative
7686 is, including the ending `jump_past_alt' and
7687 its number. */
7689 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7690 (1 + OFFSET_ADDRESS_SIZE),
7691 reg_info))
7692 return false;
7694 /* Move to right after this alternative, including the
7695 jump_past_alt. */
7696 p1 += mcnt;
7698 /* Break if it's the beginning of an n-th alternative
7699 that doesn't begin with an on_failure_jump. */
7700 if ((re_opcode_t) *p1 != on_failure_jump)
7701 break;
7703 /* Still have to check that it's not an n-th
7704 alternative that starts with an on_failure_jump. */
7705 p1++;
7706 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7707 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7708 jump_past_alt)
7710 /* Get to the beginning of the n-th alternative. */
7711 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7712 break;
7716 /* Deal with the last alternative: go back and get number
7717 of the `jump_past_alt' just before it. `mcnt' contains
7718 the length of the alternative. */
7719 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7721 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7722 return false;
7724 p1 += mcnt; /* Get past the n-th alternative. */
7725 } /* if mcnt > 0 */
7726 break;
7729 case stop_memory:
7730 assert (p1[1] == **p);
7731 *p = p1 + 2;
7732 return true;
7735 default:
7736 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7737 return false;
7739 } /* while p1 < end */
7741 return false;
7742 } /* group_match_null_string_p */
7745 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7746 It expects P to be the first byte of a single alternative and END one
7747 byte past the last. The alternative can contain groups. */
7749 static boolean
7750 PREFIX(alt_match_null_string_p) (p, end, reg_info)
7751 UCHAR_T *p, *end;
7752 PREFIX(register_info_type) *reg_info;
7754 int mcnt;
7755 UCHAR_T *p1 = p;
7757 while (p1 < end)
7759 /* Skip over opcodes that can match nothing, and break when we get
7760 to one that can't. */
7762 switch ((re_opcode_t) *p1)
7764 /* It's a loop. */
7765 case on_failure_jump:
7766 p1++;
7767 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7768 p1 += mcnt;
7769 break;
7771 default:
7772 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7773 return false;
7775 } /* while p1 < end */
7777 return true;
7778 } /* alt_match_null_string_p */
7781 /* Deals with the ops common to group_match_null_string_p and
7782 alt_match_null_string_p.
7784 Sets P to one after the op and its arguments, if any. */
7786 static boolean
7787 PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7788 UCHAR_T **p, *end;
7789 PREFIX(register_info_type) *reg_info;
7791 int mcnt;
7792 boolean ret;
7793 int reg_no;
7794 UCHAR_T *p1 = *p;
7796 switch ((re_opcode_t) *p1++)
7798 case no_op:
7799 case begline:
7800 case endline:
7801 case begbuf:
7802 case endbuf:
7803 case wordbeg:
7804 case wordend:
7805 case wordbound:
7806 case notwordbound:
7807 #ifdef emacs
7808 case before_dot:
7809 case at_dot:
7810 case after_dot:
7811 #endif
7812 break;
7814 case start_memory:
7815 reg_no = *p1;
7816 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7817 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7819 /* Have to set this here in case we're checking a group which
7820 contains a group and a back reference to it. */
7822 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7823 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7825 if (!ret)
7826 return false;
7827 break;
7829 /* If this is an optimized succeed_n for zero times, make the jump. */
7830 case jump:
7831 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7832 if (mcnt >= 0)
7833 p1 += mcnt;
7834 else
7835 return false;
7836 break;
7838 case succeed_n:
7839 /* Get to the number of times to succeed. */
7840 p1 += OFFSET_ADDRESS_SIZE;
7841 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7843 if (mcnt == 0)
7845 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7846 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7847 p1 += mcnt;
7849 else
7850 return false;
7851 break;
7853 case duplicate:
7854 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7855 return false;
7856 break;
7858 case set_number_at:
7859 p1 += 2 * OFFSET_ADDRESS_SIZE;
7861 default:
7862 /* All other opcodes mean we cannot match the empty string. */
7863 return false;
7866 *p = p1;
7867 return true;
7868 } /* common_op_match_null_string_p */
7871 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7872 bytes; nonzero otherwise. */
7874 static int
7875 PREFIX(bcmp_translate) (s1, s2, len, translate)
7876 const CHAR_T *s1, *s2;
7877 register int len;
7878 RE_TRANSLATE_TYPE translate;
7880 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7881 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7882 while (len)
7884 #ifdef WCHAR
7885 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7886 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7887 return 1;
7888 #else /* BYTE */
7889 if (translate[*p1++] != translate[*p2++]) return 1;
7890 #endif /* WCHAR */
7891 len--;
7893 return 0;
7897 #else /* not INSIDE_RECURSION */
7899 /* Entry points for GNU code. */
7901 /* re_compile_pattern is the GNU regular expression compiler: it
7902 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7903 Returns 0 if the pattern was valid, otherwise an error string.
7905 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7906 are set in BUFP on entry.
7908 We call regex_compile to do the actual compilation. */
7910 const char *
7911 re_compile_pattern (pattern, length, bufp)
7912 const char *pattern;
7913 size_t length;
7914 struct re_pattern_buffer *bufp;
7916 reg_errcode_t ret;
7918 /* GNU code is written to assume at least RE_NREGS registers will be set
7919 (and at least one extra will be -1). */
7920 bufp->regs_allocated = REGS_UNALLOCATED;
7922 /* And GNU code determines whether or not to get register information
7923 by passing null for the REGS argument to re_match, etc., not by
7924 setting no_sub. */
7925 bufp->no_sub = 0;
7927 /* Match anchors at newline. */
7928 bufp->newline_anchor = 1;
7930 # ifdef MBS_SUPPORT
7931 if (MB_CUR_MAX != 1)
7932 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7933 else
7934 # endif
7935 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7937 if (!ret)
7938 return NULL;
7939 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7941 #ifdef _LIBC
7942 weak_alias (__re_compile_pattern, re_compile_pattern)
7943 #endif
7945 /* Entry points compatible with 4.2 BSD regex library. We don't define
7946 them unless specifically requested. */
7948 #if defined _REGEX_RE_COMP || defined _LIBC
7950 /* BSD has one and only one pattern buffer. */
7951 static struct re_pattern_buffer re_comp_buf;
7953 char *
7954 #ifdef _LIBC
7955 /* Make these definitions weak in libc, so POSIX programs can redefine
7956 these names if they don't use our functions, and still use
7957 regcomp/regexec below without link errors. */
7958 weak_function
7959 #endif
7960 re_comp (s)
7961 const char *s;
7963 reg_errcode_t ret;
7965 if (!s)
7967 if (!re_comp_buf.buffer)
7968 return gettext ("No previous regular expression");
7969 return 0;
7972 if (!re_comp_buf.buffer)
7974 re_comp_buf.buffer = (unsigned char *) malloc (200);
7975 if (re_comp_buf.buffer == NULL)
7976 return (char *) gettext (re_error_msgid
7977 + re_error_msgid_idx[(int) REG_ESPACE]);
7978 re_comp_buf.allocated = 200;
7980 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7981 if (re_comp_buf.fastmap == NULL)
7982 return (char *) gettext (re_error_msgid
7983 + re_error_msgid_idx[(int) REG_ESPACE]);
7986 /* Since `re_exec' always passes NULL for the `regs' argument, we
7987 don't need to initialize the pattern buffer fields which affect it. */
7989 /* Match anchors at newlines. */
7990 re_comp_buf.newline_anchor = 1;
7992 # ifdef MBS_SUPPORT
7993 if (MB_CUR_MAX != 1)
7994 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7995 else
7996 # endif
7997 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7999 if (!ret)
8000 return NULL;
8002 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8003 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8008 #ifdef _LIBC
8009 weak_function
8010 #endif
8011 re_exec (s)
8012 const char *s;
8014 const int len = strlen (s);
8015 return
8016 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8019 #endif /* _REGEX_RE_COMP */
8021 /* POSIX.2 functions. Don't define these for Emacs. */
8023 #ifndef emacs
8025 /* regcomp takes a regular expression as a string and compiles it.
8027 PREG is a regex_t *. We do not expect any fields to be initialized,
8028 since POSIX says we shouldn't. Thus, we set
8030 `buffer' to the compiled pattern;
8031 `used' to the length of the compiled pattern;
8032 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8033 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8034 RE_SYNTAX_POSIX_BASIC;
8035 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8036 `fastmap' to an allocated space for the fastmap;
8037 `fastmap_accurate' to zero;
8038 `re_nsub' to the number of subexpressions in PATTERN.
8040 PATTERN is the address of the pattern string.
8042 CFLAGS is a series of bits which affect compilation.
8044 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8045 use POSIX basic syntax.
8047 If REG_NEWLINE is set, then . and [^...] don't match newline.
8048 Also, regexec will try a match beginning after every newline.
8050 If REG_ICASE is set, then we considers upper- and lowercase
8051 versions of letters to be equivalent when matching.
8053 If REG_NOSUB is set, then when PREG is passed to regexec, that
8054 routine will report only success or failure, and nothing about the
8055 registers.
8057 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8058 the return codes and their meanings.) */
8061 regcomp (preg, pattern, cflags)
8062 regex_t *preg;
8063 const char *pattern;
8064 int cflags;
8066 reg_errcode_t ret;
8067 reg_syntax_t syntax
8068 = (cflags & REG_EXTENDED) ?
8069 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8071 /* regex_compile will allocate the space for the compiled pattern. */
8072 preg->buffer = 0;
8073 preg->allocated = 0;
8074 preg->used = 0;
8076 /* Try to allocate space for the fastmap. */
8077 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8079 if (cflags & REG_ICASE)
8081 unsigned i;
8083 preg->translate
8084 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8085 * sizeof (*(RE_TRANSLATE_TYPE)0));
8086 if (preg->translate == NULL)
8087 return (int) REG_ESPACE;
8089 /* Map uppercase characters to corresponding lowercase ones. */
8090 for (i = 0; i < CHAR_SET_SIZE; i++)
8091 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8093 else
8094 preg->translate = NULL;
8096 /* If REG_NEWLINE is set, newlines are treated differently. */
8097 if (cflags & REG_NEWLINE)
8098 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8099 syntax &= ~RE_DOT_NEWLINE;
8100 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8101 /* It also changes the matching behavior. */
8102 preg->newline_anchor = 1;
8104 else
8105 preg->newline_anchor = 0;
8107 preg->no_sub = !!(cflags & REG_NOSUB);
8109 /* POSIX says a null character in the pattern terminates it, so we
8110 can use strlen here in compiling the pattern. */
8111 # ifdef MBS_SUPPORT
8112 if (MB_CUR_MAX != 1)
8113 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8114 else
8115 # endif
8116 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8118 /* POSIX doesn't distinguish between an unmatched open-group and an
8119 unmatched close-group: both are REG_EPAREN. */
8120 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8122 if (ret == REG_NOERROR && preg->fastmap)
8124 /* Compute the fastmap now, since regexec cannot modify the pattern
8125 buffer. */
8126 if (re_compile_fastmap (preg) == -2)
8128 /* Some error occurred while computing the fastmap, just forget
8129 about it. */
8130 free (preg->fastmap);
8131 preg->fastmap = NULL;
8135 return (int) ret;
8137 #ifdef _LIBC
8138 weak_alias (__regcomp, regcomp)
8139 #endif
8142 /* regexec searches for a given pattern, specified by PREG, in the
8143 string STRING.
8145 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8146 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8147 least NMATCH elements, and we set them to the offsets of the
8148 corresponding matched substrings.
8150 EFLAGS specifies `execution flags' which affect matching: if
8151 REG_NOTBOL is set, then ^ does not match at the beginning of the
8152 string; if REG_NOTEOL is set, then $ does not match at the end.
8154 We return 0 if we find a match and REG_NOMATCH if not. */
8157 regexec (preg, string, nmatch, pmatch, eflags)
8158 const regex_t *preg;
8159 const char *string;
8160 size_t nmatch;
8161 regmatch_t pmatch[];
8162 int eflags;
8164 int ret;
8165 struct re_registers regs;
8166 regex_t private_preg;
8167 int len = strlen (string);
8168 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8170 private_preg = *preg;
8172 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8173 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8175 /* The user has told us exactly how many registers to return
8176 information about, via `nmatch'. We have to pass that on to the
8177 matching routines. */
8178 private_preg.regs_allocated = REGS_FIXED;
8180 if (want_reg_info)
8182 regs.num_regs = nmatch;
8183 regs.start = TALLOC (nmatch * 2, regoff_t);
8184 if (regs.start == NULL)
8185 return (int) REG_NOMATCH;
8186 regs.end = regs.start + nmatch;
8189 /* Perform the searching operation. */
8190 ret = re_search (&private_preg, string, len,
8191 /* start: */ 0, /* range: */ len,
8192 want_reg_info ? &regs : (struct re_registers *) 0);
8194 /* Copy the register information to the POSIX structure. */
8195 if (want_reg_info)
8197 if (ret >= 0)
8199 unsigned r;
8201 for (r = 0; r < nmatch; r++)
8203 pmatch[r].rm_so = regs.start[r];
8204 pmatch[r].rm_eo = regs.end[r];
8208 /* If we needed the temporary register info, free the space now. */
8209 free (regs.start);
8212 /* We want zero return to mean success, unlike `re_search'. */
8213 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8215 #ifdef _LIBC
8216 weak_alias (__regexec, regexec)
8217 #endif
8220 /* Returns a message corresponding to an error code, ERRCODE, returned
8221 from either regcomp or regexec. We don't use PREG here. */
8223 size_t
8224 regerror (errcode, preg, errbuf, errbuf_size)
8225 int errcode;
8226 const regex_t *preg;
8227 char *errbuf;
8228 size_t errbuf_size;
8230 const char *msg;
8231 size_t msg_size;
8233 (void) preg;
8235 if (errcode < 0
8236 || errcode >= (int) (sizeof (re_error_msgid_idx)
8237 / sizeof (re_error_msgid_idx[0])))
8238 /* Only error codes returned by the rest of the code should be passed
8239 to this routine. If we are given anything else, or if other regex
8240 code generates an invalid error code, then the program has a bug.
8241 Dump core so we can fix it. */
8242 abort ();
8244 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8246 msg_size = strlen (msg) + 1; /* Includes the null. */
8248 if (errbuf_size != 0)
8250 if (msg_size > errbuf_size)
8252 #if 0 && (defined HAVE_MEMPCPY || defined _LIBC)
8253 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8254 #else
8255 memcpy (errbuf, msg, errbuf_size - 1);
8256 errbuf[errbuf_size - 1] = 0;
8257 #endif
8259 else
8260 memcpy (errbuf, msg, msg_size);
8263 return msg_size;
8265 #ifdef _LIBC
8266 weak_alias (__regerror, regerror)
8267 #endif
8270 /* Free dynamically allocated space used by PREG. */
8272 void
8273 regfree (preg)
8274 regex_t *preg;
8276 if (preg->buffer != NULL)
8277 free (preg->buffer);
8278 preg->buffer = NULL;
8280 preg->allocated = 0;
8281 preg->used = 0;
8283 if (preg->fastmap != NULL)
8284 free (preg->fastmap);
8285 preg->fastmap = NULL;
8286 preg->fastmap_accurate = 0;
8288 if (preg->translate != NULL)
8289 free (preg->translate);
8290 preg->translate = NULL;
8292 #ifdef _LIBC
8293 weak_alias (__regfree, regfree)
8294 #endif
8296 #endif /* not emacs */
8298 #endif /* not INSIDE_RECURSION */
8301 #undef STORE_NUMBER
8302 #undef STORE_NUMBER_AND_INCR
8303 #undef EXTRACT_NUMBER
8304 #undef EXTRACT_NUMBER_AND_INCR
8306 #undef DEBUG_PRINT_COMPILED_PATTERN
8307 #undef DEBUG_PRINT_DOUBLE_STRING
8309 #undef INIT_FAIL_STACK
8310 #undef RESET_FAIL_STACK
8311 #undef DOUBLE_FAIL_STACK
8312 #undef PUSH_PATTERN_OP
8313 #undef PUSH_FAILURE_POINTER
8314 #undef PUSH_FAILURE_INT
8315 #undef PUSH_FAILURE_ELT
8316 #undef POP_FAILURE_POINTER
8317 #undef POP_FAILURE_INT
8318 #undef POP_FAILURE_ELT
8319 #undef DEBUG_PUSH
8320 #undef DEBUG_POP
8321 #undef PUSH_FAILURE_POINT
8322 #undef POP_FAILURE_POINT
8324 #undef REG_UNSET_VALUE
8325 #undef REG_UNSET
8327 #undef PATFETCH
8328 #undef PATFETCH_RAW
8329 #undef PATUNFETCH
8330 #undef TRANSLATE
8332 #undef INIT_BUF_SIZE
8333 #undef GET_BUFFER_SPACE
8334 #undef BUF_PUSH
8335 #undef BUF_PUSH_2
8336 #undef BUF_PUSH_3
8337 #undef STORE_JUMP
8338 #undef STORE_JUMP2
8339 #undef INSERT_JUMP
8340 #undef INSERT_JUMP2
8341 #undef EXTEND_BUFFER
8342 #undef GET_UNSIGNED_NUMBER
8343 #undef FREE_STACK_RETURN
8345 # undef POINTER_TO_OFFSET
8346 # undef MATCHING_IN_FRST_STRING
8347 # undef PREFETCH
8348 # undef AT_STRINGS_BEG
8349 # undef AT_STRINGS_END
8350 # undef WORDCHAR_P
8351 # undef FREE_VAR
8352 # undef FREE_VARIABLES
8353 # undef NO_HIGHEST_ACTIVE_REG
8354 # undef NO_LOWEST_ACTIVE_REG
8356 # undef CHAR_T
8357 # undef UCHAR_T
8358 # undef COMPILED_BUFFER_VAR
8359 # undef OFFSET_ADDRESS_SIZE
8360 # undef CHAR_CLASS_SIZE
8361 # undef PREFIX
8362 # undef ARG_PREFIX
8363 # undef PUT_CHAR
8364 # undef BYTE
8365 # undef WCHAR
8367 # define DEFINED_ONCE
8368 #endif /* USE_INCLUDED_REGEX */